
Spelling Chequer API
version 0.1 January 27, 1997

1.0 Introduction

The spell-checker is a fast, dictionary-based spell-checker. It supports letter insertion, letter
deletion, letter transposition, letter substitution, and phonetic substitution. It can also split
run together words. It is not as robust as some other spell-checkers in terms of allowing
combinations of the above operations: it only allows a single
insertion/deletion/transposition/substitution per word. But in terms of phonetic substitution,
it allows a slightly wider range of phonetic substitutions to be made, which is probably
more appropriate for young spellers.

It remembers words that have been skipped, so it won't ask you about them again, and it
supports an interface for learning words.

It is also smart about locales. We have moved locale-specific spellings (color, colour) to
locale-specific dictionaries, so these spellings will only be allowed in the proper locale.

2.0 API Description

The spelling checker API is an optional add on to Newton 2.1 OS. The API consists of a
number of global functions. There are no user interface prototypes (all the ones in the Word
Processor are part of the that package, not part of spell checker).

As of this writing the spelling checker API will be on the English Language versions of the
MessagePad 2000 and eMate 300. Before using the spelling checker you should make sure
it is installed. You can do this by checking for the existence of any of the spelling checker
global functions:

if GlobalFnExists('SpellDocBegin) then
// spelling checker installed

else
// spelling checker not installed

The spell-checker has a very simple interface. Tell the spell-checker that you're about to
start spell-checking a document by calling speller := SpellDocBegin(). Then for each
word in the document, you call SpellCheck(speller, word). SpellCheck will return
non-nil if the word appears to need correction. Then you call SpellCorrect(speller,
word). SpellCorrect will return a list of possible alternate guesses. If you want the spell-
checker to remember words that have been skipped, call SpellSkip(speller, word). If
you want a word to be learned, call SpellLearn(speller, word). When you have
finished processing all the words in the document, call SpellDocEnd(speller). This
clears out the list of words that have been skipped, and it causes the learned words to be
saved to the user store.

2.1 Processing of words passed to the spell-checker

Copyright ©1996-7 Apple Computer, Inc. 1 Preliminary

Many of the spell-checking functions accept a word as a parameter. This parameter is
processed similarly by these function.

1. Strip leading and trailing punctuation from the word

2. Convert the word to lower-case remembering original capitalization

3. If the word contains illegal symbols halt processing

The legal symbols are all alphanumeric characters (A-Z, a-z, 1-0) and the following special
and punctuation characters: ! " ' () : ; ? , . “ ” ‘ ’

2.2 Use of dictionaries by the spell-checker

The spell-checker assembles a list of built-in dictionaries to use for both checking and
correction. The exact list of dictionaries used will vary from product to product, so the
result of spell-checking will also vary. Generally, though, a word is considered to be valid
if it is one of the built-in dictionaries or the Personal Word List or the list of skipped
words.

2.3 The Spell Check Object

Most calls to the spell check API require passing an initialized spell check object. The
object is initialized using the SpellDocBegin call. The object is returned as a frame.
Although the object contains several slot, the only documented slots are:

countSkippedAsMisspelled

Determines if words on the skip list should be counted as misspelled. See the
documentation for SpellSkip below (section 2.4).

dialogInhibit

Enable or disable the display of the capitalization slip. This slip can be displayed by
SpellLearn, if the learned word is capitalized. See SpellLearn below (section 2.4).

2.4 The APIs

speller := SpellDocBegin();

speller spell check object used for other spell check calls (a frame)

Initializes the spell-check object and prepares it for use. You must call this function
before spell-checking a document. It should always be balanced by a call to
SpellDocEnd.

SpellDocEnd(speller)

speller spell-check object returned by SpellDocBegin

Call this function when you have finished a spell-checking session. If you used the
SpellLearn function this function will save the learned words to the personal word
list. The function will also delete the list of skipped words and deallocate the spell
check object.

Copyright ©1996-7 Apple Computer, Inc. 2 Preliminary

Important: Once you have called SpellDocEnd on a spell check object, do not
attempt to use that object again. Doing so could result in bus errors or other errors.

SpellCheck(speller, word)

speller a spell checking object previously initialized using SpellDocBegin

word the word to check passed as a NewtonScript string

This function first processes the word as described above. If it contains invalid
characters, then SpellCheck returns nil. It then looks to see if the word is in the
dictionary list. If so, SpellCheck returns nil. If the word is not in a list, or if its
capitalization is not correct, then SpellCheck returns non-nil.

For example:

SpellCheck("and") => nil // spelled correctly
SpellCheck("And") => nil // spelled correctly
SpellCheck("AND") => nil // spelled correctly
SpellCheck("ernie") => 128 // capitalization is wrong
SpellCheck("Ernie") => nil // spelled correctly
SpellCheck("ERNIE") => nil // spelled correctly
SpellCheck("ibm") => 192 // needs all caps
SpellCheck("Ibm") => 192 // needs all caps
SpellCheck("IBM") => nil // spelled correctly
SpellCheck("(and.)") => nil // spelled correctly
SpellCheck("(bxnd.)") => true // not spelled correctly
SpellCheck("isn't") => nil // spelled correctly
SpellCheck("isn’t") => nil // spelled correctly
SpellCheck("so-so") => nil // hyphen an invalid character
SpellCheck("ab#de") => nil // invalid characters
SpellCheck("so") => nil // spelled correctly

Important: Do not rely on a particular non-nil return value from SpellCheck. You
can only rely on the value being either NIL or a non-nil.

SpellCorrect(speller, word)

speller a spell checking object previously initialized using SpellDocBegin

word the word to check passed as a NewtonScript string

This function first processes the word as described above (see section 2.1). It then
uses the resulting word to generate a list of possible guesses for the word. If it finds
no guesses, it either returns nil or an empty array of guesses. The returned list will
contain up to 7 guesses, ordered generally by their closeness to the original word.
Each returned guess will be punctuated as was the original word, and it will also be
capitalized like the original (unless fixing the capitalization was part of the problem),
so the returned guesses can be directly substituted for the original word.

Note: SpellCorrect can suggest alternates for correctly spelled words, even
though it is normally only used for words that SpellCheck flagged as incorrect.

The following examples provide an indication of the types of corrections that the
spell-checker will make.

Copyright ©1996-7 Apple Computer, Inc. 3 Preliminary

// letter substitution
SpellCorrect("bxnd") => ["band", "bend"...]

// letter deletion
SpellCorrect("baxnd") => ["band"]

// letter insertion
SpellCorrect("bnd") => ["bond", "band"...]

// capitalization
SpellCorrect ("ernie") => ["Ernie", "Renie"...]

// fancy apostrophe preserved
SpellCorrect ("hisn’t") => ["hasn’t", "isn’t"]

// punctuation preserved
SpellCorrect("(and.)") => ["(and.)", "(end.)"...]

// words split
SpellCorrect("looseends") => ["loose ends"]

// phonetic substitution
SpellCorrect("unfourtaneatly") => ["unfortunately"]

// case preserved
SpellCorrect("Shes") => ["She's", "Shoes"...]

// case preserved
SpellCorrect("SHEP") => ["SHEEP", "SHIP"...]

SpellSkip(speller, word)

speller a spell checking object previously initialized using SpellDocBegin

word the word to check passed as a NewtonScript string

SpellSkip is used to maintain a list of words that should be skipped during the
course of spell-checking a document, but that should not be added permanently to the
Personal Word List. SpellSkip processes the word as described above (see section
2.1). It then adds the word to the list of skipped words. SpellSkip ignores
capitalization: it just stores the word as written.

Normally SpellCheck will return NIL if the word is found in the skip dictionary.
However this doesn't let you keep track of how many words were skipped. To do
this, there's a special slot that you can put into the spell check frame returned by
SpellDocBegin. If you want to count skipped words as misspelled, set
speller.countSkippedAsMisspelled to a non-nil value. When SpellCheck
returns a non-nil value, set the slot to nil, and call SpellCheck again. If the result is
nil, the word is in the skip dictionary and should be skipped.

SpellLearn(speller, word)

Copyright ©1996-7 Apple Computer, Inc. 4 Preliminary

speller a spell checking object previously initialized using SpellDocBegin

word the word to check passed as a NewtonScript string

SpellLearn is used to add words permanently to the Personal Word List. Before
calling SpellLearn, you should have first called SpellDocBegin. First SpellLearn
processes the word as described above (see section 2.1). It then adds the word to the
Personal Word List as described below.

For a capitalized word, or a word that is all caps, SpellLearn will display a
notification slip that asks the user whether the word should always be capitalized (or
all caps). If the user answers "Yes", it will be added as originally written, otherwise
it will be converted to lower-case before being added.

The notification slip can be disabled by setting speller.dialogInhibit to non-nil.

SpellLearn returns the word that was actually learned, so that you can pass it to
SpellUnlearn for implementing undo operations.

SpellUnlearn(speller, learnedword)

speller a spell checking object previously initialized using SpellDocBegin

word the word to remove from the learned words list passed as
a NewtonScript string

SpellUnlearn is used to remove words from the Personal Word List, and is usually
used to implement undo operations. The following example shows how SpellUnlearn
is typically used:

learnedWord := SpellLearn(sp, word);
SpellUnlearn(sp, learnedWord);

Note: SpellUnlearn should be passed the word returned by the SpellLearn call,
not the original word that was passed to SpellCheck or SpellLearn.

Copyright ©1996-7 Apple Computer, Inc. 5 Preliminary

