Newton C++ Tools

Newtsbug User’s Guide

¢

1.01

February 21, 1997
© Apple Computer, Inc. 1997

" Apple Computer, Inc.

© 1997 Apple Computer, Inc.
All rights reserved.

No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying,
recording, or otherwise, without
prior written permission of Apple
Computer, Inc., except in the
normal use of the software or to
make a backup copy of the
software and any documentation
provided on CD-ROM. Printed in
the United States of America.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for licensed
Newton platforms.

Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for printing or clerical
errors.

Apple Computer, Inc.

1 Infinite Loop

Cupertino, CA 95014

408-996-1010

Apple, the Apple logo, AppleTalk,
eMate, Espy, LaserWriter, the light
bulb logo, Macintosh, MessagePad,

Newton, Newton Connection Kit,
and New York are trademarks of
Apple Computer, Inc,, registered in
the United States and other
countries.

Geneva, NewtonScript, Newton
Toolkit, and QuickDraw are

trademarks of Apple Computer, Inc.

Acrobat, Adobe Illustrator, and
PostScript are trademarks of Adobe
Systems Incorporated, which may
be registered in certain
jurisdictions.

CompuServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered
trademark of Frame Technology
Corporation.

Helvetica and Palatino are
registered trademarks of
Linotype-Hell AG and/or its
subsidiaries.

ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.

Microsoft is a registered trademark
of Microsoft Corporation.
Windows is a trademark of
Microsoft Corporation.
QuickView™ is licensed from
Altura Software, Inc.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, ADC
will replace the media or manual at no
charge to you provided you return the
item to be replaced with proof of
purchase to ADC.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE

LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
“AS1S,” AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Chapter 1 Introduction 1-1
System Requirements 1-1
Features 1-2

Chapter 2 Getting Started 2-1
What You Need 2-1
Beginning Debugging 2-3

Making Sure Your Package Symbols are Available 2-4
Problem Alert Dialogs 2-5
Ending a Debugging Session 2-5
Files Newtsbug Needs to Find 2-5

Naming the Package File So Newtsbug Can Find It 2-5

Handling the .sym File 2-6

If You Aren’t Getting Symbols For Your Package 2-6

Chapter 3 Newtsbug Menus 3-1

File Menu 3-1
Open (x-O) 3-2
Close (x-W) 3-2
Save As... 3-2
Load Memory... 3-2
Save Memory... 3-2
Frozen Newton Reconnect... 3-3
Quit (x-Q) 3-4

Edit Menu 3-4
Copy Target Screen 3-4
Register Names... 3-4
Preferences... 3-5

Stop on Debug traps 3-6
Beep on Stops 3-6
Add Time Stamps 3-6
Log Breaks 3-6
Log Stdio 3-6
Log Listener 3-7
Async Prints 3-7
Font 3-7

iii

Number of 4K Pages for Breakpoints 3-7
Baud Rate 3-8
Modem Port or Printer Port 3-8
Commands Menu 3-8
Go (x-G) 39
Stop (x-.) 39
Rerun (x-R) 3-9
Clear All Breakpoints 3-10
Clear All Breakpoint Hits 3-10
Disable/Enable Breakpoints 3-10
Step Into (x-S), Step Over (x-T) 3-10
Convert... (x-N) 3-10
DownLoad Package... 3-11
Command Keys for the Listener 3-11
Procedures Menu 3-12
Procedure... (x-P) 3-12
Define... 3-13
Memory Menu 3-14
Memory... 3-14
Frame... 3-15
Find... 3-18
Heap 3-18
Script Heap 3-19
Smash Heap Tags 3-19
Sort by Address 3-19
Sort by Size 3-19
Sort by Task 3-20
Windows Menu 3-20
Status 3-20
CPU 3-20
The FPE Registers 3-20
Stack Trace 3-20
Stack Trace From... 3-21
stdin/stdout/stderr 3-21
NewtonScript Listener 3-21
Config Menu 3-21
Stop on Aborts 3-21
Default Stdio On 3-21
Enable Stdout 3-21
Enable Package Symbols 3-22
Chapter 4 Newtsbug Windows 4-1
Status Window 4-1
Go and Step Buttons 4-2
Rerunning 4-2

iv

Handy Hex Converter 4-3
CPU Window 4-3
FPE Registers Window 4-5
Stack Trace Window 4-5
Stdin/Stdout/Stderr Window 4-6
NewtonScript Listener Window 4-6
Code Windows 4-6

Opening Code Windows 4-7

Code Window Contents 4-8
Procedure Browser 4-8

Chapter 5 Using Newtsbug 5-1
Breakpoints 5-1

The Breakpoint Conditions Dialog 5-2
Expressions 5-4
Shortcuts 5-4

General Shortcuts 5-4

In the CPU Window 5-5

In Code Windows 5-5

In the NewtonScript Listener Window 5-5

Customizing NewtonScript Listener Shortcuts 5-5

In the Stack Trace Window 5-6
Debugging Examples and Tips 5-6

Converting Values 5-6

Examining Parameters 5-6

Stack Frames 5-7

Compiler Idioms 5-7

How to find out the Real PC 5-8

Debugging Layout and Placement 5-9

Introduction

Newtsbug is the low-level debugger for Newton development. You need to use it if you
want to debug C, C++, or ARM Assembler code that runs on a Newton device.

Newtsbug runs on Mac OS-based computers.

Since Newtsbug is a low-level debugger, it works on compiled code, and does not
display source code. It does, however, display higher-level language and Assembler
symbols. Familiarity with ARM Assembler is very helpful in using Newtsbug. You may
want, at least, to obtain the Assembler documentation.

You use Newtsbug by connecting a Newton to the Mac OS-based computer using a serial
cable.

If you are developing code using the Newton C++ Tools and NTK that you want to
debug using Newtsbug, you may find there are many times in your development cycle
when you want to run both NTK and Newtsbug, and you need to download new
versions of your program. The best way to do that is to download your program using
Newtsbug rather than NTK . Newtsbug’s Commands menu has a Download Package
command, with the shortcut 3-2, which is equivalent to the NTK Inspector’s command
that downloads a package.

System Requirements

Newtsbug has the following system requirements:

» Any PowerPC computer running the Mac OS will work well. For 680x0 Mac OS
computers, we recommend that you use a model that has a 68040, although you can
use a slower model.

» The operating system must be Mac OS version 7.0 or later.
= You must be running in 32-bit mode.

= You need at least 16 megabytes of memory.

System Requirements 1-1

Features

Introduction

= You need a monitor screen that can display 640-by-480 resolution or better. It can be

black and white, gray scale, or color.

1-2

This section lists all the features supported by Newtsbug.

s Execution control

o Stop the Newton; when the Newton is stopped, everything except possibly some
low-level hardware code is stopped

o Set breakpoints in packages or in ROM
o Set breakpoints with conditional expressions (e.g. R0O== 0x00000000)
o Step and step over in ROM or packages

Exceptions Handling
o Stop on aborts

Memory Related

o See heaps

o See memory

o Modify memory

Code Related

o See code (ROM and packages)

o Change instructions

Stdin/stdout/stderr

o See messages in stdin/stdout/stderr window

o Log files

NewtonScript Listener window

o Cut, Copy, Paste, Clear, Select All, Undo

Quick keys (38-3 through 38-9), which can be customized
o All NewtonScript pri nt calls are output to this window

O

O

Time stamp for each line of text from the Newton

o Window contents are automatically saved in a file when session is closed

o Log files

Choose any available serial channel

o On the Newton, use the built-in serial port, or use a serial port on a PCMCIA card

o On the Mac OS computer, use either the modem or printer port

Error checking
o CRC checking for packets sent between Newton and Newtsbug
o Retransmit on error

Load packages

Features

Introduction

» Start debugging after the Newton crashes
= See and modify registers

= See FPE registers

= Stack trace

» Copy the Newton screen

» CPU windowThe following features can only be used with a flash-ROM Newton.

Features

1-3

Introduction

Features

Getting Started

This chapter shows how to get started debugging your packages.

What You Need

You need the following to debug with Newtsbug:

A Newton device using a 2.0 (or later) system. You should use a power adaptor rather
than the Newton’s battery, because the Newton will not sleep when stopped in the
debugger.

Newtsbug Connection, which comes on the Newtsbug CD, loaded on your Newton
device.

A Mac OS-based computer.

On the Mac OS-based computer, an image file. The image file is a representation of the
Newton system that can be used by Newtsbug. The image file you have needs to
match the system on your Newton device. You can find out the system version
number on your Newton device by, with the Extras drawer open, tapping on the
memory info button inside the “i” button in the lower left corner. Figure 2-1 shows
what the Memory Info command looks like; Figure 2-2 shows how the information
appears. In this case, it is ROM 2.0 (525310)-0.

What You Need 2-1

Getting Started

Figure 2-1 The Memory Info Command

+ S5etup

= O < A

Pref: Crwmer Setup Writing
Info Practice

Femory Info Battery

Figure 2-2 Memory Info

Memory Info

Mame Uzed Free

Internal 3K 337K

RM Yersion 2.0 {52531 43-0
Swstern Bab Installed 512K

Built-in Make Backdrop

: Mames 7 Dates 27 Extras W Motes E

» The Newtsbug application, loaded on the Mac OS-based computer.

» A serial cable.

s The package you want to debug loaded on the Newton. (You can load it later using
Newtsbug, if you want.)

s The file with symbol information for the package in a place where Newtsbug can find
it. If you used the Newton C++ Tools to create your package and you haven’t moved
the symbol file or package file, Newtsbug can find the symbol file through the
package file. See “Files Newtsbug Needs to Find” on page 2-5 for information.

You may want to use a serial PCMCIA card, which leaves the Newton serial port free for
other uses. We have tested the Socket Communications serial I/O card, and this works
fine with current Newton devices; we recommend that developers use this. Other cards
may work as well, but haven’t been tested as of this writing.

2-2 What You Need

Getting Started

Beginning Debugging

1. Create an alias for your package file and put it in the Newtsbug folder on your Mac
OS-based computer.

Newtsbug looks for package files, or aliases to the package files, in its directory. It
derives the expected name for a package from the Name entry of the Package Settings
icon of the Project Settings menu item in NTK. If you suspect you don’t have the right
name, the easiest way to see the proper name is to start Newtsbug. If the name you
have is wrong, you will see an error message that gives the name that Newtsbug
expects. You can tell if your package symbols are being read successfully by watching
the Newtsbug stdin/stdout/stderr window while you make the connection with the
Newton. Newtsbug indicates when it successfully reads a package file and symbol
file. See “Files Newtsbug Needs to Find” on page 2-5 for more information,
particularly if you have moved the .pkg file or the file that contains the compiled C
code, which ends in .sym. That section also has information on naming the package
file so that Newtsbug can find it.

2. Run Newtsbug.
3. When Newtsbug asks for an image file, click on the Cancel button.

4. Choose the Preferences command from the Edit menu.

Newtsbug displays a dialog box that lets you set various features of Newtsbug.

5. The bottom part of the dialog box lets you select the modem port or printer port.
Choose the one that you've used for the serial cable to the Newton.

6. Choose the baud rate you want. All of the available baud rates work well on most
Mac OS-based computers. If you have a computer that has a processor that is slower
than a 68040, choose something slower than 57600. If you have trouble maintaining a
debug session, try lowering the baud rate.

7. If you expect to set breakpoints in ROM, step in ROM, or modify ROM, you need to
reserve some memory using this dialog box. (If you are just going to take these actions
in your package code, you do not need to reserve any memory; however, see note
below.) See “Number of 4K Pages for Breakpoints” on page 3-7 for details. You can
reset the amount of memory available by using the Preferences command again.

Note

If you are using a Newton MessagePad 120 or 130 running Newton OS
2.0 and you want to use the C debugging function pri nt f, you need to
reserve two pages (8K), because those versions of the Newton system
cannot otherwise execute pri nt f . If you do not reserve space, calls to
pri ntf will do nothing. If you are using a later version of the Newton
system, you do not need to reserve any space for this purpose. O

8. Click OK to close the dialog box.

9. Open an image file using the Open menu command in the File menu. Newtsbug
reads the symbols from the file.

Beginning Debugging 2-3

Getting Started

10. On the Newton, open the Newtsbug Connection application, which will be in the
Extras drawer.

11. Select the same baud rate you chose in Newtsbug.

12. Make certain that Newtsbug shows the message “Ready for target to setup debugging
from Printer/ Modem port.” Do not proceed to the next step before that message
shows. (The “target” referred to in this message is the Newton.)

13. Tap on Connect.

A NewtonScript Listener window should appear on the Mac OS-based computer.

If the image does not match the image on the Newton, the debugger tells you that,
showing a message like this:

The target ROM doesn't match the image file!
Click the Continue button and then use the
Open menu item to open a good image file.

You need to click on Continue and choose an image that matches the system on the
Newton.

Il

Newtsbug displays other error messages in the stdin/stdout/stderr window. You will
probably see messages saying that Newtsbug could not find package files. Newtsbug
looks in its folder for package files for all packages loaded on the Newton; you can
ignore these messages for packages that you don’t plan to debug.

Making Sure Your Package Symbols are Available

When you start a debug session and Enable Package Symbols (Config menu) is checked,
Newtsbug scans the Newton device for currently loaded packages and looks for symbol
files that are associated with the packages. Since the package you're interested in could
have happened to have been swapped out of the Newton’s memory, Newtsbug could
fail to find information on your package. (You can ensure that this does not happen by
opening the package right before you set up debugging.)

To figure out if your package’s symbols are loaded, choose the Procedure command from
the Procedures menu. That shows a list of all symbols that Newtsbug currently knows
about. You can look at this list to see if the symbols from your package are loaded.

If they are not loaded, you can cure the problem by reinstalling the package on the
Newton. When you do that, Newtsbug loads the package symbols.

Another possibility is that the package symbol file does not have the correct name. Look
in the stdin/stdout/stderr window for error messages. If there is one that deals with
loading package symbols, the error message includes the package name that Newtsbug
expects. Change the name of the package file alias that is in the Newtsbug folder to
match the name in the error message and reinstall the package.

Beginning Debugging

Getting Started

Problem Alert Dialogs

When using Newtsbug, if a serious problem happens Newtsbug will put up a dialog
describing the problem and allowing you to either quit immediately or continue. You get
this kind of dialog, for example, when Newtsbug can’t get memory to do something
critical or can’t communicate with the Newton. When you see that kind of dialog, you
should consider quitting Newtsbug and judge whether or not you can continue based on
what has happened on the Newton. If you decide to continue and then get more such
dialogs, you should probably quit. For example, if you are developing a fairly large
package, you might see Newtsbug complaining that it is unable to get memory for
storing the package contents. You should quit Newtsbug, increase Newtsbug's
application heap size, and try again. (You need at least 400K to debug packages.)

Ending a Debugging Session

To end a debug session:

1. On the Newton, open Newtsbug Connection again.
Now the button should say Disconnect.

2. Tap on the Disconnect button.

If you do not close a debugging session from Newtsbug Connection, calls to functions
such as DebugSt r and pri nt f will cause exceptions on the Newton device, because the
Newton will try to communicate with Newtsbug over the serial link.

Files Newtsbug Needs to Find

Newtsbug needs to be able to find the package file for your package. When you create a
package that contains C code, the C part of the package comes from a .sym file that
contains symbol information. Newtsbug also needs to be able to find that file in order to
be able to debug the package.

Naming the Package File So Newtsbug Can Find It

Newtsbug uses a naming scheme to find the package file. It uses information in the
package file to find the .sym file. The easiest way to find the name that Newtsbug wants
is to start Newtsbug and look for the name given in the error message for that package.
Newtsbug derives the name of the package file using these rules:

» If the package name has any colons (:), they are replaced with periods (.), because
colons have a special meaning for the Mac OS file system.

Problem Alert Dialogs 2-5

2-6

Getting Started

» If the package name is longer than 24 characters, the name is truncated to 24
characters.

» If the name contains any periods (.), the last period and any characters after it are
removed

s The characters .pkg are appended to the name.

Handling the .sym File

A package that contains C++ code includes a part information field that records the path
from the package file to the .sym file. If you change the relative path that leads from the
package file to the .sym file, Newtsbug will not be able to debug the package. For
example, the Newton C++ Tools build system places the .sym file in a folder called
Objects that is in the directory that contains the package file. If you move the package
file, its new directory must have an Objects folder that contains the .sym file.

If You Aren’'t Getting Symbols For Your Package

If you've done everything discussed in the previous two sections and you still aren’t
getting symbol information, it is possible that the header part of the package was not in
the Newton’s main memory when you started the debugging session. To cure this
problem, you can try the following tactics. Either of them may work; try whichever is
easiest for you first.

= Re-load the package onto the Newton using Newtsbug.

= Open the application contained in the package on the Newton before connecting with
Newtsbug.

Newtsbug also displays the error message “package header not currently in memory,”
but if you have more than one package loaded on your Newton, you cannot tell if the
message is for the package in which you are interested.

Files Newtsbug Needs to Find

Newtsbug Menus

This chapter describes the Newtsbug menus. Figure 3-1 shows the menu bar.

Figure 3-1 Menu Bar

% File Edit Commands Procedures Memory Windows Config

File Menu

The File menu lets you open image files, close windows, save the contents of certain
Newtsbug windows, and store and re-load memory.

Figure 3-2 The File Menu

mEdit Commands Procedt

Open... #0
Close AL
Save As...

Load Memory...
Save Memory...

Frozen Newton Reconnect...

Quit %0

File Menu

3-1

Newtsbug Menus

Open (-0)

The Open menu item lets you select an image file and get Newtsbug ready to accept a
debug session from the Newton. An image file and its accompanying “high” file contain
a version of the Newton ROM that Newtsbug can load into itself and use. The image file
you use must match the version of the Newton system that is on your Newton.

The debugger does not actually check if the image can be used with the Newton until
you try to set up the debugging session from the Newton using Newtsbug Connection.
At that point, if the image does not match, Newtsbug shows you the error message in
Figure 3-3

Figure 3-3 Mismatched Image Error

3-2

The target ROM doesn't match the image file!
Click the Continue button and then use the
Open menu item to open a good image file.

Close (3-W)

The Close menu item closes the active window.

Save As...

The Save As menu item lets you save, as text files, the contents of the I/ O windows such
as the Listener, stdin/stdout/stderr window, and heap windows.

Load Memory...

The Load Memory menu item lets you fill a piece of memory with a file that has been
saved with the Save Memory command.

Save Memory...

The Save Memory menu item lets you save the specified memory, as raw binary data, to
a file.

File Menu

Newtsbug Menus

Figure 3-4 The Save Memory Dialog

@ Desktop ¥ —= disk
Sk S
i frash
fasiking
i I
Write memory:
saved Memory |
start Address: |0447C9A9 | Limit: [0447C98H |

The limit field is the address up to which, but not including, you wish to write. In the
above illustration, memory from 0447C9A9 through 0447C9B9 will be written.

Frozen Newton Reconnect...

You can use this command to help track down unusual bugs that cause the Newton to
freeze at unpredictable times. Here’s the typical process of using this feature:

1. Set up a Newtsbug session as usual.
2. Disconnect the serial cable (make sure the Newton is running at the time).

3. On the Mac OS computer, select Quit from Newtsbug.
Newtsbug puts up a dialog saying that the current debug session is still on.

4. Click on the Quit Now button

Now the Newton has the debugger enabled, but still functions as a normal Newton.
You can use the Newton normally, except don’t use the serial port that was used in
step 1 for setting up the Newtsbug session.

If the Newton crashes for a cause that can’t be captured by Newton's exception
handling process, it will be captured by the low level debugger. Examples are a bad
PC value or a DebugSt r call.

IMPORTANT

When this happens, the Newton will not power off. It just loops in a
low level debug loop waiting for Newtsbug to connect to it. The battery
may be used up very quickly. a

5. When the Newton freezes, connect it to a Mac OS computer with a serial cable; launch
Newtsbug, open a proper image, and use the Frozen Newton Reconnect command.

6. If you can successfully connect, Newtsbug displays the current PC and the CPU
window. You can do further debugging by opening stack window, memory windows,
and so on. You can also set breakpoints or step in packages; although you can't do
that in ROM. Some features such as printing of pri nt f ’s and use of the Listener
window, are not supported in this mode.

File Menu 3-3

Newtsbug Menus

7. After finishing debugging, you should reset the Newton, because the Newton's
internal state may be bad.

Quit (32-Q)

The Quit menu item quits Newtsbug and ends this debugging session. If the debugging
session is still open, Newtsbug warns you and gives you a chance to end the debugging
session from the Newton first. You should end the debugging session from the Newton
before quitting Newtsbug, unless you want to try to debug a Newton that is freezing.
(See “Frozen Newton Reconnect...” on page 3-3.)

Edit Menu

The edit menu lets you use the standard Mac OS edit functions, Undo, Cut, Copy, Paste,
Clear, and Select All, and also has various Newtsbug functions. The standard commands
are not documented in this manual; they work as they usually do in Mac OS programs.

Figure 3-5 Edit Menu

m Commands Prom

Undo ®Z
Cut #H
Copy *C
Paste D
Clear

Select All #A

Copy Target Screen

Register Names...

Preferences...

Copy Target Screen

The Copy Target Screen menu item copies the screen of the Newton device to the
clipboard.

Register Names...

The Register Names menu item puts up a dialog that lets you name the registers, if you
want to for some reason. See an assembler instruction manua for an explanation of the
standard names. Figure 3-6 shows the dialog.

Edit Menu

Newtsbug Menus

Figure 3-6 Register Names Dialog

Register Names
ko ke

Preferences...

The Preferences menu item puts up a dialog that lets you set various features of
Newtsbug. Figure 3-7 shows the dialog. The options are described below the figure.

Figure 3-7 Preferences Dialog

Preferences

(< Stop On Debug Traps
[<] Beep On Stops

[J Add Time Stamps
[]Log Breaks

[JLog Stdio

[JLog Listener

[J Async Prints

Font: Genera i Monaco
Number of 4K Pages for Breakpuints:EI

Baud 57600

y™odem Port ® Printer Port

[Cancel] [[1] 4]]

Edit Menu

3-6

Newtsbug Menus

Stop on Debug traps

If this option is not checked, calls to DebugSt r and Debugger do not stop, but
DebugsSt r still displays its string.

Beep on Stops

This option enables and disables the audible indication of stopping.

Add Time Stamps

This option adds a time stamp to each line in the stdin/stdout window, output from the
Newton in the Listener window, and to log files, using the Mac OS-based computer to
determine the time.

The times given are not exact because there is a delay between when the image sends a
string to the window and when Newtsbug gets it, and the delay cannot be calculated
because it depends on other applications that may be running on the Mac OS-based
computer.

Log Breaks

This option tells Newtsbug to log information in the stdin/stdout/stderr window each
time any break point is hit. This may be useful to trace the program flow, especially if
you turn on Add Time Stamp option, as well. Newtsbug will display information similar
to this:

2/ 10 break at PC = 00137FE8 TTracer:: TTracer(char*) + 12

The first value, 2 in this example, is the current number of “hits” on the breakpoint.
(Actually, the number shown is the number that appears in the Breakpoint Conditions
Hits box; see “The Breakpoint Conditions Dialog” on page 5-2 for details.) The second
value, 10 in this example, is the number in the “Stop After” box in the Breakpoint
Conditions dialog.

If a breakpoint is conditional, or the “Stop After” checkbox in the Breakpoint Conditions
dialog is not checked, information is logged even though the program does not stop at
the breakpoint.

If you want the information written to a file, also turn Log Stdio on.

Note that turning on this option can slow the Newton significantly.

Log Stdio

This option tells Newtsbug to save everything in the stdin/stdout/stderr window to a
log file. The log file is placed in the Newtsbug folder and is named “HLog stdio”. If a log
file already exists when Newtsbug tries to open or create one, it is overwritten, so
rename the file if you want to keep it. The log file is closed when you quit Newtsbug or
you turn this option off, but not when you rerun.

Edit Menu

Newtsbug Menus

Log Listener

This option tells Newtsbug to save everything in the NewtonScript Listener window to a
log file. The log file is placed in the Newtsbug folder and is named “HLog listener”. If a
log file already exists when Newtsbug tries to open or create one, it is overwritten, so
rename the file if you want to keep it. The log file is closed when you quit Newtsbug or
you turn this option off, but not when you rerun.

Async Prints

This option tells Newtsbug to buffer printing to the stdio window and the Listener
window as quickly as it can. Display of information in this window is typically delayed,
especially when the image prints a lot. When you check this command, the image is not
slowed to wait for window display.

Font

This option lets you set the font used in Newtsbug in the stdin/stdout/stderr and
Listener windows to either Geneva or Monoco.

Number of 4K Pages for Breakpoints

You generally only need to reserve space if you are going to be setting breakpoints or
doing other debugging actions in ROM (however, see the note following). You don’t
have to reserve anything for debugging your package code.

This option lets you set how many four-kilobyte memory pages are reserved for ROM
breakpoints. If you expect to set breakpoints in ROM, step in ROM, or modify ROM,
reserve a few pages. More memory allows more breakpoints. If you're going to do any of
these operations, you need to reserve at least two pages, one for the system and one for
stepping or the first breakpoint. For each breakpoint in a different ROM page, you need
to reserve one additional page.

For example, suppose you set breakpoints at the following addresses (for your

information, 4K is 0x1000 in hexadecimal representation):

0x10000
0x10020
0x10070

Those addresses are on the same page, so you need to reserve two pages: one for the
system and one for the page that contains these addresses. Suppose you add a
breakpoint at this address:

0x13004

That address is on a different page, so you need one additional page, for a total of three
pages.
Now, suppose you want to add breakpoints at these addresses:

Edit Menu 3-7

Newtsbug Menus

0x20030
0x20938

Those addresses are on the same page, so you need one additional page, for a total of
four pages.

If you try to set more breakpoints than those reserved memory can support, Newtsbug
informs you.

Note that the Newton has a limited amount of system memory, and you should not
reserve more space than you need. On a MessagePad 120, you cannot reserve more than
twenty pages, and generally should reserve less.

Note

If you are using a Newton MessagePad 120 or 130 running Newton 2.0
and you want to use the C debugging function pri nt f, you need to
reserve two pages (8K), because this version of the Newton system
cannot otherwise execute pri nt f . If you do not reserve space, calls to
pri ntf will do nothing. If you are using a later version of the Newton
system, you do not need to reserve any space for this purpose. O

Baud Rate

This option lets you set the baud rate for communication with the Newton device. All of
the available baud rates work well on most Mac OS-based computers. If you have a
computer that has a processor that is slower than a 68040, choose something slower than
57600.

Modem Port or Printer Port

This option lets you choose which port you are using to communicate with the Newton
device.

Commands Menu

3-8

The Commands menu has various useful commands.

Commands Menu

Newtsbug Menus

Figure 3-8 Commands Menu
Procedures Memor
Go AL
Stop .
Rerun #R

Clear All Breakpoints
Clear All Breakpoint Hits
Disable Breakpoints

Step Into S
Step Dver T
Convert... EN
Download Package... *®2
printdepth := % 3
breakonthrows ;=% ¥4
DUDebug(" ®5
stacktrace() 6
exitbreakloop() ®?
de('viewfrontmost) *®8

getview('viewfrontmost)’. *¥9

Go (%-G)

The Go command causes a stopped image to resume execution.

Stop (s8-.)

The Stop command suspends execution of the image currently being executed.

The image might not stop if:
» Interrupts are disabled (Newtsbug uses an IRQ interrupt to stop and start the image)

s The image is too lost to respond to the interrupt because of, for example, bad MMU
tables

» There are hardware problems such as loose or bad cables

Rerun (%-R)

This menu item is similar to using the reset button on the Newton. (The primary
difference is that if you use the rest button, Newtsbug will not know that the Newton
has been reset, and Newtsbug will not reset its state.) All breakpoints are removed. All
changes in code are lost. You will need to re-establish the debug connection.

Commands Menu 3-9

3-10

Newtsbug Menus

Clear All Breakpoints

This menu item clears all breakpoints, both temporary and permanent. (Breakpoints are
discussed in “Breakpoints” on page 5-1.)

Clear All Breakpoint Hits

You can set breakpoints so that they trigger after a certain number of hits. This menu
item clears all breakpoint hits. See “Breakpoints” on page 5-1 for more information on
breakpoint hits.

Disable/Enable Breakpoints

This command toggles between disabling and enabling breakpoints. When breakpoints
are disabled, they will never trigger.

Step Into (s5-S), Step Over (3-T)

If the instruction at the current PC is a BL instruction, the menu items show as Step Into
and Step Over. Otherwise they are simply Step.

These commands are used to advance program execution one instruction, or step, at a
time. They operate in the same way as the Step/Step and Step Into/Step Over buttons
provided in Newtsbug’s Status window (described in “Go and Step Buttons” on

page 4-2). They simply cause the next instruction to be executed or, if the instruction is a
subroutine call, let you either step into the subroutine or step over the calling instruction.

Warning

Do not step in the Mai nSCCI nt er r upt handler because Newtsbug will
either lose the connection with the Newton device or crash. In general,
you should not step through system code. If you do so, you may need to
do a cold re-boot of the Newton device. a

Convert... (3¢-N)

The Convert command displays a simple calculator. Given a number in hex, binary,
signed or unsigned decimal, or a sequence of characters in ASCII, all other formats are
displayed. If an 8-digit hex value is selected before Convert is chosen from the menu,
this value is displayed in all possible formats. You change the value in any format.

Commands Menu

Newtsbug Menus

Figure 3-9 Convert Dialog

Convert
Hex [276F 7264 |
Binary [01110111 01101111 01110010 01100100
ASCII |word |
signed decimal [2,003,792,484 |

Unsigned decimal |2,003,792,484 |

If any of the values does not have an ASCII representation, the ASCII field shows a small
box in place of each character that can’t be represented.

DownLoad Package...

This command puts up a standard file dialog and lets you choose a package to
download. It then loads the package on the Newton device, first removing any old
version of the package that is on the Newton device.

A WARNING

You cannot delete a package on the Newton device while the Download
Package dialog is displayed. If you try to do so, the Newton device will
claim to be deleting the selected icons, but the operation will never
complete. If you cancel the download package command quickly, the
Newton operation will fail. If you wait too long, however, the Newton
device may hang. a

Command Keys for the Listener

printdepth := % ®3
breakonthrows := % #4
DU(Debug(" %®5
stacktracel) ®6
exitbreakloopi) ®7
dvl'viewfrontmost) ®8
getview('viewfrontmost). %9

The last group of commands in the Commands menu are command keys for the Listener
window.

Newtsbug will type the characters in the command you select in the current line in the
Listener window. If the last character in the string is not a back slash (\), Newtsbug,

Commands Menu 3-11

Newtsbug Menus

enters the command, and executes it as if you have typed the command and pressed the
enter key. If the last character in the string is a back slash, Newtsbug simply puts the
string to the Listener window without executing it. You can then edit the text or add to it
and press enter to execute it.

You can customize all of these command keys. To customize, create a text file named
Listener Commands in Newtsbug's folder. Each line of the file becomes a command in
the Commands menu. See “Customizing NewtonScript Listener Shortcuts” on page 5-5
for details.

Procedures Menu

This menu is used to find or define procedures so that you can quickly access them using
code windows. As shown in the figure, this menu usually includes some code window
names, which are listed below a line under the Define menu item. See “Code Windows”
on page 4-6 for information on those windows.

Figure 3-10 Procedures Menu

3-12

Procedures QglTyl
Procedure... #P
Define...

Procedure... (3¢-P)

This item opens a symbol browser. You can type a class prefix in the class box and a
member prefix in the member box. All matching procedures are listed. When you click
“OK,” a window showing the procedure is opened.

Newtsbug’s search for a symbol is not case sensitive and a prefix of a symbol can be used
(for example, “asyncc” to find AsyncCal | back).

For convenience, global names are accepted in the class box.

Procedures Menu

Newtsbug Menus

Figure 3-11 Procedure Browser

Procedures

prun ||i

FPRuntBatteryLr i)

FPRuntSoundDriver ::InputlsEnabled() |
PRuntSoundDriver ::InputlzRunningl)
FPRuntSoundDriver ::Inputialumellong)
FRuntSoundDriver ::Input'olurme()
FPRuntSoundDriver ::InputintHandler()

gl

Define...

With this menu item, you can temporarily define a procedure name to reference a
particular range. These definitions are remembered for the duration of the current
debugging session but not from session to session.

Figure 3-12 Define Procedures Dialog

S==——=— Define Procedure =Scu"c—=s

Procedure name | |

Start address | |

End address | |

Procedures Menu 3-13

Newtsbug Menus

Memory Menu

The Memory menu lets you view and change the memory state and contents.

Figure 3-13 Memory Menu

Memaory... #EM
Frame... 3#F
Find...

Heap 3H
Script Heap

Smash Heap Tags
Sort by Address
Sort by Size

Sort by Task

Memory...

Memory windows let you display and modify the contents of RAM or ROM. Selecting
this menu item while a value is selected in a Newtsbug window opens a memory
window at the selected address. If no value is currently selected, Newtsbug brings up a
dialog requesting an address to display. Figure 3-14 shows the dialog. You can enter:

= An address in hex
= A symbol such as a global variable name

= An expression; see “Expressions” on page 5-4 for details

You can press the = button to evaluate the expression

Figure 3-14 Memory Dialog

3-14

Memory

Display memory from E]

[|
[Cancel] [[0K]]

Memory Menu

Newtsbug Menus

Once an address is entered, a memory window is opened. The three columns displayed

are address, hex value and ASCII value. This window can be scrolled +4K.

Figure 3-15 Memory Window

SI=

Memory

BEAREAEGE
BEAEEGHE
BEAEEEED
BEARREEC
BEAERE 16
BEAERE 14
BEAERE 15
BEAERE 1C
BEAEEGEZE
BEAEEE2Y
BEAREE2S
BEAEEE2C
BEARRE2E
[alalzlala ol
BEAEREZE
BRRRBRASC
BEAERESE
lalalslalala it
BEAEEGE42
alalslalalaiyed
BEAEEESE
=l=l=l=le =
BEAERE50
Baa28as5c

ERBE4E8 1
ERBE45A9
ERBSZ2F4E
EABZ044E8
ERBS9ZED
ERBE4ES 1
ERES91FD
ERBES9 144
BoaaRn4a
BEEEE 188
BEEaE2E8E8
BEEazEEE
BEEERGEEE
zdatala o lolal)
BEAEREEER
[l lals s Jalals]
G465 17461
aa1ETOCC
BEZaanaEa
BDAZaF 358
BEEEF 228
BE8E5 124
BEEERE8a
==l ool)

If you hold down shift when opening a memory window while an address is selected,

Newtsbug treats the address as a handle instead of a pointer.

The hex values displayed in the window can be edited. To modify the content of an

address, simply select all or part of the hex value and edit it. Use the mouse to move the
cursor to another place when you are done. Currently the ASCII value cannot be edited.

Frame...

This menu item lets you display the specified variable or selection as a NewtonScript

object.

Memory Menu

3-15

Newtsbug Menus

If you have a number selected when you choose this command, what happens depends
on what the number is and whether or not you have the Shift key down. Table 3-1 shows

the various possible results.

Table 3-1 The Frame Command
Effect With Effect With
Selected Number Shift Key Up Shift Key Down
The address of a frame or array Opens a Don’t do this!
ARef? of a forwarding object that forward 1l yindow
et” ot a torwarding object that forwards, eventually, to a displaying the
frame or array frame or array
The address of a forwarding object that forwards, eventually, to
a frame or array
A magic pointer Ref referring to a frame or array
A Ref of a frame or array Opens a
window
The address of a Ref of a frame or array The number is displaying the

The address of an address of a Ref of a frame or array

A Ref of a forwarding object that forwards, eventually, to a
frame or array

The address of a Ref of a forwarding object that forwards,
eventually, to a frame or array

The address of an address of a Ref of a forwarding object that
forwards, eventually, to a frame or array

A magic pointer Ref referring to a frame or array

The address of a magic pointer Ref referring to a frame or array

The address of an address of a magic pointer Ref referring to a
frame or array

treated as an
address, and a
memory
window is
opened at the
selected
address

frame or array

Any other number

The number is treated as an
address, and a memory window is
opened at the selected address

1 With the shift key, down the selected number cannot be the address of an object—something will happen but not

what you want. Holding down shift is useful if the number selected is the address or contents of a RefVar,

RefStruct or RefHandle.

2 ARef is the NewtonScript implementation’s reference to a NewtonScript object (a NewtonScript pointer, if you

will.)

If nothing is selected when you choose this menu item, Newtsbug displays the dialog

box shown in Figure 3-16.

3-16 Memory Menu

Newtsbug Menus

Figure 3-16 Frame Dialog

Frame

Dariable name | |
(or address)

If you enter a number the behavior is as if the number had been selected, although the
Shift key is ignored. If you enter a symbol or the prefix of a symbol, then the behavior is
as if the symbol’s address had been selected and the shift key was down.

Figure 3-17 shows a frame window for gVar Fr ane.

Figure 3-17 Frame Window

s [/—— glarframe = ———
Address: A44680956 Size: 29 D j?] ks
Class: 'Frame

classes H44845689 Frame{12}

extras B4417439 Arragli1@]
nawigatar B44 17273 Fram={1}

Auvai lablePrinte.. 84417391 Arrayl3]
international Bdd174@1 fFrame {2}

raouting 54417119 Frame{l}

poweraf fhandlers B4417681 Arragld]

psFonts B4417841 Frame{1}
uzerConfigurati. ©4418179 f<Fault Block: (4]
uars A44845F3 {Frame {20}
actionbDescripti.. FFFFE164 -2183

formulaList B4417911 Arragl4]

di=p |l agParams 844 178A0 fFrame {2}
notifications 84417511 Arraglil]
soupMaotify B44177EB1 Arraglial

fonts B4416F09 Fram={1}
dictionaries B4412781 Arragl25]
preferences B44 17859 Arragli4]

cardF i lePrefs B4417373 Frame{1}
cardSoups B44175F3 Arrayl 1G]
paperPrefs B44172F3 Frame{i}

s2tT imeSead BEOEGEGE @

functions B44a4FEY fFrame {632}

trace BEaaaEa2 MIL

The area of the Frame window below the header includes the address of the object
header, the number of slots, the class and the Dirty, Writeable and Locked flags as icons.
You can select the address of the object header.

You can get additional information by clicking on parts of the frame window.
» Clicking on the Ref in the middle column selects it like any other Newtsbug number.

» Clicking on a tag in the left column or the value in the right columns is the same as
selecting the Ref and invoking the Frame command with the shift key up; that is, it
opens a Frame or memory window on the object in that slot.

Memory Menu 3-17

Newtsbug Menus

» Clicking on a number slot will bring up the Convert window, showing the number in
various formats.

Find...

Find searches for the specified data, as a word or a byte, in the range specified. The limit
value is the address up to which, but not including, you wish to search.

Figure 3-18 Find Dialog

3-18

Find

Start: (0D130C9C Limit: l]l]l4l]l]l][1
Data: | 4096 Found at: 00130F33

@ Byte O Word

[Done] [[Find]]

You can click the Find button successively to continue searching. When no new match is
found, the “Found at” field says “Reached End.” To start the search over, click the Find
button again.

Heap

Selecting the Heap item displays four windows showing four different heaps. The
topmost window displays the contents of the pointer heap, indicating the memory
blocks returned by mal | oc and NewPt r calls. The handle heap shows block returned by
NewHand! e. The master pointer heap (mps) shows the master pointers used for the
handles, and the wired heap is used by the operating system.

If an 8-digit hex number is selected, Heap opens a single heap window using the
selection as the address of the heap header.

Note

Newtsbug can slow dramatically if you leave heap windows, including
the script heap window, open while you step. This is because each time
the Newton is stopped, Newtsbug updates every open window. Since
heap windows reference a lot of memory information, the updating
process can take a significant amount of time. You should therefore close
unnecessary heap windows before you step or let the Newton go. O

Memory Menu

Newtsbug Menus

Figure 3-19 Heap Window

Heap at 04400c10

Statistics for this heap——

used: B88284F4 bytes,

2254 blocks

free: B888838C bytes, #3 blocks
HPs: %8 real, ®8 fake, %*8 free,
* 34408C10 AEEAEEEC HAA8EE8E header
* A44688C0C AEEAEE1C BE88 1643 pointer
* 34408082 BEEEEE 1C 0881643 pointer
* 34408024 SEEQEEGS BEE8 1643 pointer
* 344080AC ABEEEE 13 BAAE 1643 pointer
* 44608004 AREEEE 18 BEEE 1643 pointer
* A44080F4 AEBEEE 12 BEEE 1643 pointer
* A4408E1C AE0AEEGEC BB88 1643 paointer
* A4408E33 AEEABEEY BE88 1643 pointer
* A4408E4C BEEEEE1C BEA8 1603 pointer
* A4408E7S BEEQEZ0E BRAE 1603 pointer
* 3440 1822 GEE68 1EG BAAE 1603 pointer
* @446 1272 BEEEEE1C BEAE 1723 pointer
* 3440 12A4 BEEEEE 1C BEAE 1723 pointer
* A446 1208 AEEEEE 18 BEAE 1723 pointer
* 3440 12F0 BEEQEE2S BEAE 1723 pointer
* 34401328 GEEQ086 18 BRAE 1723 pointer
* 344013423 BEEEE6E 1C BAAE 1703 pointer
* @446 1374 BEEEEE1C BEAE 1702 pointer
* G446 13A0 BEEEEEEC BRAE 1703 pointer |Jdb
el

Heap windows can be sorted by address, logical block size and task ID, by choosing the
Sort by Address, Sort by Size, and Sort by Task menu items respectively.

Script Heap

This item displays a window showing the script heap.

Objects that are “dirty” and can be garbage collected are indicated by a dot.

Smash Heap Tags

Smash Heap Tags sets all tags of the active heap to Ox7fffffff. It cannot be undone. This is
useful to see new heap allocations after this action. This command is only active when
the heap window is in front. (Note that this command can take a few minutes to execute.)

Sort by Address

Sorts the items in the selected heap window by address. This command is only active

when a heap window is in front.

Sort by Size

Sorts the items in the selected heap window by size. This command is only active when a

heap window is in front.

Memory Menu

3-19

Newtsbug Menus

Sort by Task

Sorts the items in the selected heap window by task.This command is only active when a
heap window is in front.

Windows Menu

The commands in this menu let you display the various windows that Newtsbug
provides, except for code windows, which are displayed in the Procedures menu. The
window that is currently “in front” has a check mark next to it. (If no window has a
check mark, then the frontmost window is probably one of the code windows.)

Figure 3-20 Windows Menu

3-20

I!!mm Config

Status

CPU

FPE Registers

Stack Trace K
Stack Trace From...

stdin/stdout/stderr
v NewtonScript Listener #L

Status

This menu item brings the Status window to the front. See “Status Window” on page 4-1
for more information.

CPU

This menu item brings the CPU window to the front. The CPU window shows the state
of the CPU. See “CPU Window” on page 4-3 for more information.

The FPE Registers

This menu item displays the FPE Registers window or brings it to the front. This
window displays the contents of the floating-point registers. They cannot be edited.

Stack Trace

Selecting the Stack Trace item from the Windows menu displays the call chain of
procedures to this point. See “Stack Trace Window” on page 4-5 for more information.

Windows Menu

Newtsbug Menus

Stack Trace From...

This menu item lets you specify the point at which the stack trace should begin.

stdin/stdout/stderr

This menu item brings the stdin/stdout/stderr window to the front. See “Stdin/Stdout/
Stderr Window” on page 4-6 for more information.

NewtonScript Listener

This menu item brings the Listener window to the front. See “NewtonScript Listener
Window” on page 4-6 for more information.

Config Menu

The Config menu lets you use Newtsbug to configure images in various ways.

Figure 3-21 Config Menu

| Stop On Aborts

|+ Default Stdio On

|~ Enable Stdout

{~Enable Package Symbols

Stop on Aborts

Having this option on is useful for finding certain kinds of bugs. For example, if the
program accesses an invalid memory address, there will be a data abort. If you have this
setting on, the Newton stops when this problem happens, allowing you to examine the
current PC and the stack.

Default Stdio On

This option has no effect.

Enable Stdout

If your C code has pri nt f statements, you need to turn this item on so that the print can
be shown in the stdin/stdout/stderr window. If you don’t have this setting on, the
pri nt f s are equivalent to no-op.

Config Menu 3-21

Newtsbug Menus

DebugSt r and DebugCSt r output will always be displayed regardless of the stdout
setting.

Enable Package Symbols

This option is initially set, and causes you to see your symbols loaded from a package.

When you have this set, you get a warning message every time Newtsbug finds a
package on the Newton that does not have a symbol file on the Mac OS-based computer.
You can ignore these messages—the only package that needs to have a symbol file is the
one you want to debug. Turn this item off if you are not debugging a package. (The
setting is “remembered” in the Newtsbug preferences file.)

3-22 Config Menu

Newtsbug Windows

This chapter describes the Newtsbug windows.

Status Window

The Status window has three parts.

Figure 4-1 Status Window

S[0=——— Newt LindyNoDebug image
Breakpoint encountered.
ELABEPEEEE = = eses bk-bk: 20
7 Go Step Step

The top part holds a message that tells you the status of the debugger.
The middle portion has a hex converter (see “Handy Hex Converter” on page 4-3).

The bottom shows one, two, or three buttons depending on the state of your program.
When the Status window is first opened (when the image is launched) the window
displays just one button at the bottom of the window, which can change depending on
the state of the program:

» If you haven't yet selected an image, the button says Open Image, and when you click
on it you get a standard file dialog box that lets you choose an image.

» If you've chosen an image, but haven’t yet connected to a Newton, or you've closed
the connection to the Newton, the button says Close Port. If you click on it, the serial
port is closed.

» If you have closed the port, the button says Open Port. If you click on it, the serial port
is opened.

Status Window 4-1

Newtsbug Windows

» If you've chosen image, the button says Initializing while Newtsbug is opening the
image or connecting with the Newton. The button does nothing at this point.

» If you are connected to a Newton and the image is running, and the button says Stop.

» If you click on the Stop button, Newtsbug stops the image and the Newton, and you
enter the debugger. The button says Go. If you click on the Go button, the image starts
again.

» If the image stops because of a breakpoint or error, the Go button and two Step
buttons appear. They are described in the next section.

Go and Step Buttons

When you enter the debugger because a breakpoint or error was encountered, three
buttons labeled Go, Step, and Step are displayed as shown below.

The Step buttons are just like the Step (Into) and Step (Over) menu items. They both
cause the next instruction to be executed. If the next instruction is a subroutine call, the
buttons change to Step Over and Step Into, allowing you to either step over the calling
instruction or step into the subroutine.

Warning

Do not step in the MainSCClnterrupt handler because the debugger will
either lose the connection with the Newton or crash. In general, you
should not step through system code. If you do so, you may need to do
a cold re-boot of the Newton device. a

Figure 4-2 Status Window Showing Step Over

4-2

S=——— Newt LindyNoDebug image =————|
Breakpoint encountered.

LERRERERE = B = ‘eees bk-bk: 28
22y Go > Step Over Step Into

NOTE

Breakpoints are not installed during Step or Step (Into) operations.
Breakpoints are installed when you Go or Step (Over). O

Rerunning

When your program completes, the buttons are labelled Quit and Rerun. Note that the
buttons have command key equivalents as indicated on the Commands menu. (The
command key equivalents are the same as their Macsbug counterparts.)

If the Newton has crashed, you need to press the Reset button to rerun.

Status Window

Newtsbug Windows

Handy Hex Converter

The section of the Status window above the buttons has a hex converter that shows a hex
value and its decimal and ASCII equivalents. The hex field shows the most recent value
selected, but you can edit it to put in any number you want. The hex value can also be
selected and copied.

Figure 4-3

Hex Converter

7 k6o
|

CPU Window

=|d Newt LindyNoDebug image
Step completed.
£5340404F = 1297312847 = 'SIMD' go-stop: 11
4 Step Muer S5tep Into

Hex number Decimal equivalent ASCII equivalent

The CPU window has panes for the PC and PSR, the four banks of ARM General
registers, the Timer register, and the MMU registers. Clicking on a pane label (MMU for
example) toggles the state of the pane, opening it if it is closed and vice versa. The PC/
PSR pane is always visible.

You should keep the panes closed when you aren’t using them, because when they are
open it is fairly easy to accidently select fields in the panes, and if you select certain fields
and then execute code, the results are unpredictable.

CPU Window

4-3

Newtsbug Windows

Figure 4-4 CPU Windows

== cru == EO= cruv =
P AEEST24C P AEEasT 1BC
i fnzCwusr i fnzCwusr
General General
515} AEEaaEEREa 515} A48a87524
R1 AEEE2 7 18 R1 BEEEaZ 7 18
RZ HEEEEREEE RZ BB GEC
Rz HEEA 1322 Rz BEEREAEARE
R4 B4EA7?EEC R4 HEEA 1322
RS BEERAEDZ RS BEEA {1 3FC
RG AEERABREA RG A4 18123C
R7 AEEaaEEREa R7 A4 18 124a
R AEEaaEEREa R A4887584
R2 HEEEEEEA 1 R2 A4 18122
R1& B4 18 148c R1& B4 18 148c
R11 B4EATEES R11 B4EA7EES
R12 4EEEAERE R12 B4EA7PEEC
SP A4BA7SERA SP A4@3A7SERA
LE AEEaaEEREa LE aazibi19s
Superuis=sor Superuis=sor

FIO FIO

IRO IRO

ARET ARET

Timer Timer

MHU MHU
Ba=e A 1EaEEEaE
Ervir 35535555355
Fault Bus Err §
Domain 5]
Addr AZ2CEEEAC

The PC /PSR pane shows the current value of the PC and a symbolic interpretation of the
current PSR bits. You can change the PC. Clicking on the PC label is a quick way to find
the PC. If you have opened several windows or scrolled the window containing the PC,
clicking here will ensure that the PC arrow is visible.

The line under the PC is the current processor status register (CPSR). Clicking on the
mode will cycle through the processor modes usr, fiq, irq, svc, abt, and und. 38-clicking
on the mode will toggle between the corresponding 32-bit and 26-bit modes (such as usr
and u26; abt and und have no 26-bit equivalent.). The und mod registers are not shown
because they are used by Newtsbug.

The status register at the bottom of the Supervisor, FIQ, IRQ, and ABT panes is the saved
processor status register (SPSR) for that mode. It is where the CPSR is saved by the
processor when that mode is entered. SPSRs can be changed in the same way the CPSR
can be.

Clicking on a PSR flag toggles its value; upper case indicates the flag is set, lowercase
indicates clear. The I (IRQ) and F (FIQ) flags operate in the reverse: I or F indicates that
the interrupt is disabled, i or f indicates that the interrupt is allowed.

CPU Window

Newtsbug Windows

Clicking on a register name opens a memory window starting at that register’s value.

Clicking on the value of a register highlights that value for editing. The 8-digit hex
number temporarily becomes a TextEdit field, complete with Cut, Copy, Paste and Undo.
When you are finished editing the value, typing return replaces the original value with
the new value.

The register bank labels (R8, LK, etc.) are displayed in black for the active bank and gray
for inactive banks.

Note

Register names are grayed to indicate that they are not in the current
CPU mode. You can change the values in the grayed registers, but you
have to be very careful that you know the effect of the changes you
make. O

FPE Registers Window

This window can be displayed by choosing the FPE Registers item from the Windows
menu. It shows the contents of the floating-point registers. They cannot be edited.

Stack Trace Window

Selecting the Stack Trace item from the Windows menu displays the call chain of
procedures to this point. The call chain is defined using R11 as the frame pointer. A ni |
value (zero) terminates the chain.

Clicking on a procedure name in this window opens the corresponding code window.

Pressing Option while clicking on a procedure name displays the stack frame of the
procedure called by the selected procedure.

Pressing Command while clicking on a procedure name is equivalent to setting a
temporary breakpoint and then giving a Go command, so the Newton runs until the
point you've clicked is reached. (See “Breakpoints” on page 5-1.) You can use the Stack
Trace From... menu item to specify the point at which the stack trace should begin.

When this window is in front and you select the Copy command from the Edit menu,
Newtsbug copies the contents to the clipboard. (You can’t select portions of the window
contents, though.)

FPE Registers Window 4-5

Newtsbug Windows

Stdin /Stdout/Stderr Window

This window shows error messages, pri nt f s, and other program output. You can use
the Edit menu commands, and you can use the Save As command to save its contents to
a file (see “Save As...” on page 3-2). You can also set up the debugger so that it saves
information to a file (see “Log Stdio” on page 3-6) and you can have output from the
Newton time-stamped (see “Add Time Stamps” on page 3-6).

This window is not an editor window, and you cannot edit the contents using keyboard
keys such as delete. (You can use the Edit menu Cut, Paste, and Clear commands, as well
as Copy, though.)

NewtonScript Listener Window

This window is similar to the NTK Inspector. You can type NewtonScript code. When
you press the Enter key or $-Return, the current line is transmitted to the Newton device
for execution. You can also select one or more lines and press Enter or 8-Return.

In addition:

= You can use the Edit menu commands.

» You can save the contents to a file (see “Save As...” on page 3-2)
» You can log the contents to a file (see“Log Listener” on page 3-7)

= You can use items from the Commands menu to insert strings (see “Command Keys
for the Listener” on page 3-11)

= You can have output from the Newton time-stamped (“Add Time Stamps” on
page 3-6)

s There are a number of shortcuts (see “In the NewtonScript Listener Window” on
page 5-5)

Code Windows

The Procedures menu includes a list of all open code windows. To display a code
window, select it from the menu. In the menu, window names are displayed in the order
in which the windows were opened (with the last one opened at the bottom) rather than
in any calling or layer order.

4-6 Stdin/Stdout/Stderr Window

Newtsbug Windows

Figure 4-5 Code Window Example

Addresses Opcodes Instructions
= D% sueeprasy(]
5 1 3ECES CHP TG 51551515515
. {} 5 1 ZECEE EME L'.-'S ; &EE13BCAB
Breakpoint column Wo! lpRi38CT8 LOR RE, [R7]
i ieR13ecT4 CHP FE, #Z08000000
& B9 138CTS LORED RE, [RE]
, /¢ BIE 1380 7E CHMPED FE, #500000000
Breakpoints set &1 ip@13ECEE LDREOD RE, [RS]
\{} B 138054 AMDED RE, R, #L00002000 (51923
! 189 138CES CHPED FE, #Z08000000
& 1B 138CEC EME L?S ; &00138CAE
& {EB138C00 MO R, #5000014008 (5126
<! iee138C04 AOD FE, FB, #3014000008 (200715280
PG indicator columa— 1 e | BB 13BCO2 MO Ri, #20080086 1
& lEB138coc STR R1, [FR8]
@ iLTS BL ExitAtomic ; LGB2SAB4E
- ¥ B0 136CA LOR R, [R4]
& B8 ASECAS CHP FE, #Z08000000
Arrow indicates et L1a - EAB 128E9C E
current PC

Underline indicates the line
that caused this code
window to open

Each procedure is displayed as a separate code window. These windows are often
opened automatically for you. For instance, when an exception or breakpoint is
encountered, the code window containing the PC is opened and brought to the front. As
another example, if you step into a procedure call, the called procedure’s code window is
opened. Currently Newtsbug only knows about procedures with external linkage (that
is, it doesn’t know about static procedures). Static procedures get appended to the
previous external procedure.

Opening Code Windows

You can manually open code windows in two ways:
s Click on a procedure name that is the operand of a branch instruction.

» Select Procedure from the Procedures menu and type in the name or address (in hex)
in the Procedure Browser. Searching for a symbol name is not case sensitive and a
prefix of a symbol can be used For example, you could use asyncc to find
AsyncCal | back. See “Procedure Browser” on page 4-8 for more information.

Code Windows 4-7

Newtsbug Windows

Code Window Contents

Code windows display assembly language. Clicking in the opcode column beside an
assembly language statement toggles the display of that line between disassembled text
and the hex value of the instruction.

Clicking on the operand of a B or BL instruction does different things depending on
whether the operand is a function or a label. If a function, Newtsbug displays a code
window showing that function. If a label, Newtsbug shows that line. The PC does not
change.

38-clicking on the opcode toggles between the original instruction and a NOP.

38-clicking in the PC indicator column sets the PC to the location where you click. (Be
careful with this command, as you cannot undo it.)

Clicking in the PC indicator area is equivalent to setting a temporary breakpoint and
then giving a Go command, so the Newton runs until the point you've clicked is
reached. See “Breakpoints” on page 5-1.

Clicking on the operand area of a branch instruction shows a code window of the place
the code branches to.

Code windows allow read-only selection of immediates and the address of PC-relative
LDR/STRs.

The hex value is shown as a DCD directive, with ASCII in comments. The hex part of the
directive is editable. Hex numbers are indicated with “&”. Branch targets in the same
procedure are shown as “Lnn” indicating the line number in the procedure that is the
target of the branch.

You can toggle between a DCD directive and an assembly instruction by clicking on the
opcode. You cannot change the instruction when it appears in assembly.

Changing the high nibble of a hex opcode to F will cause the instruction to never execute
(such opcodes are actually reserved for other uses on future ARM processors). You can
also 38-click on the opcode to change the instruction to a no-op. #-clicking again
changes the instruction back.

Unreachable instructions in C code are automatically shown in hex.

Procedure Browser

4-8

You can display the Procedure Browser choosing the Procedure command from the
Procedures menu or by typing 38-p. This browser lets you see all the current procedure
names or look at the member functions of a given class. You can type all or part of a class
name or procedure name in the leftmost field at the top of the browser and all or part of
a procedure name in the rightmost field.

Figure 4-6 shows the Procedure Browser, demonstrating how the browser sorts the
existing names to match the partial names in the input fields.

Procedure Browser

Newtsbug Windows

Figure 4-6

Procedure Browser

Procedures

prun

FRuntBattery

PRuntSoundDriver
PRuntSoundDriver
PRuntSoundDriver
PRuntSoundDriver

2:InputlzEnabled()
s:InputlsRunning()
<:Inputvolurmellong)
s:Inputvolurne()
PRuntSoundDriver ::

InputintHandler()

<

Cancel

Clicking OK or double-clicking on a function causes Newtsbug to open a code window
for the highlighted function.

Procedure Browser

Newtsbug Windows

4-10 Procedure Browser

Using Newtsbug

This chapter has information on how to use Newtsbug.

Breakpoints

There are two basic kinds of breakpoints:

= Temporary breakpoints. You can set a breakpoint by clicking on a PC indicator
column (the second column) in a code window. (See “Code Windows” on page 4-6.)
The Newton stops briefly as the debugger sets a temporary breakpoint. The debugger
then issues a Go command. When the temporary breakpoint is hit, the Newton stops
and drops into the debugger, and the breakpoint is automatically cleared.

» Permanent breakpoints. You can set a permanent breakpoint by clicking in the
diamond in the leftmost column of the code window. Permanent breakpoints are not
cleared until you remove them by clicking again on the diamond, by using one of the
Clear All Breakpoints command or the Rerun command in the Commands menu, or
by quitting the debugger.

There are two kinds of permanent breakpoints:

» Unconditional breakpoints. This kind of breakpoint causes a break whenever it is
encountered. An unconditional permanent breakpoint is indicated by a solid diamond.

» Conditional breakpoints. This kind of breakpoint causes a break only when a certain
condition is met. Conditional statements (such as BEQ) automatically get conditional
breakpoints that break only when the condition is met. You can see the Breakpoint
Conditions dialog by 38-clicking on the diamond; that dialog lets you control the
breakpoint in a number of ways; see “The Breakpoint Conditions Dialog” on page 5-2
for details.

Breakpoints 5-1

5-2

Using Newtsbug

Warning

Do not set breakpoints in the MainSCClnterrupt handler because the
debugger will either lose the connection with the Newton or crash. In
general, you should not set breakpoints or step through system code. If
you do so, you may need to do a cold re-boot of the Newton device. a

Note

You can also use debugger traps, which act in a way similar to
breakpoints, but are faster. From C, you use the routines Debugger or
DebugSt r as a debugger trap. From assembler you use the Debugger
or DebugSt r macros. Unlike with Macsbug, the DebugSt r parameter
is a C string, not a Pascal string. O

You can tell Newtsbug to log information whenever any breakpoint is hit. See “Log
Breaks” on page 3-6 for information.

The Breakpoint Conditions Dialog

You can use the Breakpoint Conditions dialog to control what happens at a breakpoint in
these ways:

» If the breakpoint is at a conditional statement, the break happens by default only
when the condition is met. You can decide if you want the break to happen even if the
condition is not met.

= You can have the break happen according to additional conditions so that, for
example, the break only occurs if RO has a particular value.

= You can have the break happen after the statement is hit a given number of times.

= You can set up the breakpoint so that the program never stops at it. (This is useful
because you can have Newtsbug count the hits and also log information at the
breakpoint.)

You can see the Breakpoint Conditions dialog by 3-clicking a breakpoint. It allows you
to control the way the breakpoint works.

Breakpoints

Using Newtsbug

Figure 5-1 Breakpoint Conditions Dialog

Breakpoint Conditions

Always R E]

Expression:

[stop after: |1 | Hits: [0 |

It contains:

» A pair of radio buttons that let you determine what is defined as a “hit” in the case of
a conditional statement, such as a BEQ The leftmost one says “Always.” (For
non-conditional statements, that is the only radio button that you can choose.) When
you define a hit as Always, the statement counts as a hit whenever it is reached, even
if the condition is not satisfied and the statement does not execute. The second radio
button is for conditional statements, so that you can have the statement count as a hit
only when the condition is met. For example, if the statement is a BLLE, that button
will be labled “LE”, and checking it means the statement will not count as a hit unless
it actually branches. The default when clicking the breakpoint diamond of a
conditional instruction is to have a conditional breakpoint.

» The Expression box, which you can use for a conditional expression. This lets you set
an additional condition for counting the statement as hit. You use standard
conditional expression syntax. For example, r 1==0. If you want to test that you
entered a valid expression, or see what the current state of the condition is, click on
the “=" box, and Newtsbug evaluates the expression.

Note that using the radio buttons for a conditional statement is much faster than
using a conditional expression entered in the Expression box.

= A Stop After check box, which is followed by a box for entering a number. If the
checkbox is checked, the breakpoint stops after the number of hits given in the
number box. If the checkbox is not checked the program counts the hit, but doesn’t
stop. You can set Newtsbug to print log information every time a breakpoint is hit,
whether or not the breakpoint is set to stop at that hit. See “Log Breaks” on page 3-6
for information.

» The Hits box. This shows the number of times the statement “hit” since you set the
breakpoint. The maximum value is 32767. This value is not automatically reset after
you “go” past the breakpoint, but you can edit it, if you want.

Breakpoints 5-3

Using Newtsbug

Expressions

You can use expressions in a number of places in Newtsbug. The expressions are the
same as C expressions with the following exceptions:

Shortcuts

The numeric radix is hex. To get a decimal number use a leading '#'. For example:
10" is decimal sixteen

'#10' is decimal ten

Thenames 'r0" to'r15',"'sl',"fp',"sp',"ip","Ir","Ik', " pc', cpsr',
and 'spsr' refer to the contents of the corresponding registers of the current mode.
They are considered to be unsi gned i nt s.

You are allowed to indirect through integers as if they were cast to i nt *, thus *4
means * (i nt*) 4

The names of non-static, file-scope variables are recognized and they are interpreted
as addresses. Therefore, to examine the value of a global gX use

o *gXifitisi nt orl ong

o use(*gX >> #16) & Oxffff ifitisshort

o use (*gX >> #24) & Oxff ifitisanunsi gned char.

The parentheses in these examples are actually redundant given C’s operator
precedence.

No user-defined types or t ypedef s are recognized so the dot operator (.), - >, and []
are useless.

The various assignment operators (=, +=, ++, - -) are not allowed.

Casts, si zeof , function calls, ?: , and the comma operator (,) are not allowed

You may find the following shortcuts useful.

General Shortcuts

Clicking on hex numbers selects them. You can copy such selections and edit some of
them (such as data in Memory windows). The value of the current selection is shown
in the Status window. Some menu commands that require numbers operate on the
selection if there is one.

If you type anywhere when the front window doesn’t accept keystrokes, the
keystrokes go to the Listener window.

#B-L selects the Listener window.

Expressions

Using Newtsbug

In the CPU Window

» Clicking on the PC label (“PC”) opens a code window or scrolls one to reveal the
instruction at the PC.

» Clicking on the mode labels opens and closes that pane of the window.
» Clicking on the status flags toggles them.
» Clicking on the mode cycles through the mode.

» Clicking on a register name opens a window at that address.

In Code Windows

» Clicking on the target of a “B” or “BL” instruction opens a new code window or
scrolls to show the target.

» 3B-clicking on the breakpoint diamond opens the breakpoint dialog where conditional
breakpoints can be set.

s 3B-clicking in the PC column sets the PC to that instruction.

» Clicking in the PC column sets a one-time breakpoint at the instruction and goes. The
one-time breakpoint lasts until it is reached or you rerun.

» Clicking on the opcode toggles the display of an instruction between “normal” and
“DCD”. In the “DCD” form you can change the hex value of the instruction. If you
change the value, the change persists until you choose the Rerun menu command.

s 3B-clicking on the opcode no-ops the instruction.

In the NewtonScript Listener Window

s 38-3 through 38-9 type strings from the Commands menu (see “Command Keys for
the Listener” on page 3-11) which you can override (see the next section).

» 3b-left arrow moves the insertion point to the beginning of the current line, and
38-right arrow moves the insertion point to the end of the current line.

» Shift-arrow key extends the selection in the direction of the arrow key.

Customizing NewtonScript Listener Shortcuts

You can create a file called Listener Commands and put it in the Newtsbug directory in
order to implement your own Listener shortcuts.

When Newtsbug is launched, it searches in its folder for this file. You can replace some
or all of the default commands for 38-3 through 38-9 in the Memory menu. If the file is
not found, default commands are used. Following define the format of the file:

Listener Commands is a text file.

Each line becomes a command in the Memory menu, with the first being cmd-3.

Shortcuts 5-5

Using Newtsbug

If the last letter is '\, then the command will not be executed immediately, which allows
you to type other text after the command.

In the Stack Trace Window

» Clicking on a routine reveals the instruction at the return address in that routine.

» 3-clicking on a routine sets a one-time breakpoint at the return address and goes.

Debugging Examples and Tips

5-6

Here are some examples of using Newtsbug.

Converting Values

| want to convert between hex and decimal

Select the constant and then choose the Convert menu item or just select the value and
look in the Status window, which always displays the most recently selected hex value in
both decimal and ASCIL

Examining Parameters

| want to check the parameters to a routine

The first four parameters are passed in R0, R1, R2, R3 and the result is returned in RO.
Additional parameters are passed on the stack. Select the value in SP and press 38-M.

C++ non-static member function have t hi s as an implied first parameter. The first
parameter is passed in RO unless the routine returns a struct larger than 4 bytes; in which
case, a pointer to the return area is passed in R0. See also section 5 of the ARM Technical
Specification manual.

Actually (for non-static function members) “this” will be in RO unless the function
returns a struct (or union of class). In that case RO will be a pointer to the return struct
and R1 will be “this.”

I crashed in a routine and want to find out what parameters caused the problem.

1) Look at the beginning of a routine to see if the parameters (R0-R3) were saved in
permanent registers.

2) If that doesn't help, set the PC to the return instruction (LDM) and step to get back to
the previous routine. At this point, you can often rerun the call by changing the PC.

Debugging Examples and Tips

Using Newtsbug

Alternatively, you can set the PC to the new return instruction and back out another
level.

Stack Frames

| want to look at a local in the stack frame.

1) Look for a place which assigns or reads the local for a procedure call and then use the
procedure call to tell you what offset/ register the local is at.

2) Look for a place at the beginning of the function where the local is initialized with a
constant or a parameter.

3) Add a dummy procedure call to your function which takes the local as a parameter.

Compiler Idioms

| want to learn common idioms of the compiler so | can ignore them

Standard Entry saves registers used and sets up a stack frame.

MOV R12, SP
STMDB SP!', {R4-R7, R11-Rl12, LK-PC}
SUB R11, R12, 4

Standard Exit restores registers, fixes up the stack, and returns.

LDVDB R11, {R4-R7, R11l, SP, PC}

Standard Exit is sometimes optimized into a tail call.

LDVDB R11, {R4-R7, R11l, SP}
B Last Procedur eCal | | nMet hod

Small structures are copied using load multiple.

LDM A RO, {R3, R12}
STMA R2, {R3, R12}

Anytime you use a RefVar, a constructor will be inserted.

MOV RO, Rx

ADD RO, SP, #xx

BL _ct_6RefVarFd
MV Rx, RO

And a destructor will be inserted at the end of the block.

Debugging Examples and Tips 5-7

5-8

Using Newtsbug

ADD RO, SP, #xX
MV R1, #2
BL _ dt__ 6Ref VarFv

(Note that passing a Ref to a function taking a RefArg will implicitly construct/destruct
a temporary RefVar.)

Virtual method calls jump through an array of method pointers.

MOV LK, PC
LDR PC, [Rx, #xx]

Reading a short is done by reading a shifted long.

LDR RO, [SP, #xx]
MOV RO, RO, ASR 16

Writing a short is done a byte at a time (which is why you should avoid shorts).

STRB RO, [SP, #xx+1]
MOV RO, RO ASR 8
STRB RO, [SP, #xx]

How to find out the Real PC

If the Newton stops by itself due to a breakpoint, a data abort, or some other reason, the
current PC value is correct. However, when you manually stop the Newton from
Newtsbug, the current PC is always inside Mai nSCCI nt er r upt handler. You may
really want to know where the base level program (most likely user mode) that was
interrupted is.

1. Find out the current CPU mode by looking at the CPSR field.
It will be either FIQ mode or IRQ mode, depending on whether you were using the
built-in serial port or the serial port on a PCMCIA card.

2. Look at the SPSR field of the current CPU mode to see the mode when the break
occurred.

3. Select the LK register of that CPU mode.

4. Press 3-P to make Newtsbug open a code window showing the routine that contains
the line referred to in the LK register.
The line referred to in the LK register is underlined.The line above it will probably be
a BL instruction.

5. Click on the procedure name part of that BL instruction to make Newtsbug open a
code window showing that procedure.

That is the procedure that contains the actual PC. (Note that Newtsbug cannot tell
exactly where in that procedure the PC was.)

Debugging Examples and Tips

Using Newtsbug

Debugging Layout and Placement

You can alter the Newton system temporarily so that all views show borders. To do so:

1. Display the Procedure Browser using the Procedure command from the Procedures
menu.

2. Type TVi ewis the left box and Dr awin the right box.
3. Select the Dr awmethod whose first parameter is TBaseRegi on, and click OK.

A Procedure Browser showing that method’s code displays.

4. Scroll to the bottom of that procedure.
About twelve lines from the end, you’ll see a TEQand a BEQ

5. Change the BEQto a no-op by 38-clicking on BEQ. (You can change it back to a BEQby

38-clicking again on the BNV)
6. In the Status window;, click on Go to start the Newton system running again.

From now on every view will have a gray border.

Debugging Examples and Tips

5-9

Using Newtsbug

5-10 Debugging Examples and Tips

Index

Numerals

D

32-bit mode 1-1
680x0 Mac OS computers used with debugger 1-1

A

Add Time Stamps option 3-6
ARM Assembler 1-1

B

baud rate
setting 3-8
Beep on Stops option 3-6
Breakpoint Conditions dialog 5-2 to 5-3
Breakpoints
and stepping 4-2
breakpoints
setting 5-1
breakpoints in ROM 2-3

C

cable needed to connect to Newton 2-2
choosing a serial port 3-8
Clear menu item 3-4
Close menu item 3-2
Close Port button in Status window 4-1
Code windows 4-6 to 4-8

shortcuts 5-5
conditional breakpoints 5-1, 5-2 to 5-3
Config menu 3-21
Copy menu item 3-4
Copy Target Screen menu item 3-4
CPU menu item 3-20
CPU window 4-3
Cut menu item 3-4

Debugger Connection
opening 2-4, 2-5
debugger traps 5-2
Default Stdio On configuration setting 3-21
disconnecting the Newton 2-5

E

Edit Menu 3-4

Enable Package Symbols configuration setting 3-22
Enable Stdout configuration setting 3-21

ending a debugging session 2-5

expression syntax 5-4

F

File menu 3-1

Find menu item 3-18

FPE Registers menu item 3-20

FPE Registers window 4-5

Frame menu item 3-15

Frozen Newton Reconnect menu item 3-3

G

Go button in Status window 4-2

H

Heap menu item 3-18
hex converter in Status window 4-3

image file
“image” and “high” 2-1
opening 3-1

IN-1

INDEX

Inspector 4-6

L

Listener window see NewtonScript Listener window
Load Memory menu item 3-2
Log Breaks option 3-6

M

Memory menu 3-14

Memory menu item 3-14

memory needed 1-1

Modem Port or Printer Port option 3-8
monitor size 1-2

N

Newton MessagePad 120 2-3
NewtonScript Listener menu command 3-21
NewtonScript Listener window 4-6
customizing shortcuts 5-5
shortcuts 5-5
Newtsbug
quitting 2-5
Newtsbug Connection
opening 2-1, 2-4, 2-5
NTK 1-1
NTK Inspector 4-6

O

Objects folder 2-6

Open Image button in Status window 4-1
Open menu item 3-2

Open Port button in Status window 4-1
operating system required 1-1

P

package
alias to package file 2-3
availability of symbols 2-4
file name 2-5
problems with finding symbols 2-6
Paste menu item 3-4

IN-2

PC
finding the real value 5-8
permanent breakpoints 5-1
PowerPC computer used with debugger 1-1
Preferences menu item 3-5
printf
preparing for use 2-3
Project Settings menu item of NTK 2-3

Q

Quit button in Status window 4-2
Quit menu item 3-4
quitting Newtsbug 2-5

R

Register Names menu item 3-4
Rerun button in Status window 4-2

S

Save As menu item 3-2
Save Memory menu item 3-2
Script Heap menu item 3-19
Select All menu item 3-4
serial PCMCIA card 2-2
serial port

choosing 3-8
setting baud rate 3-8
Smash Heap Tags menu item 3-19
Sort by Address menu item 3-19
Sort by Size menu item 3-19
Sort by Task menu item 3-20
stack frame

examing locals 5-7
Stack Trace From menu item 3-21
Stack Trace menu item 3-20
Stack Trace window 4-5

shortcuts 5-6
Status menu item 3-20
Status window 4-1
stdin/stdout/stderr menu item 3-21
Stdin/Stdout/Stderr window 4-6
Step button in Status window 4-2
stepping

and breakpoints 4-2

in ROM 2-3
Stop button in Status window 4-2

INDEX

Stop on Aborts configuration setting 3-21
Stop on Debug traps option 3-6
.sym (symbol) file 2-5, 2-6
symbols
loading 2-4
problems with finding 2-6
system requirements 1-1

T

temporary breakpoint 5-1
temporary breakpoints 5-1

U

unconditional breakpoints 5-1
Undo menu item 3-4

\W

Windows menu 3-20

IN-3

T H E A PPLE PUBLISHTING

SYSTEM

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter Pro 630 printer. Final page
negatives were output directly from the
text and graphics files. Line art was
created using Adobe™ Tllustrator.
PostScript ", the page-description
language for the LaserWriter, was
developed by Adobe Systems
Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

WRITER
Jonathan Simonoff

ILLUSTRATOR
Peggy Kunz

EDITOR
MP McKowen

PRODUCTION EDITOR
Gerry Kane

PROJECT MANAGER
Gerry Kane

	Contents
	Introduction
	System Requirements
	Features

	Getting Started
	What You Need
	Figure�2-1 The Memory Info Command
	Figure�2-2 Memory Info

	Beginning Debugging
	Making Sure Your Package Symbols are Available

	Problem Alert Dialogs
	Ending a Debugging Session
	Files Newtsbug Needs to Find
	Naming the Package File So Newtsbug Can Find It
	Handling the .sym File
	If You Aren’t Getting Symbols For Your Package

	Newtsbug Menus
	Figure�3-1 Menu Bar
	File Menu
	Figure�3-2 The File Menu
	Open (x-O)
	Figure�3-3 Mismatched Image Error

	Close (x-W)
	Save As...
	Load Memory...
	Save Memory...
	Figure�3-4 The Save Memory Dialog

	Frozen Newton Reconnect...
	Quit (x-Q)

	Edit Menu
	Figure�3-5 Edit Menu
	Copy Target Screen
	Register Names...
	Figure�3-6 Register Names Dialog

	Preferences...
	Figure�3-7 Preferences Dialog
	Stop on Debug traps
	Beep on Stops
	Add Time Stamps
	Log Breaks
	Log Stdio
	Log Listener
	Async Prints
	Font
	Number of 4K Pages for Breakpoints
	Baud Rate
	Modem Port or Printer Port

	Commands Menu
	Figure�3-8 Commands Menu
	Go (x-G)
	Stop (x-.)
	Rerun (x-R)
	Clear All Breakpoints
	Clear All Breakpoint Hits
	Disable/Enable Breakpoints
	Step Into (x-S), Step Over (x-T)
	Convert... (x-N)
	Figure�3-9 Convert Dialog

	DownLoad Package...
	Command Keys for the Listener

	Procedures Menu
	Figure�3-10 Procedures Menu
	Procedure... (x-P)
	Figure�3-11 Procedure Browser

	Define...
	Figure�3-12 Define Procedures Dialog

	Memory Menu
	Figure�3-13 Memory Menu
	Memory...
	Figure�3-14 Memory Dialog
	Figure�3-15 Memory Window

	Frame...
	Table 3-1 The Frame Command
	Figure�3-16 Frame Dialog
	Figure�3-17 Frame Window

	Find...
	Figure�3-18 Find Dialog

	Heap
	Figure�3-19 Heap Window

	Script Heap
	Smash Heap Tags
	Sort by Address
	Sort by Size
	Sort by Task

	Windows Menu
	Figure�3-20 Windows Menu
	Status
	CPU
	The FPE Registers
	Stack Trace
	Stack Trace From...
	stdin/stdout/stderr
	NewtonScript Listener

	Config Menu
	Figure�3-21 Config Menu
	Stop on Aborts
	Default Stdio On
	Enable Stdout
	Enable Package Symbols

	Newtsbug Windows
	Status Window
	Figure�4-1 Status Window
	Go and Step Buttons
	Figure�4-2 Status Window Showing Step Over

	Rerunning
	Handy Hex Converter
	Figure�4-3 Hex Converter

	CPU Window
	Figure�4-4 CPU Windows

	FPE Registers Window
	Stack Trace Window
	Stdin/Stdout/Stderr Window
	NewtonScript Listener Window
	Code Windows
	Figure�4-5 Code Window Example
	Opening Code Windows
	Code Window Contents

	Procedure Browser
	Figure�4-6 Procedure Browser

	Using Newtsbug
	Breakpoints
	The Breakpoint Conditions Dialog
	Figure�5-1 Breakpoint Conditions Dialog

	Expressions
	Shortcuts
	General Shortcuts
	In the CPU Window
	In Code Windows
	In the NewtonScript Listener Window
	Customizing NewtonScript Listener Shortcuts

	In the Stack Trace Window

	Debugging Examples and Tips
	Converting Values
	I want to convert between hex and decimal

	Examining Parameters
	I want to check the parameters to a routine
	I crashed in a routine and want to find out what p...

	Stack Frames
	I want to look at a local in the stack frame.

	Compiler Idioms
	I want to learn common idioms of the compiler so I...

	How to find out the Real PC
	Debugging Layout and Placement

