

ð

ð

N e w t o n C + + T o o l

Newtsbug User’s Guide

1.0

May 16, 1996 Jonathan Simonoff
© Apple Computer, Inc. 1996



Apple Computer, Inc.
© 1994, 1995 Apple Computer, Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying,
recording, or otherwise, without
prior written permission of Apple
Computer, Inc., except in the normal
use of the software or to make a
backup copy of the software. The
same proprietary and copyright
notices must be affixed to any
permitted copies as were affixed to
the original. This exception does not
allow copies to be made for others,
whether or not sold, but all of the
material purchased (with all
backup copies) may be sold, given,
or loaned to another person. Under
the law, copying includes
translating into another language or
format. You may use the software on
any computer owned by you, but
extra copies cannot be made for this
purpose.
Printed in the United States of
America.
The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for licensed
Newton platforms.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, LaserWriter,
Macintosh, MPW, and Newton are
trademarks of Apple Computer,
Inc., registered in the United States
and other countries.
The light bulb logo, MessagePad,
NewtonScript, and Newton Toolkit
are trademarks of Apple Computer,
Inc.
FrameMaker is a registered
trademark of Frame Technology
Corporation.
ARM is a trademark of Advanced
RISC Machines Ltd.
Helvetica and Palatino are
registered trademarks of Linotype
Company.
ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, APDA
will replace the media or manual at no
charge to you provided you return the
item to be replaced with proof of
purchase to APDA.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
“AS IS,” AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

iii

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

Chapter 1

Introduction

1

System Requirements 1

Chapter 2

Getting Started

3

What You Need 3
Beginning Debugging 3

Making Sure Your Package Symbols are Available 5
Ending a Debugging Session 5
Files Newtsbug Needs to Find 5

Naming the Package File So Newtsbug Can Find It 6
Handling the .sym File 6
If You Aren’t Getting Symbols For Your Package 6

Features 7

Chapter 3

Newtsbug Menus

9

File Menu 9
Open (



-O) 9
Close (



-W) 9
Save As... 10
Load Memory... 10
Save Memory... 10
Frozen Newton Reconnect... 10
Quit(



-Q) 11
Edit Menu 11

Copy Target Screen 12
Register Names... 12
Preferences... 12

Stop on Debug traps 13
Beep on Stops 13
Add Time Stamps 13
Log Breaks 13
Log Stdio 14
Log Listener 14
Async Prints 14
Font 14
Number of 4K Pages for Breakpoints 14

Contents

iv

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

Baud Rate 15
Modem Port or Printer Port 15

Commands Menu 15
Go (



-G) 16
Stop (



-.) 16
Rerun (



-R) 16
Clear All Breakpoints 16
Clear All Breakpoint Hits 16
Disable/Enable Breakpoints 16
Step Into (



-S), Step Over (



-T) 16
Convert... (



-N) 17
DownLoad Package... 17
Command Keys for the Listener 17

Procedures Menu 18
Procedure... (



-P) 18
Define... 18

Memory Menu 19
Memory... 19
Frame... 20
Find... 23
Heap 23
Script Heap 24
Smash Heap Tags 24
Sort by Address 24
Sort by Size 24
Sort by Task 24

Windows Menu 25
Status 25
CPU 25
The FPE Registers 25
Stack Trace 25
Stack Trace From... 26
stdin/stdout/stderr 26
NewtonScript Listener 26

Config Menu 26
Stop on Aborts 26
Default Stdio On 26
Enable Stdout 27
Enable Package Symbols 27

Chapter 4

Windows

29

Status Window 29
Go and Step Buttons 29
Rerunning 30
Handy Hex Converter 30

v

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

Stdin/Stdout/Stderr Window 31
The NewtonScript Listener Window 31
The CPU Window 31
The FPE Registers Window 33
The Stack Trace Window 33
Code Windows 34

Opening Code Windows 34
Code Window Contents 34

Procedure Browser 36

Chapter 5

Using Newtsbug

37

Breakpoints 37
Expressions 38
Viewing Frames that Refer to Packages 38
Shortcuts 39

General Shortcuts 39
In the CPU Window 39
In Code Windows 39
In the Listener Window 40

Customizing Listener Shortcuts 40
In the Stack Trace Window 40

Debugging Tips 40
Converting Values 41
Examining Parameters 41
Stack Frames 41
Compiler Idioms 42
How to find out the Real PC 43

vi

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

C H A P T E R 1

System Requirements

1

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Introduction 1

Newtsbug is the low-level debugger for Newton development. You need to use it if you
want to debug C, C++, or ARM Assembler code that runs on a Newton.

Newtsbug runs on Mac OS-based computers.

Since Newtsbug is a low-level debugger, it works on compiled code, and does not
display higher-level language symbols. It does, however, display Assembler symbols.
Familiarity with Arm Assembler is very helpful in using Newtsbug. You may want, at
least, to obtain the Assembler documentation.

You use Newtsbug by connecting a Newton to the Mac OS-based computer using a serial
cable.

If you are developing code using the Newton C++ Tools and NTK that you want to
debug using Newtsbug, you may find there are many times in your development cycle
when you want to run both NTK and Newtsbug, and you need to download new
versions of your program. The best way to do that is to download your program using
Newtsbug rather than NTK . The Newtsbug Listener has a command, Command-2,
which is equivalent to the NTK Inspector’s command that downloads a package.

System Requirements 1

Newtsbug has the following system requirements:

■

For 680x0 Mac OS computers, you need a model that is at least as fast as a Macintosh
IIci. Any PowerPC computer running the Mac OS will work.

■

The operating system must be Mac OS version 7.0 or later.

■

You must be running in 32-bit mode.

■

You need at least 16 megabytes of memory.

■

You need a monitor that 14 inches or larger. It can be black and white, gray scale, or
color.

Figure 1-0
Table 1-0

C H A P T E R 1

Introduction

2

System Requirements

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

C H A P T E R 2

Getting Started

What You Need

3

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Getting Started

2

You can use Newtsbug for debugging C code and NewtonScript code.

What You Need 2

You need the following to debug with Newtsbug:

■

A Newton using a 2.0 (or later) system, or which has a stable flash ROM that includes
the ROM code needed for Newtsbug. You should use a power adaptor rather than the
Newton’s battery, because the Newton will not sleep when stopped in the debugger.

■

A pair of image files, a .image and a .high file that match the system on your Newton.

■

A Mac OS-based computer.

■

A serial cable.

■

The package you want to debug loaded on the Newton.

■

The package (.pkg) file or its alias in Newtsbug’s folder. You almost always use an
alias.

■

The file with symbol information for the package in a place where Newtsbug can find
it. See “Files Newtsbug Needs to Find” on page 5 for information.

You may want to have a serial PCMCIA card, which leaves the Newton serial port free
for other uses. We have tested the Socket Communications serial I/O card, and this
works fine with the Newton; we recommend that developers use this. Other cards may
work as well, but haven’t been tested as of this writing.

Beginning Debugging 2

1. Load Newtsbug Connection on your Newton device. Newtsbug Connection is
included on the CD that contains Newtsbug.

Figure 2-0
Table 2-0

C H A P T E R 2

Getting Started

4

Beginning Debugging

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

2. Create an alias for your package file and put it in the Newtsbug folder on your Mac
OS-based computer. See “Files Newtsbug Needs to Find” on page 5 for more
information, particularly if you have moved the .pkg file or the file that contains the
compiled C code, which ends in .sym. That section also has information on naming
the package file so that Newtsbug can find it.

3. Run Newtsbug.

4. When Newtsbug asks for an image file, click on the Cancel button.

5. Choose the Preferences command from the Edit menu.
Newtsbug displays a dialog box that lets you set various features of Newtsbug.

6. The bottom part of the dialog box lets you select the modem port or printer port.
Choose the one that you’ve used for the serial cable to the Newton.

7. Choose the baud rate you want. All of the available baud rates work well on most
Mac OS-based computers. If you have a computer that is slower than a Macintosh
Quadra, choose something slower than 57600.

8. If you want to If you expect to set breakpoints in ROM, step in ROM, or modify ROM,
you need to reserve some memory using this dialog box. (If you are just going to take
these actions in your package code, you do not need to reserve any memory.) Each
page is 4K of RAM. More memory allows more breakpoints. 8K is required by the
system to support stepping in ROM. Each additional 4K will give at least one
breakpoint. More breakpoints in the same 4K range don't use any additional memory.
For example, 20K (8K for the system and 12K for breakpoints) will allow you to set
breakpoints in three different 4K pages. You can reset the amount of memory
available by using the Preferences command again.

Note

If you are using a Newton MessagePad 120 running Newton 2.0, 2.1, or
2.1D and you want to use the C debugging function

printf

, you need
to reserve two pages (8K), because those versions of the Newton system
cannot otherwise execute

printf

. If you do not reserve space, calls to

printf

 will do nothing. If you are using a later version of the Newton
system, you do not need to reserve any space for this purpose.

◆

9. Click OK to close the dialog box.

10. Open an image file using the Open menu command in the File menu. Newtsbug reads
the symbols from the file.

Warning

If the image file you choose does not match the system that is on the
Newton device, you are warned, but Newtsbug allows you to continue.
However, doing so can cause undetermined problems, including
Newtsbug errors that will force you to reboot your Mac OS-based
computer.

▲

11. On the Newton, open the Newtsbug Connection application, which will be in the
Extras drawer.

12. Select the same baud rate you chose in Newtsbug.

C H A P T E R 2

Getting Started

Ending a Debugging Session

5

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

13. Tap on Connect.

You should see a Listener window on the Mac OS-based computer.

Making Sure Your Package Symbols are Available 2

When you start a debug session, Newtsbug scans the Newton device for currently
loaded package and looks for symbol files that re associated with the packages. Since the
package you’re interested in could have happened to have been swapped out of the
Newton’s memory, Newtsbug could fail to find information on your package. (You can
ensure that this does not happen by opening the package right before you set up
debugging.)

To figure out if your package’s symbols are loaded, choose the Procedure command from
the Procedures menu. That shows a list of all symbols that Newtsbug currently knows
about. You can look at this list to see if the symbols from your package are loaded.

If they are not loaded, you need to reinstall the package on the Newton. When you do
that, Newtsbug loads the package symbols.

Another possibility is that the package symbol file does not have the correct name. Look
in the stdin/stdout/stderr window for error messages. If there is one that deals with
loading package symbols, the error message includes the package name that Newtsbug
expects. Change the name of the package file alias (see step 2 on page 4) to match the
name in the error message and reinstall the package.

Ending a Debugging Session 2

To terminate a debug session:

1. Open Newtsbug Connection again.
Now the button should say Close.

2. Tap on the Close button.

If you do not close a debugging session from Newtsbug Connection, calls to functions
such as

DebugStr

 and

printf

 will cause exceptions on the Newton device, because the
Newton will try to communicate with Newtsbug over the serial link.

Files Newtsbug Needs to Find 2

Newtsbug needs to be able to find the package file for your package. When you create a
package that contains C code, the C part of the package comes from a .sym file that
contains symbol information. Newtsbug also needs to be able to find that file in order to
be able to debug the package.

C H A P T E R 2

Getting Started

6

Files Newtsbug Needs to Find

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Newtsbug uses a naming scheme to find the package file. It uses information in the
package file to find the .sym file.

Naming the Package File So Newtsbug Can Find It 2

Newtsbug looks for the package file, or an alias to the package file, in its directory. It
derives the expected name from the Name entry of the Package Settings icon of the
Project Settings menu item. If you suspect you don’t have the right name, the easiest way
to see the proper name is to start Newtsbug. If the name you have is wrong, you will see
an error message that gives the name that Newtsbug expects.

Newtsbug derives the name of the package file using these rules:

■

If the package name has any colons (:), they are replaced with periods (.), because
colons have a special meaning for the Mac OS file system.

■

If the package name is longer than 24 characters, the name is truncated to 24
characters.

■

If the name contains any periods (.), the last period and any characters after it are
removed

■

Newtsbug appends .pkg to the name.

Handling the .sym File 2

When Packer creates the package, it creates a part information field that records the path
from the package file to the .sym file. If you change the relative path that leads from the
package file to the .sym file, Newtsbug will not be able to debug the package. For
example, the Newton C++ Tools for the Mac OS places the .sym file in a folder called
Objects that is in the directory that contains the package file. If you move the package
file, its new directory must have an Objects folder that contains the .sym file.

If You Aren’t Getting Symbols For Your Package 2

If you’ve done everything discussed in the previous two sections and you still aren’t
getting symbol information, it is possible that the header part of the package was not in
the Newton’s main memory when you started the debugging session. To cure this
problem, you can try these tactics. Either of them may work; try whichever is easiest for
you first.

■

Re-load the package onto the Newton using Newtsbug.

■

Open the package application on the Newton before connecting with Newtsbug.

You can tell if your package symbols are being read successfully by watching the
Newtsbug stdio window while you make the connection with the Newton. Newtsbug
indicates when it successfully reads a package file and symbol file. (Newtsbug also
displays the error message “package header not currently in memory,” but if you have
more than one package loaded on your Newton, you cannot tell if the message is for the
package you are interested in.

C H A P T E R 2

Getting Started

Features

7

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Features 2

This section lists all the features supported by Newtsbug.

■

Execution control

n

Stop target

n

Set breakpoints in ROM, packages

n

Set breakpoints with expressions (e.g. R0== 0x00000000)

n

Step and step over in ROM or packages

n

Can set breakpoint while target is running (that is, you don’t need to stop the
image)

■

Exceptions Handling

n

Stop on aborts

■

Memory Related

n

See heaps

n

See memory

n

Modify memory

■

Code Related

n

See code (ROM and packages)

n

Change instructions

■

Stdio

n

Stdio window; all

printf

 calls are output to this window

n

Log files

■

Listener window

n Cut, Copy, Paste, Clear, Select All, Undo

n loadpackage (cmd-2)

n Quick keys (cmd-2 through cmd-9), which can be customized

n All NewtonScript print calls are output to this window

n Time stamp for each line of text from target

n Window contents are automatically saved in a file when session is closed

n Log

■ Choose any available serial channels

n On the Newton, use the built-in serial port, or use a serial port on a PCMCIA card

n On the Mac OS computer, use either the modem or printer port

■ Error checking

n CRC checking for packets sent between Newton and Newtsbug

n Retransmit on error

■ Start debugging after target crashed

C H A P T E R 2

Getting Started

8 Features

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

■ Miscellaneous

n See/Modify register

n Stack trace

n Copy target screen

n CPU window

n FPE registers

n Event tracing

C H A P T E R 3

Newtsbug Menus

File Menu 9
Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Newtsbug Menus 3

The sections in this chapter describe the Newtsbug menus.

File Menu 3

The File menu lets you open image files, close windows, save the contents of certain
Newtsbug windows, and store and re-load memory.

Figure 3-1 The File Menu

Open (-O) 3
The Open menu item lets you open, load, and run a new image file.

Close (-W) 3
The Close menu item closes the active window.

Figure 3-0
Table 3-0

C H A P T E R 3

Newtsbug Menus

10 File Menu

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Save As... 3
The Save As menu item lets you save, as text files, the contents of the stdio windows
such as the Listener, stdin/stdout/stderr window, heap windows, and Spy windows.

Load Memory... 3
The Load Memory command lets you fill a piece of memory with a file that has been
saved with the Save Memory command.

Save Memory... 3
The Save Memory command lets you save the specified memory, as raw binary data, to a
file.

Figure 3-2 The Save Memory Command

The limit field is the address up to which, but not including, you wish to write. In the
above illustration, memory from 0447C9A9 through 0447C9B9 will be written.

Frozen Newton Reconnect... 3
You can use this command to help track down unusual bugs that cause the Newton to
freeze at unpredictable times. Here’s the typical process of using this feature:

1. Set up a Newtsbug session us usual.

2. Disconnect the serial cable (make sure the target is running at the time).

3. On the Mac OS computer, select Quit from Newtsbug.
Newtsbug puts up a dialog saying that the current debug session is still on.

4. Click on the Quit Now button
Now the Newton has the debugger enabled, but still functions as a normal Newton.
Take the Newton to anywhere and do anything as normal, except don’t use the serial
port that was used in step 1 for setting of the Newtsbug session.

C H A P T E R 3

Newtsbug Menus

Edit Menu 11
Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

If the Newton crashes for a cause that can’t be captured by Newton’s exception
handling process, it will be captured by the low level debugger. Examples are a bad
PC value or a DebugStr call.

IMPORTANT

When this happens, the Newton will not power off. It just sit in the low
level debug loop waiting for the Newtsbug to connect to it. The battery
may be used up very quickly. ▲

5. When the Newton freezes, connect it Newton to Mac OS computer with a serial cable;
launch Newtsbug, open a proper image, and use the Connect to Frozen Newton
command.

6. If you can successfully connect, Newtsbug displays the current PC and the CPU
window. You can do further debugging by opening stack window, memory windows,
and so on. You can also set breakpoints or step in packages; although you can't do
that in ROM.

7. After finishing debugging, you should reset the Newton, because the Newton's
internal state may be bad.

Quit(-Q) 3
The Quit menu item quits the program and ends this debugging session.

Edit Menu 3

The edit menu lets you use the standard Mac OS edit functions, Undo, Cut, Copy, Paste,
Clear, and Select All, and also has various Newtsbug functions. The standard commands
are not documented here.

Figure 3-3 Edit Menu

C H A P T E R 3

Newtsbug Menus

12 Edit Menu

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Copy Target Screen 3
The Copy Target Screen command copies the screen of the Newton to the clipboard.

Register Names... 3
The Register Names command puts up a dialog that lets you name the registers. The
dialog is shown in Figure 3-4.

Figure 3-4 Register Names Dialog

Preferences... 3
The Preferences command puts up a dialog that lets you set various features of
Newtsbug. Figure 3-5 shows the dialog. The options are described below the figure.

C H A P T E R 3

Newtsbug Menus

Edit Menu 13
Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Figure 3-5 Preferences Dialog

Stop on Debug traps 3

If this option is not checked, calls to DebugStr and Debugger do not stop, but
DebugStr still displays its string.

Beep on Stops 3

This option enables and disables the audible indication of stopping.

Add Time Stamps 3

This option adds a time stamp to each line in the stdin/stdout window, output from the
Newton in the Listener window, and to log files, using the Mac OS-based computer to
determine the time. The times when the image is stopped are not included.

The times given are not exact because there is a delay between when the image sends a
string to the window and when Newtsbug gets it, and the delay cannot be calculated
because it depends on other applications that may be running on the Mac OS-based
computer.

Log Breaks 3

This option tells Newtsbug to display a log line if a break point is hit with an expression
condition met (see “Expressions” on page 38). It doesn’t matter whether the “Break
after” condition is met.

C H A P T E R 3

Newtsbug Menus

14 Edit Menu

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Newtsbug will display a line similar to this:

2/10 break at PC= 100530 TTracer::TTracer(char*) + 12

This may be useful to trace the program flow, especially if you turn on Add Time Stamp
option, as well.

Log Stdio 3

This option tells Newtsbug to save everything in the stdin/stdout/stderr window to a
log file. The log file is placed in the Newtsbug folder and is named “HLog stdio”. If a log
file already exists when Newtsbug tries to open or create one, it is overwritten, so
rename the file if you want to keep it. The log file is closed when you quit Newtsbug or
you turn this option off, but not when you rerun.

Log Listener 3

This option tells Newtsbug to save everything in the NewtonScript Listener window to a
log file. The log file is placed in the Newtsbug folder and is named “HLog listener”. If a
log file already exists when Newtsbug tries to open or create one, it is overwritten, so
rename the file if you want to keep it. The log file is closed when you quit Newtsbug or
you turn this option off, but not when you rerun.

Async Prints 3

This option tells Newtsbug to buffer printing to the stdio window and the Listener
window as quickly as it can. Display of information in this window is typically delayed,
especially when the image prints a lot. When you check this command, the image is not
slowed to wait for window display.

Font 3

This option lets you set the font used in Newtsbug to either Geneva or Monoco.

Number of 4K Pages for Breakpoints 3

You generally only need to reserve space if you are going to be setting breakpoints or
doing other debugging actions in ROM (however, see the note below). You don’t have to
reserve anything for debugging your package code. This option lets you set how many
four kilobyte memory pages are reserved for ROM breakpoints. If you expect to set
breakpoints in ROM, step in ROM, or modify ROM, reserve a few pages. More memory
allows more breakpoints. 8K is required by the system to support stepping in ROM. Each
additional 4K will give at least one breakpoint. More breakpoints in the same 4K range
don't use any additional memory. For example, 20K (8K for system and 12K for
breakpoints) memory will allow a user to set breakpoints in three different 4K pages.

C H A P T E R 3

Newtsbug Menus

Commands Menu 15
Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Note

If you are using a Newton MessagePad 120 running Newton 2.0, 2.1, or
2.1D, and you want to use the C debugging function printf, you need
to reserve two pages (8K), because this version of the Newton system
cannot otherwise execute printf. If you do not reserve space, called to
printf will do nothing. If you are using a later version of the Newton
system, you do not need to reserve any space for this purpose. ◆

Baud Rate 3

This option lets you set the baud rate for communication with the Newton device. All of
the available baud rates work well on most Mac OS-based computers. If you have a
computer that is slower than a Macintosh Quadra, choose something slower than 57600.

Modem Port or Printer Port 3

This option lets you choose which port you are using to communicate with the Newton
device.

Commands Menu 3

The Commands menu has various useful commands.

Figure 3-6 Commands Menu

C H A P T E R 3

Newtsbug Menus

16 Commands Menu

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Go (-G) 3
The Go command causes a suspended (Stopped) program to resume execution.

Stop (-.) 3
The Stop command suspends execution of the image currently being executed.

The image might not stop if:

■ Interrupts are disabled (Newtsbug uses an IRQ interrupt to stop and start the image).
Interrupts can be blocked in the ARM CPU or by the control ASIC

■ The image is too lost to respond to the interrupt because of, for example, bad MMU
tables

■ There are hardware problems such as loose or bad cables

Rerun (-R) 3
This menu item is using the reset button on the Newton. All breakpoints are removed.
All changes in code are lost. You will need to re-establish the debug connection.

Clear All Breakpoints 3
This menu item clears all breakpoints, both temporary and permanent. (Breakpoints are
discussed in “Breakpoints” on page 37.)

Clear All Breakpoint Hits 3
You can set breakpoints so that they trigger after a certain number of hits. This menu
item clears all breakpoint hits. See “Breakpoints” on page 37 for more information on
breakpoint hits.

Disable/Enable Breakpoints 3
This command toggles between disabling and enabling breakpoints. When breakpoints
are disabled, they will never trigger.

Step Into (-S), Step Over (-T) 3
These commands are used to advance program execution one instruction, or step, at a
time. The Step Into and Step Over commands operate in the same way as the Step/Step
and Step Into/Step Over buttons provided in Newtsbug’s Status window (described in
“Go and Step Buttons” on page 29). They simply cause the next instruction to be
executed or, if the instruction is a subroutine call, let you either step into the subroutine
or step over the calling instruction.

C H A P T E R 3

Newtsbug Menus

Commands Menu 17
Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

If the instruction at the current PC is not a BL instruction, the menu items show as Step
(Into) and Step (Over).

Warning

Do not step in the MainSCCInterrupt handler because Newtsbug will
either lose the connection with the Newton device or crash. In general,
you should not step through system code. If you do so, you may need to
do a cold reboot of the Newton device. ▲

Convert... (-N) 3
The Convert command displays a simple calculator. Given a number in hex, binary,
signed or unsigned decimal, or a sequence of characters in ASCII, all other formats are
displayed. If an 8-digit hex value is selected before Convert is chosen from the menu,
this value is displayed in all possible formats. You change the value in any format.

Figure 3-7 Convert Dialog

DownLoad Package... 3
This command puts up a standard file dialog and lets you choose a package to
download. It then loads the package on the Newton device.

Command Keys for the Listener 3
The last group of commands in the Commands menu are command keys for the Listener
window.

Newtsbug will type the characters in the command you select in the current line in the
Listener window. If the last character in the string is not a back slash (\), Newtsbug
deletes any text that might be on the current line, enters the command, and adds a return

C H A P T E R 3

Newtsbug Menus

18 Procedures Menu

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

character. If the last character in the string is a back slash, Newtsbug does not add a
return character.

You can customize all of these command keys. To customize, create a text file named
Listener Commands in Newtsbug’s folder. Each line of the file becomes a command in
the Commands menu.

Procedures Menu 3

This menu is used to find or define procedures so that you can quickly access them using
code windows. Aside from the menu commands shown in the figure, this menu usually
includes some code window names, which are listed below a line under the Define menu
item. See “Code Windows” on page 34 for information on those windows.

Figure 3-8 Procedures Menu

Procedure... (-P) 3
This item opens a symbol browser. You can type a class prefix in the class box and a
member prefix in the member box. All matching procedures are listed. When you click
“OK,” a window showing the procedure is opened.

Newtsbug’s search for a symbol is not case sensitive and a prefix of a symbol can be used
(for example, “asyncc” to find AsyncCallback).

For convenience, global names are accepted in the class box.

Define... 3

With this menu item, you can temporarily define a procedure name to reference a
particular range. These definitions are remembered for the duration of the current
debugging session but not from session to session.

C H A P T E R 3

Newtsbug Menus

Memory Menu 19
Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Figure 3-9 Define Procedures Dialog

Memory Menu 3

The Memory menu lets you view and change the memory state and contents.

Figure 3-10 Memory Menu

Memory... 3
Memory windows let you display the contents of RAM or ROM. Selecting this menu
item while a value is selected in a Newtsbug window opens a memory window at the
selected address. If no value is currently selected, Newtsbug brings up a dialog
requesting an address to display. Figure 3-11 shows the dialog. You can enter:

■ An address in hex

■ A symbol such as a global variable name

■ An expression; see “Expressions” on page 38 for details

You can press the = button to evaluate the expression

C H A P T E R 3

Newtsbug Menus

20 Memory Menu

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Figure 3-11 Memory Dialog

Once an address is entered, a Memory window is opened. The three columns displayed
are address, hex value and ASCII value. This window can be scrolled ±4K.

Figure 3-12 Memory Window

If you hold down shift when opening a memory window while an address is selected,
Newtsbug treats the address as a handle instead of a pointer.

The hex values displayed in the window can be edited. Currently the ASCII value cannot
be edited.

Frame... 3
This menu item lets you display the specified variable or selection as a NewtonScript
object.

C H A P T E R 3

Newtsbug Menus

Memory Menu 21
Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

If you have a number selected when you choose this command, what happens depends
on what the number is and whether or not you have the Shift key down. Table 3-1 shows
the various possible results.

If nothing is selected when you choose this command, Newtsbug displays the dialog box
shown in Figure 3-13.

1 With the shift key, down the selected number cannot be the address of an object—something will happen but not
what you want. Holding down shift is useful if the number selected is the address or contents of a RefVar,
RefStruct or RefHandle.

2 A Ref is the NewtonScript implementation’s reference to a NewtonScript object (a NewtonScript pointer, if you
will.)

Table 3-1 The Frame Command

Selected Number
Effect With
Shift Key Up

Effect With
Shift Key Down

The address of a frame or array Opens a
window
displaying the
frame or array

Don’t do this1

A Ref2 of a forwarding object that forwards, eventually, to a
frame or array

The address of a forwarding object that forwards, eventually, to
a frame or array

A magic pointer Ref referring to a frame or array

A Ref of a frame or array Opens a
window
displaying the
frame or array

The address of a Ref of a frame or array The number is
treated as an
address, and a
memory
window is
opened at the
selected
address

The address of an address of a Ref of a frame or array

A Ref of a forwarding object that forwards, eventually, to a
frame or array

The address of a Ref of a forwarding object that forwards,
eventually, to a frame or array

The address of an address of a Ref of a forwarding object that
forwards, eventually, to a frame or array

A magic pointer Ref referring to a frame or array

The address of a magic pointer Ref referring to a frame or array

The address of an address of a magic pointer Ref referring to a
frame or array

Any other number The number is treated as an
address, and a memory window is
opened at the selected address

C H A P T E R 3

Newtsbug Menus

22 Memory Menu

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Figure 3-13 Frame Dialog

If you enter a number the behavior is as if the number had been selected, although the
Shift key is ignored. If you enter a symbol or the prefix of a symbol, then the behavior is
as if the symbol’s address had been selected and the shift key was down.

Figure 3-14 shows a frame window for gVarFrame.

Figure 3-14 Frame Window

The area of the Frame window below the header includes the address of the object
header, the number of slots, the class and the Dirty, Writeable and Locked flags as icons.
You can select the address of the object header.

You can get additional information by clicking on parts of the frame window.

■ Clicking on the Ref in the middle column selects it like any other Newtsbug number.

■ Clicking on a tag in the left column or the value in the right columns is the same as
selecting the Ref and invoking the Frame command with the shift key up; that is, it
opens a Frame or memory window on the object in that slot.

C H A P T E R 3

Newtsbug Menus

Memory Menu 23
Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

■ Clicking on a number slot will bring up the Convert window, showing the number in
various formats.

Find... 3
Find searches for the specified data, as a word or a byte, in the range specified. The limit
value is the address up to which, but not including, you wish to search.

Figure 3-15 Find Dialog

You can click the Find button successively to continue searching. To start the search over,
you need to close and re-open the window, or change start, limit, or data.

Heap 3
Selecting the Heap item displays four windows showing four different heaps. The
topmost window displays the contents of the pointer heap, indicating the memory
blocks returned by malloc and NewPtr calls. The handle heap shows block returned by
NewHandle. The master pointer heap (mps) shows the master pointers used for the
handles, and the wired heap is used by the operating system.

If an 8-digit hex number is selected, Heap opens a single heap window using the
selection as the address of the heap header.

Note

Newtsbug can slow dramatically if you leave heap windows, including
the script heap window, open while you step. This is because each time
the target is stopped, Newtsbug updates every open window. Since
heap windows reference a lot of memory information, the updating
process can take a significant amount of time. You should therefore close
unnecessary heap windows before you step or let the target go. ◆

C H A P T E R 3

Newtsbug Menus

24 Memory Menu

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Figure 3-16 Heap Window

Heap windows can be sorted by address, logical block size and task ID, by choosing the
Sort by Address, Sort by Size, and Sort by Task menu items respectively.

Script Heap 3
Displays a window showing the script heap.

Objects that are “dirty” and can be garbage collected are indicated by a dot.

Smash Heap Tags 3

Smash Heap Tags sets all tags of the active heap to 0x7fffffff. It cannot be undone. This is
useful to see new heap allocations after this action.

Sort by Address 3
Sorts the items in the selected heap window by address.

Sort by Size 3
Sorts the items in the selected heap window by size.

Sort by Task 3
Sorts the items in the selected heap window by task.

Statistics for this heap

C H A P T E R 3

Newtsbug Menus

Windows Menu 25
Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Windows Menu 3

The commands in this menu let you display the various windows that Newtsbug
provides, except for code windows, which are displayed in the Procedures menu. The
window that is currently “in front” has a check mark next to it. (If no window has a
check mark, then the frontmost window is probably one of the code windows.)

The bottom section of the menu, below the line, can have different contents depending
on what windows are displayed. These windows are described in Chapter 4, “Windows”
on page 29.

Figure 3-17 Windows Menu

Status 3
This menu item brings the Status window to the front. See “Status Window” on page 29
for more information.

CPU 3
This menu item brings the CPU window to the front. The CPU window shows the state
of the CPU. See “The CPU Window” on page 31 for more information.

The FPE Registers 3
This menu item brings the FPE Registers window to the front. This window displays the
contents of the floating-point registers. They cannot be edited.

Stack Trace 3
Selecting the Stack Trace item from the Windows menu displays the call chain of
procedures to this point. See “The Stack Trace Window” on page 33 for more information.

C H A P T E R 3

Newtsbug Menus

26 Config Menu

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Stack Trace From... 3
This menu item lets you specify the point at which the stack trace should begin.

stdin/stdout/stderr 3
This menu item brings the stdin/stdout/stderr window to the front.

NewtonScript Listener 3
This menu item brings the Listener window to the front.

Config Menu 3

The Config menu lets you use Newtsbug to configure images in various ways.

IMPORTANT

Newtsbug may have trouble running with certain Config menu settings.
In particular:

■ Stop on Aborts should be off

■ Default Stdio On should be on

■ Enable Package Symbols should be on unless you aren’t debugging a package

In general, you should not change these settings unless you have a
particular reason to do so. ▲

Figure 3-18 Config Menu

Stop on Aborts 3
Useful for finding bugs.

Default Stdio On 3
Standard I/O interferes with interrupts; set this option off to prevent standard I/O.

When this item is checked and you are running a debug image, a NewtonScript Listener
window opens. This is similar to the Listener you can use with NTK.

C H A P T E R 3

Newtsbug Menus

Config Menu 27
Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

DebugStr and DebugCStr output will always be displayed regardless of the the
default stdio setting.

Enable Stdout 3
Leave this option off if you only need stdio for the Listener.

Enable Package Symbols 3
This option is initially set, and causes you to see your symbols loaded from a package.

When you have this set, you get a warning message every time Newtsbug finds a
package on the Newton that does not have a symbol file on the Mac OS-based computer.
You can ignore these messages—the only package that needs to have a symbol file is the
one you want to debug. Turn this item off if you are not debugging a package. (The
setting is “remembered” in the Newtsbug preferences file.)

C H A P T E R 3

Newtsbug Menus

28 Config Menu

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

C H A P T E R 4

Windows

Status Window 29
Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Windows 4

This chapter describes the Newtsbug windows.

Status Window 4

The bottom of the Newtsbug Status window shows one, two, or three buttons depending
on the state of your program. When the Status window is first opened (when the image
is launched) the window displays just one button at the bottom of the window, which
can change depending on the state of the program:

■ If you haven’t yet selected an image, the button says Choose Image, and when you
click on it you get a standard file dialog box that lets you choose an image.

■ If you’ve chosen an image, but haven’t yet connected to a Newton, the button says
Close Port. If you click on it, the serial port is closed.

■ If you have closed the port, the button says Open Port. If you click on it, the serial port
is opened.

■ If you’ve connected to a Newton, then the image is running, and the button says Stop.
If you click on it, it stops the image and the Newton, and you enter the debugger.

Go and Step Buttons 4
When you enter the debugger (because a breakpoint or error was encountered or
because you pressed the Stop Button), three buttons labeled Go, Step, and Step are
displayed as shown below.

Figure 4-0
Table 4-0

C H A P T E R 4

Windows

30 Status Window

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Figure 4-1 Status Window

The Step buttons are just like the Step Into and Step Over menu items. They both cause
the next instruction to be executed. If the next instruction is a subroutine call, the buttons
change to Step Over and Step Into, allowing you to either step over the calling
instruction or step into the subroutine.

Warning

Do not step in the MainSCCInterrupt handler because Newtsbug will
either lose the connection with the Newton or crash. ▲

Figure 4-2 Status Window Showing Step Over

NOTE

Breakpoints are not installed during Step or Step (Into) operations.
Breakpoints are installed when you Go or Step (Over). ◆

Rerunning 4
When your program completes, the buttons are labelled Quit and Rerun. Note that the
buttons have Command key equivalents as indicated on the Commands menu. (The
command key equivalents are the same as their Macsbug counterparts.)

If the target has crashed, you need to press the Reset button to rerun.

Handy Hex Converter 4

In addition to indicating the execution state of the program (Running...) or the cause of
program suspension, the Status window displays the value that you have most recently
selected in one of Newtsbug’s windows. This area of the Status window also functions as
a hex converter: the hex last selected value field can be edited and the equivalent decimal
and ASCII values will be displayed. The hex value can also be selected and copied.

C H A P T E R 4

Windows

Stdin/Stdout/Stderr Window 31
Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Stdin/Stdout/Stderr Window 4

This window shows error messages, printfs, and other program output. You can use
the Edit menu commands, and you can use the Save As command to save its contents to
a file (see “Save As...” on page 10). You can also set up Newtsbug so that it logs
information to a file (see “Log Stdio” on page 14).

This window is not an editor window, and you cannot edit the contents using keyboard
keys such as delete. (You can use the Edit menu Cut, Paste, and Clear commands, as well
as Copy, though.)

The NewtonScript Listener Window 4

This window is very similar to the NTK Inspector. You can type in NewtonScript and
when you press the Enter key the current line is transmitted to the Newton device for
execution. You can also select one or more lines and press Enter.

In addition:

■ You can use the Edit menu commands.

■ You can save the contents to a file (see “Save As...” on page 10)

■ You can log the contents to a file (see “Log Listener” on page 14)

■ You can use items from the Commands menu to insert strings (see “Command Keys
for the Listener” on page 17)

■ You can have output from the Newton time-stamped (“Add Time Stamps” on page 13)

■ There are a number of shortcuts (see “In the Listener Window” on page 40)

The CPU Window 4

The CPU window has panes for the PC and PSR, the four banks of ARM General
registers, the Timer register, and the MMU registers. Clicking on a pane label (MMU for
example) toggles the state of the pane, opening it if it is closed and vice versa. The PC/
PSR pane is always visible.

You should keep the panes closed when you aren’t using them, because when they are
open it is fairly easy to accidently select fields in the panes, and if you select certain fields
and then execute code, the results are unpredictable.

C H A P T E R 4

Windows

32 The CPU Window

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Figure 4-3 CPU Windows

The PC/PSR pane shows the current value of the PC and a symbolic interpretation of the
current PSR bits. You can change the PC. Clicking on the PC label is a quick way to find
the PC. If you have opened several windows or scrolled the window containing the PC,
clicking here will ensure that the PC arrow is visible.

The line under the PC is the current processor status register (CPSR). Clicking on the
mode will cycle through the processor modes usr, fiq, irq, svc, abt, and und.
Command-clicking on the mode will toggle between the corresponding 32-bit and 26-bit
modes (such as usr and u26; abt and und have no 26-bit equivalent.). The und mod
registers are not shown because they are used by Newtsbug.

The status register at the bottom of the Supervisor, FIQ, IRQ, and ABT panes is the saved
processor status register (SPSR) for that mode. It is where the CPSR is saved by the
processor when that mode is entered. SPSRs can be changed in the same way the CPSR
can be.

Clicking on a PSR flag toggles its value; upper case indicates the flag is set, lowercase
indicates clear. The I (IRQ) and F (FIQ) flags operate in the reverse: I or F indicates that
the interrupt is disabled, i or f indicates that the interrupt is allowed.

C H A P T E R 4

Windows

The FPE Registers Window 33
Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Clicking on a register name opens a memory window starting at that register’s value.

Clicking on the value of a register highlights that value for editing. The 8-digit hex
number temporarily becomes a TextEdit field, complete with Cut, Copy, Paste and Undo.
When you are finished editing the value, typing return replaces the original value with
the new value.

The register bank labels (R8, LK, etc.) are displayed in black for the active bank and gray
for inactive banks.

Note

Register names are grayed to indicate that they are not in the current
CPU mode. You can change the values in the grayed registers, but you
have to be very careful that you know the effect of the changes you
make. ◆

The FPE Registers Window 4

This menu item displays a window showing the contents of the floating-point registers.
They cannot be edited.

The Stack Trace Window 4

Selecting the Stack Trace item from the Windows menu displays the call chain of
procedures to this point. The call chain is defined using R11 as the frame pointer. A nil
value (zero) terminates the chain.

Clicking on a procedure name in this window opens the corresponding code window.

Pressing Option while clicking on a procedure name displays the stack frame of the
procedure called by the selected procedure.

Pressing Command while clicking on a procedure name is equivalent to setting a
temporary breakpoint and then giving a Go command, so the Newton runs until the
point you’ve clicked is reached. (See “Breakpoints” on page 37.) You can use the Stack
Trace From... menu item to specify the point at which the stack trace should begin.

When this window is in front and you select the Copy command from the Edit menu,
Newtsbug copies the contents to the clipboard. (You can’t select portions of the window
contents, though.)

C H A P T E R 4

Windows

34 Code Windows

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Code Windows 4

The Procedures includes a list of all open code windows. To display a code window,
select it from the menu. In the menu, window names are displayed in the order in which
the windows were opened (with the last one opened at the bottom) rather than in any
calling or layer order.

Each procedure in your program, as defined by the image file, can be displayed as a
separate code window. These windows are typically opened automatically for you. For
instance, when an exception or breakpoint is encountered, the code window containing
the PC is opened and brought to the front. As another example, if you step into a
procedure call, the called procedure’s code window is opened. Currently Newtsbug only
knows about procedures with external linkage (that is, it doesn’t know about static
procedures). Static procedures get appended to the previous external procedure.

Opening Code Windows 4
You can manually open code windows in four ways:

■ Click on a procedure name that is the operand of a Branch instruction.

■ Select the procedure’s name from the Procedures menu. This menu has a list of all
open code windows.

■ Select Procedure from the Procedures menu and type in the name or address (in hex).
Searching for a symbol name is not case sensitive and a prefix of a symbol (name) can
be used (for example, asyncc to find AsyncCallback).

■ Use the Procedure Browser to find a procedure. See “Procedure Browser” on page 36
for information.

Code Window Contents 4
Code windows display assembly language. Clicking in the opcode column beside an
assembly language statement toggles the display of that line between disassembled text
and the hex value of the instruction.

Clicking on the operand of a B or BL instruction does different things depending on
whether the operand is a function or a label. If a function, Newtsbug displays a code
window showing that function. If a label, Newtsbug shows that line. The PC does not
change.

Command-clicking on the opcode toggles between the original instruction and a NOP.

C H A P T E R 4

Windows

Code Windows 35
Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Figure 4-4 Code Window Example

Command-clicking in the PC indicator column sets the PC to the location where you
click. (Be careful with this command, as you cannot undo it.)

Clicking in the PC indicator area is equivalent to setting a temporary breakpoint and
then giving a Go command, so the Newton runs until the point you’ve clicked is
reached. See “Breakpoints” on page 37.

Clicking on the operand area of a branch instruction shows a code window of the place
the code branches to.

Code windows allow read-only selection of immediates and the address of PC-relative
LDR/STRs.

The hex value is shown as a DCD directive, with ASCII in comments. The hex part of the
directive is editable. Hex numbers are indicated with “&”. Branch targets in the same
procedure are shown as “Lnn” indicating the line number in the procedure that is the
target of the branch.

You can toggle between a DCD directive and an assembly instruction by clicking on the
opcode. You cannot change the instruction when it appears in assembly.

Changing the high nibble of a hex opcode to F will cause the instruction to never execute
(such opcodes are actually reserved for other uses on future ARM processors). You can
also command-click on the opcode to change the instruction to NOP.

Unreachable instructions in C code are automatically shown in hex.

Breakpoints set

Current PC

Breakpoint column

PC indicator column

C H A P T E R 4

Windows

36 Procedure Browser

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Procedure Browser 4

You can display the Procedure Browser by typing command-p. This browser lets you see
all the current procedure names or look at the member functions of a given class.

Figure 4-5 shows the Procedure Browser.

Figure 4-5 Procedure Browser

Clicking on a function causes Newtsbug to open a code window for that function.

C H A P T E R 5

Using Newtsbug

Breakpoints 37
Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Using Newtsbug 5

This chapter has information on how to use Newtsbug.

Breakpoints 5

The simplest way to set a breakpoint is to click on a PC indicator column in a code
window. (See “Code Windows” on page 34.) A temporary breakpoint is set at the
specified instruction and a Go command is issued. When the temporary breakpoint is
hit, it is automatically cleared.

Note

You can also use debugger traps, which act in a way similar to
breakpoints, but are faster. From C, you use the routines Debugger or
DebugStr as a debugger trap. From assembler you use the Debugger
or DebugStr macros. Unlike with Macsbug, the DebugStr parameter
is a C string, not a Pascal string. ◆

A permanent breakpoint is set by clicking in the diamond to the left of an opcode.
Clicking on the diamond a second time clears the breakpoint.

You can see the breakpoint dialog by command-clicking a breakpoint. It contains:

■ A Stop After check box.

■ A place to enter a value. This can be used to stop only after the breakpoint has been
hit the number of times indicated by the value. Alternatively, it can be turned off so
that the breakpoint doesn't stop and just counts the number of times it’s been hit.

Warning

Do not set a breakpoint in the MainSCCInterrupt handler because
Newtsbug will either lose the connection with the Newton or crash. ▲

Figure 5-0
Table 5-0

C H A P T E R 5

Using Newtsbug

38 Expressions

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Expressions 5

You can use expressions in a number of places in Newtsbug. The expressions are the
same as C expressions with the following exceptions:

■ The numeric radix is hex. To get a decimal number use a leading '#'. For example:
'10' is decimal sixteen
'#10' is decimal ten

■ The names 'r0' to 'r15', 'sl', 'fp', 'sp', 'ip', 'lr', 'lk', 'pc', 'cpsr',
and 'spsr' refer to the contents of the corresponding registers of the current mode.
They are considered to be unsigned ints.

■ You are allowed to indirect through integers as if they were cast to int*, thus *4
means *(int*)4

■ The names of non-static, file-scope variables are recognized and they are interpreted
as addresses. Therefore, to examine the value of a global gX use

n *gX if it is int or long

n use (*gX >> #16) & 0xffff if it is short

n use (*gX >> #24) & 0xff if it is an unsigned char.
The parentheses in these examples are actually redundant given C’s operator
precedence.

■ No user-defined types or typedefs are recognized so the dot operator (.), ->, and []
are useless.

■ The various assignment operators (=, +=, ++, --) are not allowed.

■ Casts, sizeof, function calls, ?:, and the comma operator (,) are not allowed

Viewing Frames that Refer to Packages 5

Two of Newtsbug’s menu commands, the Frame Functions command in the Commands
menu and the Frames command in the Memory menu print information about
NewtonScript frames. Those frames may contain references to packages. If so, you can
make the package information available to Newtsbug this way:

1. Make aliases for the packages you are interested in and place them in the Newtsbug
folder. You must have a copy of the package file on your Mac OS-based computer.

2. Turn on Enable Package Symbols in the Config menu. (Keep this turned off unless you
want to debug a package, because leaving it turned on will result in some objects in
frame windows being displayed incorrectly.)

If you have trouble, here are two steps you can take:

C H A P T E R 5

Using Newtsbug

Shortcuts 39
Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

■ When you open your application package, check the Stdio window for information
about what alias name is expected.

■ Check if Newtsbug complains that the file content doesn’t match.

Shortcuts 5

You may find the following shortcuts useful.

General Shortcuts 5

■ Clicking on hex numbers selects them. You can copy such selections and edit some of
them (such as data in Memory windows). The value of the current selection is shown
in the Status window. Some menu commands that require numbers operate on the
selection if there is one.

■ If you type anywhere when the front window doesn’t accept keystrokes, the
keystrokes go to the Listener window.

■ Command-L selects the Listener window.

In the CPU Window 5

■ Clicking on the PC label (“PC”) opens a code window or scrolls one to reveal the
instruction at the PC.

■ Clicking on the mode labels opens and closes that pane of the window.

■ Clicking on the status flags toggles them.

■ Clicking on the mode cycles through the mode.

■ Command-clicking on the mode toggles 26/32 bit.

In Code Windows 5

■ Clicking on the target of a “B” or “BL” instruction opens a new code window or
scrolls to show the target.

■ Command-clicking in the PC column sets the PC to that instruction.

■ Clicking the opcode of an instruction sets a one-time breakpoint at the instruction and
goes. The one-time breakpoint lasts until it is reached or you rerun.

■ Clicking in the opcode toggles the display of an instruction between “normal” and
“DCD”. In the “DCD” form you can change the hex value of the instruction. If you
change the value, the change persists until you choose the Rerun menu command.

C H A P T E R 5

Using Newtsbug

40 Debugging Tips

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

In the Listener Window 5

■ Command-3 through Command-9 type strings from the Commands menu, which you
can override (see “Command Keys for the Listener” on page 17)

■ Up-arrow and down-arrow cycles through the last fifteen executed commands, and
re-submits them

■ Control-u erases the contents of the current command line

■ Command-left arrow moves the insertion point to the beginning of the current line,
and Command-right arrow moves the insertion point to the end of the current line.

■ Shift-arrow key extends the selection in the direction of the arrow key.

Customizing Listener Shortcuts 5

You can create a file called Listener Commands and put it in the Newtsbug directory in
order to implement your own Listener shortcuts.

When Newtsbug is launched, it searches in its folder for this file. You can replace some
or all of the default commands for command-3 through command-9 in the Memory
menu. If the file is not found, default commands are used. Following define the format of
the file:

Listener Commands is a text file.

Each line becomes a command in the Memory menu, with the first being cmd-3.

If the last letter is '\', then the command will not be executed immediately, which allows
you to type other text after the command.

In the Stack Trace Window 5

■ Clicking on a routine reveals the instruction at the return address in that routine.

■ Command-clicking on a routine sets a one-time breakpoint at the return address and
goes.

Debugging Tips 5

Here are some examples of using Newtsbug.

C H A P T E R 5

Using Newtsbug

Debugging Tips 41
Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Converting Values 5

I want to convert between hex and decimal 5

Select the constant and then choose the Convert menu item or just select the value and
look in the Status window where it always displays the most recently selected hex value
in both decimal and ASCII.

Examining Parameters 5

I want to check the parameters to a routine 5

The first four parameters are passed in R0, R1, R2, R3 and the result is returned in R0.
Additional parameters are passed on the stack. Select the value in SP and press
Command-M.

C++ non-static member function have this as an implied first parameter. The first
parameter is passed in R0 unless the routine returns a struct larger than 4 bytes; in which
case, a pointer to the return area is passed in R0. See also section 5 of the ARM Technical
Specification manual.

Actually (for non-static function members) “this” will be in R0 unless the function
returns a struct (or union of class). In that case R0 will be a pointer to the return struct
and R1 will be “this.”

I crashed in a routine and want to find out what parameters caused the problem. 5

1) Look at the beginning of a routine to see if the parameters (R0-R3) were saved in
permanent registers.

2) If that doesn't help, set the PC to the return instruction (LDM) and step to get back to
the previous routine. At this point, you can often rerun the call by changing the PC.
Alternatively, you can set the PC to the new return instruction and back out another
level.

Stack Frames 5

I want to look at a local in the stack frame. 5

1) Look for a place which assigns or reads the local for a procedure call and then use the
procedure call to tell you what offset/register the local is at.

2) Look for a place at the beginning of the function where the local is initialized with a
constant or a parameter.

3) Add a dummy procedure call to your function which takes the local as a parameter.

C H A P T E R 5

Using Newtsbug

42 Debugging Tips

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Compiler Idioms 5

I want to learn common idioms of the compiler so I can ignore them 5

Standard Entry saves registers used and sets up a stack frame.

MOV R12, SP

STMDB SP!, {R4-R7, R11-R12, LK-PC}

SUB R11, R12, 4

Standard Exit restores registers, fixes up the stack, and returns.

LDMDB R11, {R4-R7, R11, SP, PC}

Standard Exit is sometimes optimized into a tail call.

LDMDB R11, {R4-R7, R11, SP}

B LastProcedureCallInMethod

Small structures are copied using load multiple.

LDMIA R0, {R3, R12}

STMIA R2, {R3, R12}

Anytime you use a RefVar, a constructor will be inserted.

MOV R0, Rx

ADD R0, SP, #xx

BL __ct__6RefVarFCl

MOV Rx, R0

And a destructor will be inserted at the end of the block.

ADD R0, SP, #xx

MOV R1, #2

BL __dt__6RefVarFv

(Note that passing a Ref to a function taking a RefArg will implicitly construct/destruct
a temporary RefVar.)

Virtual method calls jump through an array of method pointers.

MOV LK, PC

LDR PC, [Rx, #xx]

Reading a short is done by reading a shifted long.

LDR R0, [SP, #xx]

MOV R0, R0, ASR 16

C H A P T E R 5

Using Newtsbug

Debugging Tips 43
Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

Writing a short is done a byte at a time (which is why you should avoid shorts).

STRB R0, [SP, #xx+1]

MOV R0, R0 ASR 8

STRB R0, [SP, #xx]

How to find out the Real PC 5
When you stop the Newton from Newtsbug, the current PC is always inside
MainSCCInterruptHandler. You may really want to know where the base level
program (most likely user mode) that is interrupted is.

There is an easy way to find out this. First you need to find out what CPU mode was
interrupted. Most likely it was user mode.

1. Find out the current CPU mode by looking at the CPSR field. It will be either FIQ
mode or IRQ mode, depending on whether you were using the built-in serial port or
the serial port on a PCMCIA card

2. The SPSR field of the current CPU mode shows the mode when the break occurred.

3. The LK register of the CPU mode that was interrupted contains the PC of interest.

4. Select the LK register and do a command-P to make Newtsbug open a code window
showing the routine of interest.

C H A P T E R 5

Using Newtsbug

44 Debugging Tips

Draft. Preliminary, Confidential. ©5/16/96 Apple Computer, Inc. 5/16/96

	Contents
	Introduction
	System Requirements

	Getting Started
	What You Need
	Beginning Debugging
	Making Sure Your Package Symbols are Available

	Ending a Debugging Session
	Files Newtsbug Needs to Find
	Naming the Package File So Newtsbug Can Find It
	Handling the .sym File
	If You Aren’t Getting Symbols For Your Package

	Features

	Newtsbug Menus
	File Menu
	Figure�3-1 The File Menu
	Open (ð-O)
	Close (ð-W)
	Save As...
	Load Memory...
	Save Memory...
	Figure�3-2 The Save Memory Command

	Frozen Newton Reconnect...
	Quit(ð-Q)

	Edit Menu
	Figure�3-3 Edit Menu
	Copy Target Screen
	Register Names...
	Figure�3-4 Register Names Dialog

	Preferences...
	Figure�3-5 Preferences Dialog
	Stop on Debug traps
	Beep on Stops
	Add Time Stamps
	Log Breaks
	Log Stdio
	Log Listener
	Async Prints
	Font
	Number of 4K Pages for Breakpoints
	Baud Rate
	Modem Port or Printer Port

	Commands Menu
	Figure�3-6 Commands Menu
	Go (ð-G)
	Stop (ð-.)
	Rerun (ð-R)
	Clear All Breakpoints
	Clear All Breakpoint Hits
	Disable/Enable Breakpoints
	Step Into (ð-S), Step Over (ð-T)
	Convert... (ð-N)
	Figure�3-7 Convert Dialog

	DownLoad Package...
	Command Keys for the Listener

	Procedures Menu
	Figure�3-8 Procedures Menu
	Procedure... (ð-P)
	Define...
	Figure�3-9 Define Procedures Dialog

	Memory Menu
	Figure�3-10 Memory Menu
	Memory...
	Figure�3-11 Memory Dialog
	Figure�3-12 Memory Window

	Frame...
	Table 3-1 The Frame Command
	Figure�3-13 Frame Dialog
	Figure�3-14 Frame Window

	Find...
	Figure�3-15 Find Dialog

	Heap
	Figure�3-16 Heap Window

	Script Heap
	Smash Heap Tags
	Sort by Address
	Sort by Size
	Sort by Task

	Windows Menu
	Figure�3-17 Windows Menu
	Status
	CPU
	The FPE Registers
	Stack Trace
	Stack Trace From...
	stdin/stdout/stderr
	NewtonScript Listener

	Config Menu
	Figure�3-18 Config Menu
	Stop on Aborts
	Default Stdio On
	Enable Stdout
	Enable Package Symbols

	Windows
	Status Window
	Go and Step Buttons
	Figure�4-1 Status Window
	Figure�4-2 Status Window Showing Step Over

	Rerunning
	Handy Hex Converter

	Stdin/Stdout/Stderr Window
	The NewtonScript Listener Window
	The CPU Window
	Figure�4-3 CPU Windows

	The FPE Registers Window
	The Stack Trace Window
	Code Windows
	Opening Code Windows
	Code Window Contents
	Figure�4-4 Code Window Example

	Procedure Browser
	Figure�4-5 Procedure Browser

	Using Newtsbug
	Breakpoints
	Expressions
	Viewing Frames that Refer to Packages
	Shortcuts
	General Shortcuts
	In the CPU Window
	In Code Windows
	In the Listener Window
	Customizing Listener Shortcuts

	In the Stack Trace Window

	Debugging Tips
	Converting Values
	I want to convert between hex and decimal

	Examining Parameters
	I want to check the parameters to a routine
	I crashed in a routine and want to find out what p...

	Stack Frames
	I want to look at a local in the stack frame.

	Compiler Idioms
	I want to learn common idioms of the compiler so I...

	How to find out the Real PC

