

Newton Toolkit User’s Guide

Apple Computer, Inc.
© 1993 - 1995 Apple Computer, Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer,
Inc., except in the normal use of the
software or to make a backup copy
of the software. The same
proprietary and copyright notices
must be affixed to any permitted
copies as were affixed to the
original. This exception does not
allow copies to be made for others,
whether or not sold, but all of the
material purchased (with all
backup copies) may be sold, given,
or loaned to another person.
Under the law, copying includes
translating into another language
or format. You may use the
software on any computer owned
by you, but extra copies cannot be
made for this purpose.
Printed in the United States of
America.
The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for licensed
Newton platforms.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleTalk, LaserWriter,
Macintosh, MPW, Newton,
PowerBook, and Power Macintosh
are trademarks of Apple Computer,
Inc., registered in the United States
and other countries.
Finder, the light bulb logo,
MessagePad, NewtonScript,
Newton Toolkit, PowerBook Duo,
ResEdit, and System 7 are
trademarks of Apple Computer, Inc.
Adobe Illustrator and PostScript
are trademarks of Adobe Systems
Incorporated, which may be
registered in certain jurisdictions.
FrameMaker is a registered
trademark of Frame Technology
Corporation.
Helvetica and Palatino are
registered trademarks of Linotype
Company.
ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, APDA
will replace the media or manual at no
charge to you provided you return the
item to be replaced with proof of
purchase to APDA.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
“AS IS,” AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

11/95

iii

Contents

Preface About This Book xxi

Related Books xxi
How to Use This Book xxi
Conventions xxiii
Developer Products and Support xxv

Chapter 1 Installation and Setup 1-1

System Requirements 1-1
Installing NTK on the Development System 1-2
Installing the Toolkit Application on the Newton 1-5

Making the Physical Connection 1-5
Downloading the Toolkit Application 1-6

Testing an Inspector Connection 1-8
Troubleshooting 1-9

Chapter 2 Programming With the Newton Toolkit 2-1

Terms and Concepts 2-1
The NTK Development Process 2-3

Chapter 3 A Quick Tour of NTK 3-1

Starting Up NTK 3-2
Setting Up a New Project 3-2
Starting a Layout File and Adding It to the Project 3-6
Laying Out Application Elements 3-10

iv

Customizing a View Template 3-11
Editing a Slot 3-11
Adding a Slot 3-14

Building and Downloading a Package 3-15
Adding a Linked Layout 3-17

Laying Out a Linked View 3-17
Linking in the Layout 3-20
Adding a Button That Displays the View 3-22

Defining Your Own Proto 3-24
Laying Out a Proto and Adding It to the Palette 3-24
Using Your Proto 3-30

Using the Inspector 3-31
Connecting the Inspector 3-32
Executing Commands 3-32
Looking at a Frame and a View 3-34
Making a Change in a Running Application 3-35

Chapter 4 Managing and Building a Project 4-1

Setting Up a Project 4-1
Project File 4-2
Layout Files 4-3
Text Files 4-4
Resource Files 4-4
Package Files 4-5
Object Stream Files 4-5

Establishing Settings and Preferences 4-6
Project Settings 4-6
Output Settings 4-10

Output 4-11
Application/Book Characteristics 4-13
Result Field 4-14

Package Settings 4-15
Toolkit Preferences 4-17

v

Build Preferences 4-18
Connection 4-18
Heap Sizes in KBytes 4-19

Layout Preferences 4-19
Browser Preferences 4-21

Browsers 4-22
Text Views 4-24

Building a Project 4-24
The Build Environment 4-25

Global Data File 4-25
Platform Files 4-26
Text Files 4-27
Constants and Variables 4-30

Compile-Time Functions 4-32
Defining Global Constants 4-32
Accessing Processed Templates 4-34
Accessing the Part Frame 4-35
Accessing Files That Aren’t in the Project 4-37
Project-Build Function Summary 4-38

Build Options 4-38
Compiling Native Code 4-38
Embedding Debugging Information 4-39
Combining Objects 4-39
Profiling 4-40
Establishing a Local Language 4-41
Output Options 4-42

Build Sequences 4-47
Building a Project 4-47
Processing a Template 4-48

Error Messages 4-50
Using NTK With Other Applications 4-50

Apple Events 4-50
Do Script Event 4-50
Build Event 4-51

The 'ckid' Resource 4-51

vi

Chapter 5 Laying Out and Editing Views 5-1

Laying Out Views 5-1
Drawing, Resizing, and Moving Views 5-4

Drawing a View 5-4
Resizing a View 5-7
Moving a View 5-8
Aligning Views 5-8
Ordering Views 5-10

Previewing 5-11
Naming and Declaring Views 5-13
Linking Multiple Layouts 5-14
Creating User Protos 5-16

Browsing and Editing Templates 5-16
Browsing Templates 5-16
Adding Slots 5-18
Editing Slots 5-20
Editing Text 5-23
Searching for Text in Files 5-25

Searching Template Files 5-25
Searching the Active Window 5-27
Finding Views in a Layout File 5-28

Adding Non-View Objects 5-28
Customizing the Text Editor 5-29

Chapter 6 Debugging 6-1

Compatibility 6-2
The Inspector 6-2

Using the Inspector 6-5
Making an Inspector Connection 6-5
Retrieving Views 6-7
Displaying the View Hierarchy 6-8
Displaying Values in the Inspector Window 6-9
Examining a Binary Object 6-11

vii

Breaking 6-11
Examining the Program Stack 6-12
Tracing the Flow of Execution 6-14
Examining Memory Use 6-16
Examining Drawing Efficiency 6-20

Debugging Variables 6-21
Debugging Functions 6-22

Retrieving and Displaying Objects 6-23
Using Break Loops 6-26
Examining Memory Use 6-28
Examining Drawing Efficiency 6-30

Debugging Function Summary 6-31
Retrieving and Displaying Objects 6-31
Using Break Loops 6-31
Examining Memory Use 6-31
Examining Drawing Efficiency 6-31

Newton Programming Problems and Tips 6-32
Common Programming Problems 6-32

Setting the Wrong Slot Value 6-32
Failing to Set a Return Value 6-34
Producing Memory Problems With Unused Frame

References 6-34
Generating Unexpected Comparison Results With nil

Values 6-34
Using nil in Expressions 6-36
Writing to a Read-Only Object 6-36
Text Is Not Drawing 6-38
Problems with Printing and Communications 6-38

Programming Tips for Debugging 6-39
Using Global Variables to Examine Exceptions 6-39
Maintaining View State 6-39
Accessing the Parent of a View 6-40

viii

Chapter 7 Extended Debugging Functions 7-1

Compatibility 7-2
Installing the Extended Debugging Functions 7-2
Using the Extended Debugging Functions 7-2

Break Loops and Break Points 7-3
Enabling Break Points 7-3
Creating, Removing, and Disabling Break Points 7-4
Making Break Points Conditional 7-5
Entering a Break Loop 7-5

NewtonScript Stacks 7-6
Paths to Slots 7-7
NewtonScript Byte Code 7-7

Extended Debugging Functions Reference 7-9
Adjusting the Debugging Environment 7-10
Manipulating Break Points 7-10

User-Defined Breakpoint Functions 7-13
Stepping 7-15
Accessing the Stack 7-16
Retrieving Paths 7-20
Disassembling 7-21
Summary of Extended Debugging Functions 7-22

Manipulating Break Points 7-22
Stepping 7-23
Accessing the Stack 7-23
Retrieving Paths 7-23
Disassembling 7-23

Interpreter Instructions 7-23
Stack Operations 7-25
Program Flow 7-30

While and Repeat/Until Loops 7-30
For Loops 7-32
Foreach Loops (Frame and Array Iterators) 7-34
Exception Handling 7-36
Calling and Returning Functions 7-37
Primitive Functions 7-40

ix

Chapter 8 Tuning Performance 8-1

Measuring Performance 8-1
Marking Functions for Profiling 8-2
Configuring the Compiler for Profiling 8-4
Configuring the Profiler on the Newton 8-6
Collecting Statistics 8-7
Interpreting a Profile 8-8

Compiling Functions for Speed 8-10
Declaring and Typing Variables 8-11
Stepping Through an Array 8-13
Handling Exceptions 8-13
Calling Other Functions 8-13

Calling Options 8-14
Timing Interactions 8-16

An Optimization Example 8-17
Profiling Native Functions 8-19

Chapter 9 NTK Commands 9-1

File Menu 9-1
New Layout (Command-N) 9-1
New Proto Template (Command-T) 9-2
New Text File 9-2
Open (Command-O) 9-2
Link Layout 9-2
Close (Command-W) 9-3
Save (Command-S) 9-3
Save As 9-3
Save a Copy In 9-3
Save All (Command-M) 9-4
Revert 9-4
Page Setup 9-4
Print One 9-4
Print (Command-P) 9-4

x

Quit (Command-Q) 9-5
Edit Menu 9-5

Undo (Command-Z) 9-5
Cut (Command-X) 9-5
Copy (Command-C) 9-5
Paste (Command-V) 9-5
Clear (Command-Delete) 9-6
Duplicate (Command-D) 9-6
Shift Left (Command-[) 9-6
Shift Right (Command-]) 9-6
Select All (Command-A) 9-6
Select Hierarchy 9-6
Select in Layout 9-7
Search (Command-R) 9-7
Find (Command-F) 9-8
Find Next (Command-G) 9-8
Find Inherited 9-8
Screen Shot 9-9
Show Clipboard 9-9
Toolkit Preferences 9-9

Project Menu 9-10
New Project 9-11
Open Project 9-11
Add This Window 9-11
Add File 9-11
Remove File 9-11
Update Files 9-11
Build Package (Command-1) 9-12
Download Package (Command-2) 9-12
Export Package to Text 9-12
Install Toolkit App 9-13
Mark as Main Layout 9-13
Process Earlier (Option-Up Arrow) 9-13
Process Later (Option-Down Arrow) 9-13
Project Settings 9-13

Layout Menu 9-16

xi

Layout Size 9-17
Autogrid On 9-17
Set Grid 9-17
Move To Front 9-18
Move Forward (Option-Down Arrow) 9-18
Move To Back 9-18
Move Backward (Option-Up Arrow) 9-19
Alignment 9-19
Align 9-20
Preview (Command-Y) 9-20
Layout Preferences 9-20

Browser Menu 9-21
Template Info (Command-I) 9-21
New Slot (Command-=) 9-22
Rename Slot 9-23
Templates by Type 9-23
Templates by Hierarchy 9-23
Slots by Name 9-24
Slots by Type 9-24
Show Slot Values 9-24
Apply (Command-E) 9-24
Revert 9-24
Use for Default Placement 9-24
Browser Preferences 9-24

Window Menu 9-26
Open Inspector 9-26
Connect Inspector (Command-K) 9-26
New Browser (Command-B) 9-26
Open Layout (Command-L) 9-26

Appendix A Keyboard Text-Editing Commands A-1

Setting the Insertion Point A-1
Selecting Text A-3

xii

Manipulating Selected Text A-4
Deleting Text A-5
Changing the Meaning of the Next Keystroke A-6

Appendix B Keyboard Shortcuts B-1

Appendix C Resources C-1

About Resources C-1
Resource Files C-2
Adding Resource Files to a Project C-2
Using Resources C-2

Opening and Closing Resource Files C-3
Extracting Resource Data C-4

Using the Resource-Handling Functions C-6
Using 'PICT' Resources C-6

Making a Bitmap From a 'PICT' Resource C-7
Using External Sound Resources C-8

Resource Functions C-9
Opening and Closing Resource Files C-9
Retrieving Resources C-10

Summary of Resource-Manipulation Functions C-16
Opening and Closing Resource Files C-16
Getting Resource Data C-16

Appendix D Specialized Slot Editors D-1

Script Slots D-1
View Attributes D-2

viewBounds D-2
viewFlags D-4

xiii

viewFormat D-4
viewJustify D-4
viewEffect D-5
viewTransferMode D-5

Specific Slots D-5

Appendix E Newton Debugging Applications E-1

Installing the Debugging Packages E-1
HeapShow E-2

About HeapShow E-2
About Newton Memory Management E-2
Using HeapShow E-3

Statistics Display E-4
Preferences E-5
HeapShow Controls E-8

Glossary GL-1

xiv

xv

List of Figures

Chapter 1

Installation and Setup

1-1

Figure 1-1

Installtion instructions and installer icons 1-2

Table 1-1

Hardware and software requirements 1-2

Figure 1-2

The installed NTK folder 1-3

Figure 1-3

The Newton Toolkit application icon 1-6

Figure 1-4

The Toolkit Preferences dialog box 1-7

Figure 1-5

The Toolkit application open on the Newton 1-8

Chapter 2

Programming With the

Newton Toolkit

2-1

Figure 2-1

The Newton application development process 2-4

Chapter 3

A Quick Tour of NTK

3-1

Figure 3-1

Layout window and palette 3-7

Figure 3-2

A browser window 3-13

Chapter 4

Managing and Building a Project

4-1

Figure 4-1

The project window 4-2

Figure 4-2

Project settings 4-7

Figure 4-3

Output settings 4-11

Figure 4-4

Package settings 4-15

Figure 4-5

Toolkit Preferences 4-18

Figure 4-6

Layout Preferences 4-20

Figure 4-7

Browser Preferences 4-21

Figure 4-8

The Text Style dialog box 4-23

Table 4-1

Build constants defined by NTK 4-30

Figure 4-9

Output Settings 4-43

xvi

Figure 4-10

Custom part settings 4-47

Chapter 5

Laying Out and Editing Views

5-1

Figure 5-1

Layout window and palette 5-2

Figure 5-2

A layout window with the layout view and one child
view in place 5-6

Figure 5-3

The Alignment dialog box 5-9

Figure 5-4

The layout window in layout and preview
modes 5-12

Figure 5-5

The Template Info dialog box, for naming and
declaring views 5-13

Figure 5-6

Declaring views across linked layout files 5-15

Figure 5-7

A browser window with the view flags slot open for
editing 5-17

Figure 5-8

The New Slot dialog box 5-19

Figure 5-9

The Editor pop-up menu in the New Slot dialog
box 5-20

Figure 5-10

Initial contents of evaluate, script, and text
slots 5-21

Figure 5-11

The number, Boolean, rectangle, and picture slot
editors 5-22

Figure 5-12

The Inspector window with a help message
displayed 5-24

Figure 5-13

The Search dialog box 5-25

Figure 5-14

The dialog for searching with Find 5-27

Chapter 6

Debugging

6-1

Figure 6-1

Inspector window 6-3

Figure 6-2

The debugging cycle 6-4

Figure 6-3

Inspector controls 6-5

Figure 6-4

The DV display 6-8

Figure 6-5

A TrueSize display 6-16

Figure 6-6

A TrueSize display with object list 6-17

Figure 6-7

The TrueSize summary and result frame 6-18

Figure 6-8

A TrueSize listing of references 6-19

Figure 6-9

TrueSize measurements over time 6-20

Table 6-1

Debugging variables 6-21

xvii

Table 6-2

Exception handling global variables 6-39

Chapter 7

Extended Debugging Functions

7-1

Chapter 8

Tuning Performance

8-1

Figure 7-1

A performance profile 8-4

Figure 7-2

The Project Settings dialog box 8-5

Figure 7-3

Profile Control on the Newton 8-6

Figure 7-4

Profiler Info 8-6

Figure 7-5

Profiler Settings on the Newton 8-7

Figure 7-6

A performance profile 8-8

Table 7-1

Utility functions optimized for calling as global
functions from a native function 8-14

Table 7-2

Function call operations 8-17

Figure 7-7

A profile of a native function calling another native
function, without native-function profiling 8-20

Figure 7-8

A profile of a native function calling another native
function, with native-function profiling 8-21

Chapter 9

NTK Commands

9-1

Figure 8-1

The dialog for searching with Search 9-7

Figure 8-2

The dialog for searching with Find 9-8

Figure 8-3

The Toolkit Preferences dialog box 9-10

Figure 8-4

The Project Settings panel of the Project Settings
dialog box 9-14

Figure 8-5

The Output Settings panel of the Project Settings
dialog box 9-15

Figure 8-6

The Package Settings panel of the Project Settings
dialog box 9-16

Figure 8-7

The Layout Size dialog box 9-17

Figure 8-8

The Set Grid dialog box 9-18

Figure 8-9

The Alignment dialog box 9-19

Figure 8-10

The alignment buttons on the palette 9-20
Figure 8-11 The Layout Preferences dialog box 9-21

xviii

Figure 8-12 The Template Info dialog box, for naming and
declaring views 9-22

Figure 8-13 The New Slot dialog box 9-22
Figure 8-14 The Rename Slot dialog box 9-23
Figure 8-15 The Browser Preferences dialog box 9-25

Appendix A Keyboard Text-Editing Commands A-1

Table A-1 Moving the insertion point A-2
Table A-2 Selecting text with keyboard commands A-3
Table A-3 Manipulating selected text A-4
Table A-4 Deleting text with keyboard commands A-5
Table A-5 Changing the interpretation of the next

keystroke A-6

Appendix B Keyboard Shortcuts B-1

Table B-1 Keyboard equivalents to menu items B-1
Table B-2 Keyboard commands that affect the hierarchy B-3
Table B-3 Keyboard commands for searching B-3
Table B-4 Keyboard commands for finding B-4

Appendix C Resources C-1

Figure C-1 Adding a named 'PICT' resource to a picture
slot C-7

Appendix D Specialized Slot Editors D-1

Table D-1 Meaning of viewBounds fields for horizontal
justification D-3

Table D-2 Meaning of viewBounds fields for vertical
justification D-3

xix

Appendix E Newton Debugging Applications E-1

Figure D-1 The HeapShow icon E-3
Figure D-2 The default HeapShow display E-4
Figure D-3 Numerical data versus fragmentation graphics E-5
Figure D-4 HeapShow Preferences E-6
Figure D-5 Sizing the reserve pointers heap or a newly created

heap E-7
Figure D-6 Check Interval options E-8
Figure D-7 The HeapShow controls E-8
Figure D-8 Heap fragmentation graphics E-9

Chapter 10 Glossary GL-1

xx

P R E F A C E

xxi

About This Book

This book documents release 1.6 of the Newton Toolkit (NTK), an
integrated environment for developing applications that run on
the Newton family of personal digital assistants (PDAs).

Related Books

This book is one of two shipped with NTK. Its companion is The
NewtonScript Programming Language, which documents the
language you use for programming in NTK.

You also use this book in conjunction with the Newton
Programmer’s Guide, a two-volume set that explains how to write
Newton programs and describes the system software routines you
use in your programs.

If you’re using NTK to build on-line books, you need the Newton
Book Maker User’s Guide, which is shipped with the Book Maker
software.

How to Use This Book

This book is both an introduction and a reference guide to NTK.
You use this book to learn the basics of NTK before you can begin
using the other books in the Newton documentation suite. Later,
you use this book to learn about testing and debugging your
software.

P R E F A C E

xxii

You must read a few parts of this book carefully; other parts you
can skim at the outset and come back to later. This book contains
nine chapters:

■ Chapter 1, “Installation and Setup.” Follow the instructions in
this chapter to install the Newton Toolkit on the development
system and on a Newton and to set up and test a connection to
the Newton.

■ Chapter 2, “Programming With the Newton Toolkit.” Read this
chapter for an introduction to Newton programming
terminology, an overview of the Newton development process,
and a description of the basic components of the Newton
Toolkit.

■ Chapter 3, “A Quick Tour of NTK.” If you want a hands-on
introduction to NTK, follow this tutorial to code, build, and
download a simple Newton application.

■ Chapter 4, “Managing and Building a Project.” Read the
introduction to this chapter to learn how you organize a
software project in NTK. Skim the rest of the chapter, and then
use it as a reference when you’re actually setting up, coding,
and building your software.

■ Chapter 5, “Laying Out and Editing Views.” Skim this chapter
to learn how you can use the graphical editor and the browser
to lay out and code your software. Use it as a reference when
you’re using the tools.

■ Chapter 6, “Debugging.” Read the first part of this chapter to
learn about the NTK debugging window—the Inspector—and
the functions you use to examine an application under
development. Skim the rest and use it as a reference when
you’re using the tools.

■ Chapter 7, “Extended Debugging Functions.” Read this chapter
if you’re using the extended debugging functions, which let
you look more closely at an application under development.

■ Chapter 8, “Tuning Performance.” Read the appropriate parts
of this chapter when you’re ready to use the NTK profiler to

P R E F A C E

xxiii

collect performance statistics or the native compiler to speed up
execution of selected functions.

■ Chapter 9, “NTK Commands.” Use this chapter for reference.

This book also contains a number of appendices:

■ Appendix A, “Keyboard Text-Editing Commands,” lists the
keyboard commands you can use to manipulate text in NTK.

■ Appendix B, “Keyboard Shortcuts,” lists the Command-key
equivalents to NTK menu items and other keyboard shortcuts.

■ Appendix C, “Resources,” describes the functions you use to
manipulate Macintosh-style resources directly.

■ Appendix D, “Specialized Slot Editors,” lists the
special-purpose NTK slot editors.

■ Appendix E, “Newton Debugging Applications,” lists the small
Newton debugging functions shipped with NTK and
documents the HeapShow application, which displays Newton
memory statistics.

Conventions

This book uses the following font and syntax conventions:

Courier The Courier font represents material that is typed
exactly as shown. Code listings, code snippets,
and special identifiers in the text such as
predefined system frame names, slot names,
function names, method names, symbols, and
constants are shown in the Courier typeface to
distinguish them from regular body text.

italics Text in italics represents replaceable elements,
such as function parameters, which you must
replace with your own values.

boldface Key terms and concepts are printed in boldface
where they’re defined.

P R E F A C E

xxiv

… An ellipsis in a syntax description means that
the preceding element can be repeated one or
more times.

An ellipsis in a code example represents
code not shown.

[] Square brackets enclose optional elements in
syntax descriptions.

P R E F A C E

xxv

Developer Products and Support

APDA is Apple’s worldwide source for a large number of develop-
ment tools, technical resources, training products, and information
for anyone interested in developing applications on Apple
platforms. Every four months, customers receive the APDA Tools
Catalog featuring current versions of Apple’s development tools
and the most popular third-party development tools. Ordering is
easy; there are no membership fees, and application forms are not
required for most products. APDA offers convenient payment and
shipping options including site licensing.

To order product or to request a complimentary copy of the APDA
Tools Catalog:

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

If you provide commercial products and services, call 408-974-4897
for information on the developer support programs available
from Apple.

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDA

CompuServe 76666,2405

Internet APDA@applelink.apple.com

P R E F A C E

xxvi

System Requirements 1-1

C H A P T E R 1

Installation and Setup 1

The Newton Toolkit (NTK) runs on a Mac OS-based computer in 32-bit mode
with a minimum of 8 MB of RAM. Its companion application, the Toolkit
App, runs on a Newton Personal Digital Assistant (PDA).

This chapter describes how to

■ install NTK on a Mac OS–based computer

■ download the Toolkit application to a Newton PDA

■ establish a debugging connection between the development system and
the PDA

■ troubleshoot installation and setup

System Requirements 1

Table 1-1 lists NTK’s hardware and software requirements.

Communicating with a Newton requires either a free serial port on the
development system or an AppleTalk® network connection.

Figure 1-0
Table 1-0

C H A P T E R 1

Installation and Setup

1-2 Installing NTK on the Development System

Installing NTK on the Development System 1

The Newton Toolkit is shipped with an installation script, which you run
from the distribution disk.

1. Quit any other applications that are running on the development system.

2. Insert the CD Newton Toolkit.

The disk opens to show the contents of the disk, including installation
instructions and the installer application, shown in Figure 1-1.

Figure 1-1 Installtion instructions and installer icons

3. Double-click the installation instructions and read them to learn what
your options are and how to adjust the installation script to your needs.

4. Double-click the Install Newton Tools icon to begin installation.

Table 1-1 Hardware and software requirements

Recommended Minimum

Macintosh Model Power Macintosh 25 Mhz 68030-based Macintosh

Available RAM 16 MB 8 MB

Operating System System 7.5.1
or higher

System 7.0 with
System 7 Tune-Up

System Settings 32-bit mode 32-bit mode

C H A P T E R 1

Installation and Setup

Installing NTK on the Development System 1-3

The installation window opens.
By default, the Installer puts NTK in a folder named Newton Toolkit on
your startup disk. If you want to change the destination, click Select
Folder and specify a new or different folder.
If you’re updating an earlier release, specify the folder that holds the
software you’re currently using. The installer updates the files in place,
leaving the rest of the folder’s contents untouched.

5. To perform a simple installation of the Newton Toolkit only, click Install.
The installer begins copying and installing software. When it’s done, it
prompts you to restart the computer.

6. Click Restart.

When the computer has restarted, installation is complete.

The Newton Toolkit folder, shown in Figure 1-2, contains the NTK
application, the release notes, and a collection of support tools.

Figure 1-2 The installed NTK folder

■ The Toolkit App, an NTK companion application that runs on a Newton.
Instructions for installing the Toolkit application appear in the next section.

C H A P T E R 1

Installation and Setup

1-4 Installing NTK on the Development System

■ The EditorCommands file, which is used by NTK and which must remain
in the same folder as NTK.

■ ROM maps, which are used by the performance profiler. These files must
remain in a folder named ROM Maps in the same folder as the NTK
application.

■ The Newton Debugging Tools folder, which contains a collection of
debugging software. This software is described in Chapter 7, “Extended
Debugging Functions,” and Appendix E, “Newton Debugging
Applications.”

■ The Platforms folder, which at this release contains platform files named
MessagePad and Newton 2.0 and definition files for each.
Platform files contain data specific to a Newton platform. The Platforms
folder must remain in the same folder as NTK. The definitions files
contain lists of compile-time constants and functions available when
you’re using each platform. These files are for your information only and
can be put anywhere.

If you’ve chosen a full installation, the NTK folder contains three additional
items:

■ The ResEdit application, for creating resource files.

■ The Newton Package Installer, a stand-alone utility that downloads
packages to a Newton. You are free to ship this utility as an installation
tool for your customers.

■ The System Updates folder, which contains patches that let you add
performance profiling support to MessagePad models 100 and 110. You
can install these patches using the Package Installer.

The installer also installs fonts in the System Folder if necessary and places
the Apple Modem Tool and AppleTalk ADSP Tool in the Extensions folder in
the System Folder.

C H A P T E R 1

Installation and Setup

Installing the Toolkit Application on the Newton 1-5

Installing the Toolkit Application on the Newton 1

You can install the Toolkit application over either a direct serial connection or
an AppleTalk network connection. Once you’ve installed the Toolkit
application, it manages subsequent installation of NTK packages and
supports the Inspector, a debugging window that lets you examine software
running on the Newton.

Making the Physical Connection 1
You can connect your development system directly to a Newton with a null
modem cable, that is, a serial cable in which pins 2 and 3 are crossed over
(pin 2 on the development system end connects to pin 3 on the Newton end
of the cable; pin 3 on the development system end connects to pin 2 on the
Newton end). This cable is also known as a direct serial cable and is often
sold as a printer cable. You can use Apple cable model M0197, part number
590-0552.

You connect the cable between the serial connector on the Newton and one
of the serial ports on the development system. You can use either the modem
serial port or the printer serial port; NTK is configured to use the modem
port by default.

Note

Make sure that no other piece of software is using the same
serial port. ◆

If both the development system and the Newton are connected to an
AppleTalk network, you can also make a virtual connection over the
network. You can use the serial connector on the Newton to attach an
AppleTalk drop-box.

C H A P T E R 1

Installation and Setup

1-6 Installing the Toolkit Application on the Newton

Downloading the Toolkit Application 1
This section describes how to install the Toolkit application on a Newton,
using either a serial cable or an AppleTalk network connection.

1. On the development system, start NTK by double-clicking the Newton
Toolkit application icon, shown in Figure 1-3.

Figure 1-3 The Newton Toolkit application icon

The computer displays the open-file dialog box, for opening an NTK
project.

2. Dismiss the dialog box by clicking Cancel.

3. Choose Toolkit Preferences from the Edit menu. The computer displays
the Toolkit Preferences dialog box, shown in Figure 1-4.

C H A P T E R 1

Installation and Setup

Installing the Toolkit Application on the Newton 1-7

Figure 1-4 The Toolkit Preferences dialog box

4. Set the Connection Type to Serial or AppleTalk, depending on your
configuration.

5. Set the Port to Modem Port or Serial Port, depending on your
configuration.

6. Click OK.

7. Choose Install Toolkit App from the Project menu.
NTK prompts you to initiate the connection on the Newton.

8. On the Newton, tap the Connection application to open it. The exact
appearance of the Connection application depends on what version you’re
using.

9. If necessary, adjust the Newton connection settings so that your
development system is the target.

10. Tap Connect.
The Newton reports that the Connection application is waiting for a
response. In a few seconds, the dialog disappears, and a toolbox icon
labeled Toolkit appears in the Extras drawer.
NTK Toolkit application installation is complete.

C H A P T E R 1

Installation and Setup

1-8 Testing an Inspector Connection

Testing an Inspector Connection 1

An Inspector connection lets you issue commands directly to the Newton
from a window on the development system. You can use the Inspector over
either a serial line or an AppleTalk connection.

These instructions assume that you’ve already set the NTK connection
preferences as described in “Downloading the Toolkit Application”
beginning on page 1-6

1. On the development system, choose Connect Inspector from the Window
menu.
NTK prompts you to initiate the connection on the Newton.

2. On the Newton, open the Toolkit application by tapping its icon in the
Extras drawer. Figure 1-5 illustrates the open Toolkit application.

Figure 1-5 The Toolkit application open on the Newton

The Profile Control button appears only if the attached Newton supports
profiling.

3. If you’re using a serial connection, go to step 7.

4. If you’re using an AppleTalk connection, tap Serial to display the list of
connection options.

C H A P T E R 1

Installation and Setup

Troubleshooting 1-9

5. Tap AppleTalk.
The Newton displays a list of available computers.

6. Select your development system and tap the close box.
The Toolkit application displays your computer’s name in the Connect To
field.

7. Tap Connect Inspector.
The development system and the Newton establish communication, and
the development system displays the Inspector window.

8. In the Inspector window, type these characters without pressing Return.

1/5

9. Press Enter.
The Inspector displays the value of the statement.

 #440D2F1 0.200000

Troubleshooting 1

If you have trouble launching NTK, try these troubleshooting strategies:

■ Verify that the development system is using 32-bit addressing. You set the
addressing mode in the Memory control panel, available through the
Control Panel item in the Apple menu.

■ Verify that the folder containing the Newton Toolkit application also
contains a Platforms folder that contains one or more platform files.

■ Read the release notes.

If you have trouble downloading the Toolkit application or making an
Inspector connection, try these troubleshooting strategies:

■ Verify that you’re using a null modem cable.

■ If you’re using a Powerbook or Powerbook Duo, verify that the modem is
set to External Modem.

C H A P T E R 1

Installation and Setup

1-10 Troubleshooting

■ If you’re using a Powerbook Duo, turn off AppleTalk through the Chooser.

■ If you’re using a Quadra AV, verify that you’re not using the World port.

■ Delete the Newton Toolkit Preferences file in the Preferences folder in the
System Folder before launching NTK, and then re-establish communica-
tions settings through the Toolkit Preferences item in the Edit menu.

■ Reset the Newton.

■ If the Newton has little free space, remove some software through the
Memory item in Preferences.

■ Verify that the Apple Modem Tool and the AppleTalk ADSP Tool are
installed in the Extensions folder in the System Folder.

■ Read the release notes.

Terms and Concepts 2-1

C H A P T E R 2

Programming With the
Newton Toolkit 2

The Newton interface is a graphical one, in which the user manipulates
elements on the screen to accomplish a wide range of tasks.

The Newton Toolkit is an integrated environment tailored to the graphical
nature of the Newton environment. This chapter introduces the concepts and
terminology used in Newton programming and outlines the software
development process.

Terms and Concepts 2

Views are the basic building blocks of most applications. The individual
items on the Newton screen—radio buttons, for example—are all views, and
there may be views that are not visible.

You lay out views using NTK’s graphical editor. When you draw a view,
NTK creates a template, that is, a data object that describes how the view

Figure 2-0
Table 2-0

C H A P T E R 2

Programming With the Newton Toolkit

2-2 Terms and Concepts

will look and act on the Newton. You build your application from a
collection of templates that describe the application’s elements.

A template is a frame, the basic data structure in NewtonScript. A frame is
an object containing a collection of named data references called slots. You
define a view’s characteristics and behavior by specifying the contents of the
slots in its template.

You write the code that controls the behavior of a view in NewtonScript, an
object-oriented language developed for the Newton. NewtonScript is
described in The NewtonScript Programming Language.

Views are created from templates when your application executes on the
Newton. The process of making an object, such as a view, at run time, from a
template, is called instantiation.

A view has two parts: the visual object you see on the screen, and a frame in
memory containing transient data used at run time. This frame is sometimes
called the view frame.

Applications can also include non-graphical components, such as
communication services, that have no visible manifestations. Like views,
these objects are described by templates and are instantiated at run time into
a frame that exists in working RAM.

Newton applications are stored on ROM-based PCMCIA cards or in a
protected part of the Newton memory. The Newton does not copy an
application (in this case, a collection of templates) into working RAM when
executing it. Therefore, templates are read-only objects. Views are their
dynamic, writable counterparts.

When the Newton instantiates a view, it creates a view frame in working
RAM. The view frame contains a pointer to the template. Information is read
from the template as needed. If a value changes at run time, a slot is added to
the view frame, and the new value is stored there. This memory-use strategy
allows applications to use relatively small amounts of working RAM.

This architecture also makes available to your application all templates built
into the Newton ROM. When you use a view template from the NTK palette
(described in Chapter 5, “Laying Out and Editing Views”), your application
doesn’t have to contain the full template. Instead, NTK references the

C H A P T E R 2

Programming With the Newton Toolkit

The NTK Development Process 2-3

templates in the Newton ROM and places only your modifications in the
application.

The Newton Programmer’s Guide contains a full description of the Newton
view system and the templates and functions you use when programming a
Newton application.

The NTK Development Process 2

You manage an application under development as an NTK project, that is,
the collected files and specifications NTK needs to build a data package that
can be downloaded to and executed on the Newton. The section “Setting Up
a Project” beginning on page 4-1 describes how you organize a project in
NTK.

You lay out an application’s views with NTK’s graphical editor and a palette
of view templates. The graphical editor creates layout files, that is,
Macintosh files containing the templates that describe the application’s
views. The section “Laying Out Views” beginning on page 5-1 describes the
graphical editor and palette.

You use the NTK browser to search through and edit the templates in a
layout file. The section “Browsing and Editing Templates” beginning on
page 5-16 describes the NTK browser.

Once you’ve programmed your application, you use NTK to build a
package, that is, a data object that can be installed on the Newton. The
section“Building a Project” beginning on page 4-24 describes the build cycle.
You also use NTK to download the package to the Newton.

You can study and alter your application while it’s running with the
Inspector, NTK’s interactive debugger. Chapter 6, “Debugging,” describes
the Inspector.

Figure 2-1 illustrates the application development process.

C H A P T E R 2

Programming With the Newton Toolkit

2-4 The NTK Development Process

Figure 2-1 The Newton application development process

Lay out views with
graphical editor

Build and
download package

Debug with
Inspector

Edit templates
through browser

Set up project

3-1

C H A P T E R 3

A Quick Tour of NTK 3

This chapter introduces the major components of NTK and illustrates the
Newton application development process.

You can follow this tutorial to lay out, build, download, and examine a
simple application. The tutorial illustrates

■ setting up an application project

■ laying out the application’s visual interface

■ coding the application

■ building an application package and downloading it to a Newton

■ inspecting the application while it’s running.

Note

This tutorial assumes that you’re running NTK on a
Macintosh with a physical connection to a Newton, as
described in Chapter 1, “Installation and Setup.” ◆

The following three chapters, “Managing and Building a Project,” “Laying
Out and Editing Views,” and “Debugging,” describe the primary
components of NTK. You might want to read those chapters in conjunction
with doing the tutorial.

Figure 3-0
Table 3-0

C H A P T E R 3

A Quick Tour of NTK

3-2 Starting Up NTK

Starting Up NTK 3

1. If NTK is not already running, double-click the Newton Toolkit
application icon to start NTK.

NTK displays its startup screen followed by a file-open dialog box.

2. For this tutorial, click Cancel, because you’re going to create a new project
from scratch, not open an existing project.

Setting Up a New Project 3

You build a Newton application from a collection of source files, which you
coordinate through a project file. The first step in creating an application
is to start a project file.

1. Choose New Project from the Project menu.
NTK presents the standard file-save dialog box.

C H A P T E R 3

A Quick Tour of NTK

Setting Up a New Project 3-3

2. Create a new folder named Hello folder, and change the project name
from Untitled Project-1 to Hello.prj .

This tutorial appends .prj to the project filename to distinguish it from
other files stored in the same folder.

3. Click Save.
NTK displays the blank project window.

4. Choose Project Settings from the Project menu.

C H A P T E R 3

A Quick Tour of NTK

3-4 Setting Up a New Project

NTK displays the project settings.

The checkboxes in this display control detailed instructions about how an
application under development is compiled. For this tutorial, leave the
defaults in place.

5. Click the icon labeled Output Settings.

C H A P T E R 3

A Quick Tour of NTK

Setting Up a New Project 3-5

NTK displays the output settings, which determine the basic nature of the
software—whether you’re building an application or a book, for
example—and a few specifics about some software types.

NTK sets up default name and symbol strings based on the name of
your project. You must establish a unique symbol for each piece of
software you distribute. Apple recommends you use a string based on the
application name and your company’s registered signature.

6. Change the last three characters of the application symbol so that it reads
Hello:TUT .

7. Click the icon labeled Package Settings.

C H A P T E R 3

A Quick Tour of NTK

3-6 Starting a Layout File and Adding It to the Project

NTK displays the package settings, which specify the characteristics of an
NTK package.

8. Change the package name to Hello:TUT and c lick OK.

Starting a Layout File and Adding It to the Project 3

NTK provides a graphical editor for arranging the visual elements of your
application.

You typically start with the application base view, the screen image that
appears when the user starts the application. The application base view is the
ancestor of all other views in an application. It’s the hub of the application,
both visually and structurally.

1. Choose New Layout from the File menu.

C H A P T E R 3

A Quick Tour of NTK

Starting a Layout File and Adding It to the Project 3-7

NTK displays a layout window and a palette of view templates,
illustrated in Figure 3-1. The buttons on the palette represent the most
commonly used view templates.

Figure 3-1 Layout window and palette

The default layout window represents the screen of the Newton
MessagePad. Applications built for the MessagePad platform execute on
all Newton devices, although they do not support features exclusive to the
Newton 2.0 platform.
You can complete this tutorial using either platform. The palettes are
different, and the default screen sizes are slightly different.

Selection
pop-up menu

View
alignment
buttons

View
template
buttons

User-defined
proto pop-up
menu

C H A P T E R 3

A Quick Tour of NTK

3-8 Starting a Layout File and Adding It to the Project

2. Move the mouse to the Selection pop-up menu, and then press and hold
the button.
NTK displays the names of all view templates built into the Newton and
available through the selected platform file. Protos appear in the pop-up
menu without the proto prefix (the protoApp proto, for example,
appears in the menu simply as App).

3. Release the mouse button, and move the pointer over the buttons on
the palette.
The name visible in the Selection menu changes as you move the pointer
over the buttons. The name of a template appears when the pointer is over
its button. The name of the selected template appears in bold type.

4. Using either the button or the Selection pop-up menu, select App.

The protoApp proto defines a view with a few basic application features:
a title bar, a status bar, and a close box.
Most applications use either the protoApp proto or the clView view
class for the application base view. For descriptions of the system-defined
protos and view classes, see the Newton Programmer’s Guide.

C H A P T E R 3

A Quick Tour of NTK

Starting a Layout File and Adding It to the Project 3-9

5. Draw the base layout view, positioning it approximately as shown here.

The rectangle you define here determines the size and location of the
application on the Newton screen.
NTK labels your new layout view protoApp , using the name of the proto
from which it was constructed.

6. Choose Template Info from the Browser menu.
NTK displays the Template Info dialog box, which lets you name and
declare view templates. (Declaring a view allows you to access the view
symbolically from another view, as described briefly in “Naming and
Declaring Views” beginning on page 5-13 and in more detail in the
“Views” chapter in Newton Programmer’s Guide: System Software.)

C H A P T E R 3

A Quick Tour of NTK

3-10 Laying Out Application Elements

7. Type the name helloBase , and then click OK.

8. Save the layout file by choosing Save As from the File menu, typing the
name mainHello , and then clicking Save.

9. Choose Add mainHello from the Project menu.
NTK adds the layout mainHello to the project file.

10. Activate the project window (by clicking the title bar or choosing Hello.prj
from the Window menu) to see the list of files in the project, which at this
point includes only the file mainHello.

NTK designates the first layout file you add to an application the main
layout file, that is, the layout file containing the application base view,
identified in the project window by a bullet next to its name. You can
change the designated main layout file through the Project menu.

11. Choose Save from the File menu to save the project file.

Laying Out Application Elements 3

You lay out the elements of an application within the application base view.

In this section of the tutorial, you add a view that accepts handwritten input.

1. Activate the layout window, now titled mainHello, by clicking its title bar.

2. Using either the buttons on the palette or the Selection pop-up menu,
select LabelInputLine .

C H A P T E R 3

A Quick Tour of NTK

Customizing a View Template 3-11

3. Draw out a rectangle inside the application base view, imitating the size
and location shown here.

Customizing a View Template 3

When you lay out a view, NTK creates a view template, a frame containing
the named slots that define the view.

You can edit view templates with NTK’s browser. The browser displays a list
of templates and a list of slots within a selected template. When you select a
slot for editing, the browser invokes a slot editor of the appropriate type.

Editing a Slot 3
In this section, you change the application’s title by editing the title slot in
the application base view template.

C H A P T E R 3

A Quick Tour of NTK

3-12 Customizing a View Template

1. Select the application base view by clicking within the helloBase view
but outside the protoLabelInputLine view. Small selection marks
appear in the corners of the selected view.

2. Choose New Browser from the Window menu.
NTK displays a browser window for the base view, as illustrated in
Figure 3-2.

C H A P T E R 3

A Quick Tour of NTK

Customizing a View Template 3-13

Figure 3-2 A browser window

The template list shows the templates for the selected view and all its
children. The slot list shows the slots for the view that’s selected in the
template list. The slot pop-up menus list system-defined slots you can add
to your templates. When you open a slot for editing, you work in the slot
editor area.

3. Click protoApp:helloBase to select it.
NTK displays the slot list for that template.

4. Click the title slot to open it for editing.

Slot listTemplate
list

Slot editor
area

Slot
pop-up
menus

C H A P T E R 3

A Quick Tour of NTK

3-14 Customizing a View Template

NTK displays the slot’s current contents, "Application" , in the
editing area.

5. Change the default text to
"Hello"

6. Apply the change by clicking the Apply check mark in the bottom-left
corner of the browser window.

When you apply a change to a slot that contains code, NTK checks the
syntax. It displays an alert if it finds any syntax errors, but it applies the
change in any case
You can also apply a change by pressing Command-E or choosing Apply
from the Browser menu.

7. Save the layout file by choosing Save from the File menu.
Saving with either the browser window or a layout window active saves
the associated layout file.

Adding a Slot 3
You can add system-defined slots to a view through the pop-up menus
labeled Specific, Methods, and Attributes, located below the slot list in a
browser window.

You can also define and add your own slots by choosing New Slot from the
Browser menu, as described in “Adding Slots” beginning on page 5-18.

In this section of the tutorial, you add a label to the application’s pen-input
view by adding a label slot to the view template.

1. In the view list in the browser window, select protoLabelInputLine
by clicking it.
NTK displays the slots defined for that view, viewBounds and _proto .

RevertApply

C H A P T E R 3

A Quick Tour of NTK

Building and Downloading a Package 3-15

2. Choose label from the Specific pop-up menu.
NTK invokes the text editor and displays the default label, "Label" . It
adds the label slot to the slot list.

3. Replace the default label with your own text, such as
"Write Here"

Building and Downloading a Package 3

At almost any point after you’ve laid out an application base view, you can
build your application into a package, which you can download and run on
a Newton.

1. Choose Build Package from the Project menu.
NTK builds the package and places it in the project folder. NTK places the
package in a file called projectname.pkg.

By default, NTK saves all files in a project before building. You can change
this feature through the Toolkit Preferences item in the Edit menu.

2. Choose Download Package from the Project menu.

Note

This tutorial assumes there is no Inspector connection open
but that you’ve set the communication settings on both the
Newton and the development system and downloaded the
Toolkit application, as described in “Installing the Toolkit
Application on the Newton” beginning on page 1-5.

If you’ve made an Inspector connection, the Inspector
handles the downloading from this point, and you can skip
to step 5. ◆

The Macintosh reports its communication settings and prompts you to
initiate the connection on the Newton.

3. Tap the Toolkit icon in the Extras drawer on the Newton.

C H A P T E R 3

A Quick Tour of NTK

3-16 Building and Downloading a Package

The Toolkit application opens.

4. Tap Download Package.
The Macintosh reports progress during the download. When downloading
is complete, the application appears in the Extras drawer on the Newton.

5. Open the application by tapping its icon.

6. Test the application by writing in the input view.

C H A P T E R 3

A Quick Tour of NTK

Adding a Linked Layout 3-17

Adding a Linked Layout 3

As an application grows more complex, the layout window can become
cluttered. You can split your application into logical modules and keep your
layout windows manageable by laying out child views in separate template
files and linking them into the application through an element called a
LinkedSubview , available through the NTK palette.

In this tutorial, you lay out a floating window in a separate layout file and
link it to the application base view. You bring it into the interface by adding
to the base view a button that, when pressed, sends an Open message to the
linked view.

Laying Out a Linked View 3

1. Choose New Layout from the File menu.

2. Using either the buttons or the Selection pop-up menu, select FloatNGo
from the palette.

Like all layout files, a layout file for a linked view must have a main
layout view—in this case, a view based on protoFloatNGo —which is
the parent of all other views in the file.

C H A P T E R 3

A Quick Tour of NTK

3-18 Adding a Linked Layout

3. Draw the view, positioning it approximately as shown here.

4. Choose Template Info from the Browser menu, name the view
floaterLink , and then click OK.

5. Using either the buttons or the Selection pop-up menu, select
StaticText .

C H A P T E R 3

A Quick Tour of NTK

Adding a Linked Layout 3-19

6. Lay out the text view within the layout view approximately as shown here.

This rectangle defines the location of the static text message within the
linked view.

7. With the protoStaticText view still selected, choose New Browser
from the Window menu. NTK displays a new browser.

8. Click protoStaticText to display the slots in that template.

9. Click the slot name text to open the slot for editing.
The browser displays the default text, "Static Text" .

10. Select the default text and replace it with your own message, such as
"Hello, world, from a linked view"

11. Close the browser window by clicking the close box in the top-left corner.

C H A P T E R 3

A Quick Tour of NTK

3-20 Adding a Linked Layout

NTK automatically applies pending slot changes when you close a
browser window, when you save a file, or when you open a different slot
for editing.

12. Save the layout file with the name floaterMessage.

13. Choose Add floaterMessage from the Project menu to add the layout to
the project.

14. Activate the project window by clicking its title bar or by choosing
Hello.prj in the Window menu.

15. Select the file floaterMessage and then choose Process Earlier from the
Project menu or press Option-Up Arrow to move it ahead of the main
layout in the project list.

16. Save the project file.

Linking in the Layout 3
You link an external layout into an application by adding a special element
called a linked subview to the main layout file and making a link between
that element and the external file.

1. Activate the main layout window, mainHello.

2. Select LinkedSubview from the palette.

C H A P T E R 3

A Quick Tour of NTK

Adding a Linked Layout 3-21

3. Lay out the linked subview approximately as shown here.

The placement of the linked subview element doesn’t matter. The position
of the view itself is determined by the linked template (in this case, the
floaterLink template in the layout file floaterMessage).

4. With the linkedSubview view still selected in the layout window,
choose Template Info from the Browser menu.

5. Type in the name floaterLink , but don’t click OK yet.
This tutorial uses the same name for the linking view and for the layout
view in the external layout file because the two templates share the same
place in the view hierarchy. “Linking Multiple Layouts” beginning on
page 5-14 explains how NTK processes linked subviews and the layout
files they’re linked to.

C H A P T E R 3

A Quick Tour of NTK

3-22 Adding a Linked Layout

6. Click the box labeled Declare To:

Declaring the linked subview is not necessary for linking. You declare the
view in this step so that the button you add in the next section can send an
Open message to its sibling, the floaterLink view.

7. Click OK.

8. With the floaterLink view still selected, choose Link Layout from the
File menu.
NTK displays the file-select dialog box.

9. Select the filename floaterMessage, and then click Link.
The mainHello layout window now reflects that floaterLink is linked
to the linked view floaterMessage.

Adding a Button That Displays the View 3
To incorporate the floater view into the application’s interface, you add to the
application’s base view a button that sends an Open message to the linked
view when it’s tapped.

1. With the mainHello window still active, select TextButton from the
palette.

C H A P T E R 3

A Quick Tour of NTK

Adding a Linked Layout 3-23

2. Draw the button, positioning it approximately as shown here.

The rectangle you draw in this step determines the size and position of the
button on the Newton screen. All descendants of the application base
view must be contained entirely within the application base view; any
portions that fall outside aren’t visible on the Newton.

3. Use Template Info in the Browser menu to name the new view
showFloaterButton .

4. Activate the mainHello browser window.

5. Select protoTextButton:showFloaterButton from the view list, and
then click the buttonClickScript slot to open it for editing.
NTK invokes the script slot editor and displays a skeletal function
statement.

6. Insert an instruction to send an Open message to the floaterlink view:

C H A P T E R 3

A Quick Tour of NTK

3-24 Defining Your Own Proto

func()
begin

floaterLink:Open();
end

7. Click the text slot to open it for editing.
This slot specifies the text on the button itself.

8. Change the default button text to
"Show Linked View"

9. Save the file.

10. If you want to test the linked view, build and download the application as
described in “Using the Inspector” beginning on page 3-31.

Defining Your Own Proto 3

This section of the tutorial creates a user proto—a proto defined by you, not
built into the Newton—that passes data among views.

If you needed this template in only one place, you’d likely lay it out as a
standard layout file. Defining a layout as a proto, however, opens up two
possibilities:

■ You can use the same template in different views.

■ Your application can use the proto to create views as needed at run time.

Laying Out a Proto and Adding It to the Palette 3

1. Choose New Proto Template from the File menu to open a proto layout
window.
You set up a proto template the same way you set up any other layout file:
you establish the layout base view and place other elements within it.

C H A P T E R 3

A Quick Tour of NTK

Defining Your Own Proto 3-25

2. Select clView from the palette.

The clView view class is the most basic container view.

3. Draw the layout base view approximately as shown here.

C H A P T E R 3

A Quick Tour of NTK

3-26 Defining Your Own Proto

4. Use Template Info to name the template sliderHolder .

5. Choose Slider from the pop-up menu or click the Slider button.

6. Draw a wide, shallow rectangle within container view.

7. Select StaticText from the palette.

C H A P T E R 3

A Quick Tour of NTK

Defining Your Own Proto 3-27

8. Draw a static text view to hold the value of the slider.

9. Use Template Info to name the view outputView and to declare
outputView to sliderHolder .

10. Select StaticText again from the palette.

C H A P T E R 3

A Quick Tour of NTK

3-28 Defining Your Own Proto

11. Draw a view to hold a label.

12. Save the layout file as sliderProto, and then choose Add sliderProto from
the Project menu to add it to the project file.

13. Activate the project window, Hello.prj.

14. Select sliderProto in the project window.

15. Choose Process Earlier from the Project menu, or hold down the Option
key while you press the Up arrow key once to move sliderProto ahead of
mainHello in the project list.

16. Tap the heading Seq. in the project window to display the files by their
order in the build sequence.

C H A P T E R 3

A Quick Tour of NTK

Defining Your Own Proto 3-29

17. Save the project file.

18. In the project window, double-click the filename sliderProto to open a
browser window, which lists the templates you’ve laid out.

19. Select the unnamed static text view protoStaticText .
The slot list displays the slots in that template.

20. Select the text slot.

21. Change the slot contents to
"slider value"

22. In the template list, select the static text view
protoStaticText:outputView .

23. In the slot list, select the text slot.

24. Change the value to
"50"
By default, the slider begins in the middle of a 0–100 scale.

25. In the template list, select the slider view, protoSlider .

26. In the slot list, select the changedSlider slot.

27. Insert the SetValue function so that the method reads:
func()
begin

C H A P T E R 3

A Quick Tour of NTK

3-30 Defining Your Own Proto

 SetValue(outputView, 'text, NumberStr(viewValue));
end

This line sets the value of the text slot in the outputView view to the
value of the slider.

28. Save the file sliderProto.

Using Your Proto 3
Once you’ve saved your proto and added it to the project, NTK gives you
access to it through the User pop-up menu on the palette.

1. Activate the mainHello layout window.

2. Click the User button to activate the User proto pop-up menu.

The proto sliderProto , the only item in the menu, is now selected.

3. Draw a view in the lower part of the application base view.
Regardless of where you try to draw the new view, NTK places it where
you placed the layout view for the proto sliderProto , because the view
inherits its location from its proto. As with all views, you can override the

C H A P T E R 3

A Quick Tour of NTK

Using the Inspector 3-31

placement by adjusting the viewBounds slot when the view is
instantiated.

4. Build and download the package, as described in “Using the Inspector”
beginning on page 3-31.

5. Open the application and test the linked template and the slider.

This section completes the laying out and coding of the tutorial application.
In the rest of this chapter, you use this application to explore NTK’s
debugging support.

Using the Inspector 3

The Inspector is a debugging window that lets you browse the Newton
object storage system and execute NewtonScript code on the Newton.

The debugging functions used in this tutorial are documented in Chapter 6,
“Debugging.”

C H A P T E R 3

A Quick Tour of NTK

3-32 Using the Inspector

Connecting the Inspector 3

1. On the Macintosh, choose Connect Inspector from the Window menu.
The Macintosh reports its communication settings and prompts you to
initiate the connection on the Newton.

2. Verify that the message describes your configuration.

3. On the Newton, tap the Toolkit icon in the Extras drawer.
The Toolkit application opens.

4. Verify that the connection type matches your configuration.

5. Tap Connect Inspector.
The Toolkit application reports that it’s opening the Inspector.

When the Inspector connection is established, the Inspector window opens
on the Macintosh.

Executing Commands 3
Code you enter in the Inspector window is compiled on the Macintosh and
executed on the Newton.

The Inspector compiles and executes your keystrokes only when you
explicitly request it by selecting and entering text. If no text is selected
when you press Enter, the Inspector processes the current line.

1. In the Inspector window, type these characters—remember not to press
Return.

C H A P T E R 3

A Quick Tour of NTK

Using the Inspector 3-33

1/3;

2. With the cursor on the same line as the text, press Enter.
The Inspector displays the result of the statement in two ways: a transient
reference (preceded by a pound sign) and a textual representation.

#441A4C1 0.333333

You can enter and execute any valid NewtonScript code in an Inspector
window. The Newton always prints to the screen the value of the last
statement evaluated.

3. Type:

GetRoot():SysBeep();

The GetRoot function returns the Newton’s root view. This line sends the
SysBeep message to the root view.

4. Press Enter.
The Newton sounds the system beep, and the Inspector window displays
the result of the statement.

#1A TRUE

5. Place the two statements together on two lines:

GetRoot():SysBeep();

1/3;

6. Select both lines and press Enter.
The Newton executes both lines but displays the result of only the last
statement evaluated.

C H A P T E R 3

A Quick Tour of NTK

3-34 Using the Inspector

#44126F1 0.333333

Looking at a Frame and a View 3
This section of the tutorial looks at the Hello application developed earlier in
this chapter. It assumes you have built and downloaded the complete
application.

1. Open the Hello application on the Newton by tapping its icon.

2. Open the floating window by tapping the Show Linked View button.

3. Enter in the Inspector window:

debug("floaterLink");

The Inspector displays the view frame for the view instantiated from the
floaterLink template.

#440C359 {_Parent: {_Parent: {#4407939},

_proto: {#600044BD},

viewCObject: 0x1108C45,

floaterlink: <2>,

viewBounds: {#4414E61},

viewclipper: 17861715,

base: <1>,

viewFlags: 5},

_proto:{viewBounds: {#600047BD},

 stepChildren: [#600047FD],

 _proto: {#2D3},

 debug: "floaterLink",

 preAllocatedContext: floaterlink},

viewCObject: 0x1108E20,

 base: <1>,

viewFlags: 65}

C H A P T E R 3

A Quick Tour of NTK

Using the Inspector 3-35

You can specify how many layers of child views and how many slots
within a layer are displayed by setting the printDepth and
printLength parameters, described in “Debugging Variables”
beginning on page 6-21.

4. On the Newton, close the floater window by tapping the close box.

5. Put the insertion point anywhere in the line debug("floaterLink") ;
and then press Enter.
The Inspector responds NIL , because the view is not instantiated.

6. Enter in the Inspector window:

dv(debug("helloBase"));

The Inspector displays the named view and its children.

The numbers in the first column represent entries in a hash table used in
most Newton ROMs. To display the proto and view class names instead,
you can download to the Newton the file DebugHashToName.pkg, which
is distributed with NTK.

Making a Change in a Running Application 3
In this section of the tutorial, you change the button text
on the Newton screen by changing the value of the text slot in
its view frame.

1. Enter in the Inspector window

C H A P T E R 3

A Quick Tour of NTK

3-36 Using the Inspector

SetValue(Debug("showFloaterButton"), 'text, "Tap Here");

The button text changes to Tap Here.

2. Close the Hello application by tapping its close box, and then open it
again by tapping the icon.
The text reverts to Show Linked View, because the change affected only
the view frame that existed while the application was running, not the
view template from which the view was instantiated.

Setting Up a Project 4-1

C H A P T E R 4

Managing and Building a
Project 4

You manage an application under development as an NTK project, that is,
the collected files and specifications NTK needs to build a data package that
can be installed and executed on the Newton.

This chapter describes how you use NTK to

■ set up a project and organize the files in it

■ establish settings and preferences

■ build a project

Setting Up a Project 4

You manage an NTK project through the project file, which contains a list of
the files to be processed during the project build. To start a project, you create
a project file by choosing New Project from the Project menu.

You can add to a project

Figure 4-0
Table 4-0

C H A P T E R 4

Managing and Building a Project

4-2 Setting Up a Project

■ layout files, which contain templates for views you’ve laid out with
NTK’s graphical editor

■ text files, which contain optional installation and removal scripts and
other NewtonScript code outside the scope of the view templates

■ resource files, which contain Macintosh resources used during the build

■ package files, which contain software ready to be installed on the Newton

■ object stream files, which contain NewtonScript frames encoded in
Newton Streamed Object Format

Project File 4

The project file contains a collection of project settings and a list of the files to
be processed during the build. When the project file is open, NTK displays
the project window, illustrated in Figure 4-1.

Figure 4-1 The project window

You change project settings through the Project Settings command in the
Project menu, and you add files with the Add This File and Add File
commands.

The file marked with a bullet—main Hello.t in Figure 4-1—is the main
layout file, that is, the file that contains the view at the top of an application’s
view hierarchy. NTK marks the first layout file you add to an application
project as the main layout file; you can change the designation by selecting
another file and choosing Mark As Main Layout from the Project menu.

C H A P T E R 4

Managing and Building a Project

Setting Up a Project 4-3

During the build, NTK processes files in the order of their sequence
numbers, shown in the first column. To rearrange files, select one file at a
time and choose Process Earlier or Process Later from the Project menu. To
change the sequence from the keyboard, press Option-Up Arrow to move a
file earlier in the build or Option-Down Arrow to move it later. “Build
Sequences” beginning on page 4-47 summarizes the constraints on the
ordering of files.

The size column shows the space the file occupies on the development
system.

You can change the order in which the files are displayed in the project
window by clicking the column headings. To display the files alphabetically
by name, for example, click Name. The heading that dictates the order—the
Seq. heading in Figure 4-1—is underlined.

Layout Files 4
Layout files contain the templates you’ve laid out and programmed using
the graphical editor and browser, which are described in Chapter 5, “Laying
Out and Editing Views.”

You create different kinds of layout files to hold

■ the views and other templates your application uses on the Newton

■ view templates you’ve defined yourself—known as user protos—which
can be available both during the build and at run time.

NTK processes the files one at a time, in the sequence you specify through
the project window. Layouts that are used by other templates must be
processed before the layout files that reference them. User protos, for
example, must be processed before the layout files that use them. The last
layout file in a build is likely to be the main layout file or a custom view
template used only at run time.

“Processing a Template” beginning on page 4-48 describes how NTK
processes layout files.

C H A P T E R 4

Managing and Building a Project

4-4 Setting Up a Project

Text Files 4
You use text files to

■ supply code to be executed when a package is installed or removed by the
Newton system software

■ define constants and functions you want available later in the build

■ incorporate any other valid NewtonScript code outside the scope of the
layout templates

If you are using the Book Maker application you can also create text files that
hold text and formatting instructions for building on-line books.

“Text Files” beginning on page 4-27 contains more information on what you
can put in text files and how NTK processes them.

Resource Files 4
You can use NTK to incorporate Macintosh-style resources into Newton
software.

NTK itself uses 'PICT' resources. You supply your application’s icon as a
'PICT' resource, and you can place 'PICT' resources in picture slots through
the picture slot editor described in “Editing Slots” beginning on page 5-20.

You can create resource files on the Macintosh with the ResEdit application,
which is provided with NTK. You can draw your pictures in any graphics
program and then paste them as 'PICT' resources into a resource file in
ResEdit. Once you add the resource file to your project, the resources are
available in NTK.

NTK also includes a set of compile-time functions that retrieve and
manipulate 'PICT' and other resources. Appendix C, “Resources,” describes
resources and the functions that handle them. You add the resource files at
the beginning of the project, and you place the code that handles them in a
text file.

C H A P T E R 4

Managing and Building a Project

Setting Up a Project 4-5

Package Files 4
When you build an application, NTK produces a package file—that is, a file
containing software to be installed on a Newton.

A package file consists of a header containing package information and one
or more parts containing code and data. A part is a unit of software
recognizable by the Newton, such as an application, a book, or a data store.
When a package is installed on the Newton, the Newton system software
automatically opens the package and dispatches the parts to the appropriate
handlers.

Newton applications are stored in parts of type form ; books are in parts of
type book . NTK also supports a number of other part types, summarized in
“Output Settings” beginning on page 4-10 and described more fully in
“Output Options” beginning on page 4-42.

When NTK processes a project into a package, it produces one new part, of
the specified type. You can place additional parts in the same package by
putting the package files that contain them into the project. NTK places the
parts in the package as it encounters them during the build: It places parts
from package files that appear in the file list before the layout and text files
before the new part in the final package; it places parts from package files
that appear after the layout and text files after the new part. The final
package has the attributes established for the current build—the new
package—through the Package Settings portion of Project Settings. NTK
ignores the attributes of any other package files in the project.

The order of the parts in the package determines the order in which the parts
are installed and removed by the Newton system software.

Object Stream Files 4
You can use NTK to build object stream files—that is, files encoded in
Newton Streamed Object Format (NSOF). You can then incorporate these
stream files into your application by adding them to the project.

C H A P T E R 4

Managing and Building a Project

4-6 Establishing Settings and Preferences

You can use stream files to shorten the build time by preprocessing large data
structures or other static input. “Stream Files” beginning on page 4-45
explains how you can use stream files.

Establishing Settings and Preferences 4

You use the Project Settings item in the Project menu to establish three kinds
of build specifications:

■ Project Settings establish project-wide choices, such as the target platform.

■ Package Settings determine the features of the package that’s output from
a build.

■ Output Settings determine what kind of part is being built, and, if the part
is an application or a book, the part characteristics.

You use the three preferences items in the Edit, Layout, and Browser menus
to configure NTK for your hardware setup and working style.

Project Settings 4

You set project-wide specifications through the Project Settings panel in the
Project Settings dialog box illustrated in Figure 4-2.

C H A P T E R 4

Managing and Building a Project

Establishing Settings and Preferences 4-7

Figure 4-2 Project settings

Platform The model of Newton on which the software will run.
The pop-up menu lists all the platform files stored in a
folder with the name Platforms in the same folder as the
NTK application.

Language The language code for use by the LocObj function.
The section “Establishing a Local Language” on
page 4-41 explains how NTK uses the language string.
The LocObj function is described in the localization
chapter in the book Newton Programmer’s Guide: System
Software.

Compile for Debugging
Specifies a build with embedded debugging support.
When this option is enabled, the compiler adds a slot
named debug to each view that you name through
Template Info in the Browser menu. The value of the

C H A P T E R 4

Managing and Building a Project

4-8 Establishing Settings and Preferences

debug slot is the view’s name. If you create your own
debug slot for a view, NTK does not override that
definition.
You can test to see whether this option is enabled by
testing the kDebugOn constant, which is true when
Compile for Debugging is checked.
For more information about the Compile for Debugging
option, see “Embedding Debugging Information” on
page 4-39.

Ignore Native Keyword
Suppresses the native compiler, which compiles
functions defined with the func native syntax into
ARM machine code. For more information about
compiling into native code, see “Compiling Functions
for Speed” beginning on page 8-10.
You can test to see whether this option is enabled by
testing the kIgnoreNativeKeyword constant, which
is true when Ignore Native Keyword is checked.

Check Global Function Calls
Leaves the compiler’s global-function checking intact.
When NTK compiles a global function, it checks the call
against its own table of global functions and reports
discrepancies in the Inspector window. This check is for
your information only; the outcome has no effect on the
build.
This option lets you suppress messages regarding global
functions you’ve defined yourself.

NTK 1.0 Build Rules
Invokes these build conventions from earlier releases of
NTK:
• As the last step in the build, NTK processes unused
user protos and places them in a slot in the base view.
The name of the slot is the name of the proto layout file,
with the prefix pt_ . A proto saved in a file with the

C H A P T E R 4

Managing and Building a Project

Establishing Settings and Preferences 4-9

name HandyView, for example, would be placed in a
slot with the name pt_HandyView .
• NTK does not define the constants kAppName,
kAppString , kAppSymbol , and kPackageName ,
described in Table 4-1 on page 4-30.

Use stepChildren Slot
Instructs the compiler to place the views created by a
view’s children in a slot named stepChildren . If this
checkbox is not checked, the compiler uses the name
viewChildren instead.
Disabling this option is never appropriate when you’re
building software. As explained in the “Views” chapter
of Newton Programmer’s Guide: System Software, you
must place child views in the stepChildren slot.

Suppress Byte Code
Instructs the compiler to omit from the output the byte
code version of a function compiled into native code.
This option is not meaningful if Ignore Native Keyword
is selected.
For more information about compiling into native code,
see see “Compiling Functions for Speed” beginning on
page 8-10.

Compile for Profiling
Turns profiling on. While this option is enabled, NTK
includes profiling support in any package it builds.
For a description of the profiler, see “Measuring
Performance” beginning on page 8-1.
You can test to see whether this option is enabled by
testing the kProfilingOn constant, which is true
when Compile for Profiling is checked.

Profile Native Functions
Specifies individual profiling of functions compiled into
native code.
As explained in “Profiling Native Functions” beginning
on page 8-19, the distortion added by the profiling code
itself is especially noticeable in the execution of native

C H A P T E R 4

Managing and Building a Project

4-10 Establishing Settings and Preferences

functions called by other native functions. If this option
is not checked, the profiler reports only those calls to
native functions that are made from interpreted
functions; the time reported includes time spent in any
other native functions called from that function. If this
option is checked, the profiler tracks and reports all
native function calls.

For Newton 2.0 Only
Makes available a number of options that are
compatible only with the Newton 2.0 platform.
Enabling this option alone has no effect on the build.
Disabling this option invalidates the settings of all
options that are compatible only with the Newton 2.0
platform.

Faster Functions (2.0 only)
Enables 2.0-style functions, which execute faster on the
Newton 2.0 platform. Functions compiled with this
option enabled are incompatible with earlier Newton
models.

Tighter Object Packing (2.0 only)
Align objects on four-byte boundaries instead of
eight-byte boundaries. The application takes up 3–5%
less space on the Newton with this option in effect.
Applications compiled with this option enabled are
incompatible with earlier Newton models.

Output Settings 4
In a single build, you can create either a package file or an object stream file.
A package file holds software to be installed on the Newton. An object
stream file holds a hierarchy of NewtonScript frames encoded in Newton
Streamed Object Format.

A package file consists of a header containing package information and one
or more parts containing code and data. Each build produces one part, with
the characteristics you set through the Output Settings panel of the Project
Settings dialog box, illustrated in Figure 4-3.

C H A P T E R 4

Managing and Building a Project

Establishing Settings and Preferences 4-11

Figure 4-3 Output settings

To display the output settings, click the icon labeled Output Settings in the
dialog box that appears when you choose Project Settings from the Project
menu.

Output 4

The Output selection determines whether a build produces a package file or
an object stream file and—if a package file—what part type it produces.

C H A P T E R 4

Managing and Building a Project

4-12 Establishing Settings and Preferences

You can use NTK to build any of four standard part types, an object stream
file, or an arbitrary part type you specify.

Application A part of type form , which is usually an application
that’s installed in the Newton Extras drawer.

Book A part of type book , which contains a book file to be
processed by the Newton book reader. Parts of type
book are installed in the Extras drawer on the Newton.

Auto Part A part of type auto , which contains only an installation
script and a remove script. You use auto parts to hold
software that is not associated with a visible element in
the Newton Extras drawer. When the package is
downloaded, it is dispatched to the package handler,
but nothing is placed in the Extras drawer.

Store Part A part of type soup , which contains a store. If Store Part
is selected here, NTK makes available a global variable
named theStore , which contains a store. It generates a
part of type soup that contains all data written to
theStore during the build.
If you choose Store Part and For Newton 2.0 Only is
enabled in Project Settings, a checkbox labeled
New-Style Stores appears in the dialog box. If your
software is intended to run exclusively on the Newton
2.0 platform, check the New-Style Stores option.

Stream File A file in Newton Streamed Object Format.
If you choose Stream File, a field labeled Result appears
in the dialog box. You must enter in the Result field an
expression that evaluates to the top-level frame of the
output.

Custom Part A part of the type you specify here with a four-character
code.
If you choose Custom Part, a field labeled Result
appears in the dialog box. You must enter in the Result
field an expression that evaluates to the top-level frame
of the output.

“Output Options” beginning on page 4-42 discusses the output options in
more detail.

C H A P T E R 4

Managing and Building a Project

Establishing Settings and Preferences 4-13

Application/Book Characteristics 4

The Application/Book field is active only if you’ve selected Application or
Book in the Output field.

Name The text that appears beneath the application’s icon in
the Newton Extras drawer.
If the output is a book, the name is instead determined
by the .title line in the book source file, as described
in the Newton Book Maker User’s Guide.

Symbol The application’s unique symbol, the alphanumeric
string by which the application identifies itself to the
Newton root view.
At the beginning of the build, NTK defines a constant
with the name kAppSymbol and sets it to the symbol
you specify here.
At the end of the build, if you’ve not created a slot with
the name appSymbol in the application base view, NTK
creates one and places in it the symbol you specify here.
If the slot exists already, NTK doesn’t overwrite it.
Apple recommends you build your application symbol
from the application name and your company’s
registered signature, using this convention:
name:signature

A developer with the signature SURF, for example,
might identify a checkbook application with the symbol
checkb:SURF .
To ensure uniqueness across third-party products, PIE
Developer Technical Support maintains a registry of
developer signatures. To register your signature, contact

C H A P T E R 4

Managing and Building a Project

4-14 Establishing Settings and Preferences

the registry at the addresses listed at the front of this
book.
A book does not use a symbol the same way an
application does; therefore, this field does not apply to
books.

Auto Close Identifies this as an Auto Close application—that is, one
that closes when another Auto Close application opens.
This option is supported only on the Newton
MessagePad platform.
This characteristic does not apply to books.

Icon File The resource file containing the application’s icon
resource. The pop-up menu lists all resource files in the
project.

Icon Name A named 'PICT' resource—in the specified file—that
contains the icon that represents the application in the
Extras drawer.
NTK can use only a 'PICT' resource for the icon. You
can supply a mask in a companion 'PICT' resource
with the same name followed by an exclamation point.
If an icon is named wave, for example, NTK looks for a
mask with the name wave! . (A mask is a parallel
bitmap used to display the icon when it’s selected. If
you don’t supply your own mask, NTK creates one.)
Instructions for creating PICT resources appear in
Appendix C, “Resources.”
The selected icon appears below the pop-up menus—
the default icon appears only if there’s at least one
resource file in the project. The standard size for icons is
29 pixels high by 31 pixels wide.

Result Field 4

The Result field appears only if you choose Object Stream or Custom Part
among the Output options. You must enter in the Result field an expression—
typically a global variable—that evaluates to the top-level frame of the
output.

C H A P T E R 4

Managing and Building a Project

Establishing Settings and Preferences 4-15

Package Settings 4

You can use NTK to build a package file—that is, a file containing software
ready to install on a Newton—by choosing one of the package part types in
the Output Settings panel of the Project Settings dialog box, described in
“Output Settings” beginning on page 4-10.

You specify the package name and other package characteristics through the
settings that appear when you click the icon labeled Package Settings.

Figure 4-4 Package settings

Name The package name—that is, the name of the package as
it will be installed on the Newton. Each package on a
Newton must have a unique name.
Apple recommends you build your package names and
application symbols from the application name and

C H A P T E R 4

Managing and Building a Project

4-16 Establishing Settings and Preferences

your company’s registered signature, as described in the
documentation of the symbol on page 4-13.

Delete Old Package on Download
Invokes automatic package removal when you try to
download a package with the same name as a package
already in place on the Newton. If this option is in
effect, NTK removes the old package and then
downloads the newly built package. If this option is not
in effect, you must remove an old package from the
Newton before downloading a new package with the
same name.

Copy Protected Sets a field in the package header that marks the
package as copy-protected.
This field is a convention recognized by software that
copies packages; it is not an absolute lock against
copying.
A copy-protected package can be backed up and
synchronized to the desktop—users can copy the
package using selective restore. The Newton ROM,
however, refuses to beam or email a copy-protected
package.

Auto Remove Package
Specifies a package whose parts are removed
immediately after they’re installed. The section “Parts in
Auto-Remove Packages” on page 4-45 describes the
impact of this option.

Use Compression Specifies that the package be saved in compressed
format, which takes up less space on the Newton.
Software stored without compression runs faster and
uses less battery power.
This setting has no effect on the size of the package file
on the development system; the code is compressed on
the Newton after downloading.

Faster Compression
Specifies that the package use the Newton 2.0
compression strategy, which takes up 10–15% more

C H A P T E R 4

Managing and Building a Project

Establishing Settings and Preferences 4-17

space on the Newton device but which decompresses
significantly faster.
This option is available only if For Newton 2.0 Only is
enabled in Project Settings. Applications compiled with
Faster Compression enabled are incompatible with
earlier Newton models.

Copyright The copyright statement to be embedded in the package
header. This text is not displayed on the Newton.

Version The version number to be placed in the package. In case
of conflict between packages with the same name, the
version number allows the Newton system software to
identify the newer and older versions. This number
must be an integer in the range 0 to 9999.

Toolkit Preferences 4
You use the Toolkit Preferences dialog box to

■ set your build preferences

■ identify a type and port for the connection between the development
system and the Newton

■ adjust the NTK heap sizes

C H A P T E R 4

Managing and Building a Project

4-18 Establishing Settings and Preferences

Figure 4-5 Toolkit Preferences

Build Preferences 4

The first two settings establish what NTK does automatically when building
a package.

Auto Save Before Building Package
Invokes automatic saving of all open files in the project
before NTK builds a package. If any of the files have
never been saved, NTK prompts you for filenames.

Auto Download After Building Package
Invokes automatic downloading of the package to an
attached Newton after a build.

Connection 4

The connection settings establish the communications protocol and port for
the connection between the development system and the Newton.

Type The communications protocol for the connection with
the Newton.

Port The communications port for the connection with the
Newton.

C H A P T E R 4

Managing and Building a Project

Establishing Settings and Preferences 4-19

Heap Sizes in KBytes 4

The heap size settings establish the sizes of the two NTK heaps.

Main Heap The size of the main frames heap that’s created when
you launch NTK. The main frames heap holds your
frame data while you’re working in NTK.
Note that a change to this setting doesn’t take effect
until you quit and restart NTK.

Build Heap The size of the heap that holds application frame data
during the build. This heap is created each time you
build. It needs to be slightly larger than the package
being built.

If you run out of heap space during a build, NTK reports the problem and
specifies which heap is too small. You can then adjust heap sizes through
these settings.

NTK tries to allocate additional memory from available temporary memory
first. If that fails, NTK tries to allocate memory in the application partition. If
NTK reports that it can’t allocate heap space, try

■ quitting other applications or

■ increasing the size of NTK’s partition through the Get Info item in the
Finder

Layout Preferences 4
You can adjust the features of the graphical editor through the Layout
Preferences dialog box, illustrated in Figure 4-6.

C H A P T E R 4

Managing and Building a Project

4-20 Establishing Settings and Preferences

Figure 4-6 Layout Preferences

Changes in your layout preferences affect only layouts that you create after
making the changes.

Screen Size Establishes the initial size of layout windows. You can
choose one of the existing MessagePad models, or you
can choose Custom to specify your own screen size
through the Height and Width settings:
Height Layout height in pixels
Width Layout width in pixels
Regardless of the Screen size setting, you can change the
size of an individual layout through the Layout Size
item in the Layout menu.

Grid On Turns on autogrid in new layout windows. Autogrid
constrains the placement and sizing of views to align
with a layout grid. You can control the resolution of the

C H A P T E R 4

Managing and Building a Project

Establishing Settings and Preferences 4-21

grid, and you can turn the grid on or off for an
individual window, through the Layout menu.

Arrow Keys Move By
Sets the number of pixels by which the selected view is
moved or resized when you press an arrow key.

With Shift Key Sets the number of pixels by which the selected view is
moved or resized when you press an arrow key while
holding down the Shift key.

Browser Preferences 4
You can adjust the display of templates and slots in browser windows and
the characteristics of the text editor through the Browser Preferences dialog
box, illustrated in Figure 4-7.

Figure 4-7 Browser Preferences

C H A P T E R 4

Managing and Building a Project

4-22 Establishing Settings and Preferences

Changes in your browser preferences affect only windows that you create
after making the changes.

Browsers 4

The browser settings control the ordering and text style of the view list and
slot list.

View List 4

The view list settings control the display of the view list.

Sort By Chooses a sort order for names in the view list. The
Name option sorts templates alphabetically by proto
name; Hierarchy sorts templates by their position in the
parent/child hierarchy.

Text Style Displays a dialog box, illustrated in Figure 4-8 on
page 4-23, through which you specify the text style in
which the template names are displayed.

C H A P T E R 4

Managing and Building a Project

Establishing Settings and Preferences 4-23

Figure 4-8 The Text Style dialog box

Slot List 4

The slot list settings control the display of the slot list.

Sort By Chooses a sort order for names in the slot list. The
Name option orders slots alphabetically by name; Type
orders slots alphabetically by data type.

Text Style Displays a dialog box, illustrated in Figure 4-8, through
which you specify the text style in which the slot names
are displayed.

Show Slot Value Invokes the display option that shows the slot value
after each slot name.

C H A P T E R 4

Managing and Building a Project

4-24 Building a Project

Text Views 4

The text view settings control the characteristics of the text editors you use
for editing slots and files.

Auto Indent Enables automatic indenting, in which the editor
automatically indents a new line to the indent of the
previous line.

Tabs Sets the width of a tab, in spaces.
Text Style Displays a dialog box, illustrated in Figure 4-8 on

page 4-23, through which you specify the style in which
text is displayed.

Option Key for Commands
Enables the Option-key text-editing commands
described in Appendix A, “Text-Editing Commands.” If
this option is not checked, Option-key combinations
generate special characters, as described in the
Macintosh documentation.

Building a Project 4

NTK compiles and executes NewtonScript code, and processes templates
and book files, to produce a data object that can be used by the Newton. The
compiler compiles the text in the various source files, and the interpreter
executes the resulting code at predetermined points. The code that executes
during the build creates the objects that are placed in the application. Objects
in memory during the build do not necessarily exist at run time.

Some of your code executes on the Newton, some on the development
system, and some in both places. The Newton and the development system
run essentially the same interpreter, but the kinds of commands executed
tend to be different. Some functions—such as those that handle resources—
are available only on the development system. The Newton Programmer’s
Guide, which documents the other Newton programming functions,
identifies functions that are available only at compile time. The
resource-handling functions are described in this book in Appendix C,

C H A P T E R 4

Managing and Building a Project

Building a Project 4-25

“Resources.” Compile-time functions that address the mechanics of building
software are described in this chapter in “Compile-Time Functions”
beginning on page 4-32.

The Build Environment 4
This section describes

■ the global data file, which is compiled and executed when you open NTK

■ the platform files, which contain platform data and utility functions

■ the role of text files in a project

■ the variables and constants NTK defines for you

Global Data File 4

The global data file is an adjunct to NTK. You can place in it NewtonScript
code that you want available from any project.

The global data file—an optional text file with the name GlobalData stored in
the same folder as the NTK application—is compiled and executed once each
time you open NTK. Objects you create in the global data file are available at
compile time to any project you build.

NTK treats the entire global data file as if it were the body of one function
with no arguments. Because NewtonScript treats variables created within a
function as local, you cannot define a function in the global data file with a
simple assignment statement:

myFunction := func(x) . . .

To assign a function to a variable you must either

■ assign it to a slot, for example:

vars.myFunction := func(x) . . .

or

■ specifically declare it as a global function:

C H A P T E R 4

Managing and Building a Project

4-26 Building a Project

global myFunction (x) . . .

If the compiler encounters an error in the global data file, it displays the error
type, filename, and line number. When you dismiss the error dialog box,
NTK quits. The prudent course is to develop code in a text file included in a
project and move it to the global data file only when it’s debugged. If you
cannot launch NTK because of a problem in the global data file, you can
bypass it by removing the file from the NTK folder.

Platform Files 4

The platform files—stored in a folder named Platforms in the same folder as
NTK—contain data tailored to different Newton products. The platform files
also contain a collection of Newton system definitions, a number of utility
functions, and definitions for constants that reference the functions. The
constant that represents a function is the function name with the prefix k and
the suffix Func (that is, k functionnameFunc).

The definitions file for each platform lists the functions in that platform file.

The platform file functions are available at compile time; you can make them
available at run time by incorporating them into your application in one of
two ways:

■ In your application base view, define an evaluate slot with the same name
as the function and initialize it to the corresponding constant. For
example, to use the NewInfo function, you create a slot named NewInfo
and set its value to kNewInfoFunc . You can then call the function by
sending a message to the application base view, for example:
:NewInfo(arg1, arg2);

■ Call the function with the NewtonScript call syntax or the Apply
function. This strategy saves space and time, because it does not require a
slot in the base view and avoids inheritance lookup; it also works in code
that doesn’t have access to your base view, such as the remove script. Here
is an example of using the call syntax to call a platform file function:
call kNewInfoFunc with (arg1, arg2);

This strategy does not work for functions used as methods, which must be
invoked using message sending. The Newton Programmer’s Guide identifies

C H A P T E R 4

Managing and Building a Project

Building a Project 4-27

which functions are used as methods and which are global functions.
Currently, none of the platform file functions is a method.

Text Files 4

You use text files to

■ supply code to be executed when a package is installed or removed by the
Newton system software

■ define constants and functions that you want available later in the build

■ incorporate any other valid NewtonScript code outside the scope of the
layout templates

NewtonScript code in a text file is compiled and executed when NTK
processes the file. Objects you create in a text file are available throughout
the rest of the build.

You can use the NewtonScript constant syntax to create constants with
literal values. This line, for example, creates a constant named kConst with
a value of 32:

constant kConst := 32;

When you use one of these constants as a value, NewtonScript substitutes
the literal value for the constant, as described in The NewtonScript
Programming Language.

You can use the compile-time function DefineGlobalConstant , described
in “Defining Global Constants” beginning on page 4-32, to set a global
constant equal to a function.

Install Scripts 4

An install script is an optional block of code that’s executed when an
application is installed on the Newton—when the card containing it is
inserted, for example, or when the application’s package is downloaded.

After processing all files in the project, NTK looks for a variable with the
name InstallScript . If it finds one, NTK uses it to build an install script,
which it places in the part frame in a slot named InstallScript . Only

C H A P T E R 4

Managing and Building a Project

4-28 Building a Project

some part types use install scripts. (A part is defined in “Package Files”
beginning on page 4-5.)

In the case of an application, the install script is a function with one
argument:

InstallScript(partFrame)

partFrame The part frame for the application. This frame has a slot
named theForm , which contains a reference to your
application’s base template.

The following install script, for example, registers an application with the
system Find and Intelligent Assist services.

InstallScript := func(partFrame)

begin

RegFindApps(kAppSymbol);

partFrame.result := regTaskTemplate(myTemplate);

end;

An install script that makes changes to the system—like the example here—
must be accompanied by a remove script that reverses the changes, as
illustrated in the example in the next section.

In the case of an auto part, the install script is a function with two arguments:

InstallScript(partFrame, removeFrame)

partFrame The part frame for the auto part. This frame contains no
theForm slot.

removeFrame A frame that will be passed to the remove script,
described in the next section. The remove frame
contains a single slot, which itself contains a copy of the
remove script.

An auto part must have an install script. “Auto Parts” beginning on
page 4-44 describes auto parts.

C H A P T E R 4

Managing and Building a Project

Building a Project 4-29

Remove Scripts 4

A remove script is an optional block of code that runs when your application
is removed from the Newton—when you eject the card that’s holding it, for
example, or scrub its icon.

After processing all the text files in a project, NTK looks for a variable with
the name RemoveScript . If it finds one, NTK uses it to build a remove
script, which it places in the part frame in a slot named RemoveScript .
Only some part types use remove scripts. (The part types are described in
“Output Options” beginning on page 4-42.)

You can also optionally define a deletion script that’s executed only when
the application’s icon is scrubbed—not when the card containing it is
removed—as described in “Accessing the Part Frame” beginning on
page 4-35.

The remove script is a function with one argument. In the case of the an
application, the argument is the part frame:

RemoveScript(partFrame)

partFrame The part frame for the application. Because the
application has been removed, the theForm slot
contains an invalid reference.

The following remove script, for example, removes an application’s registry
with the Find and Intelligent Assist services.

RemoveScript := func(partFrame)

begin

UnRegFindApps(kAppSymbol);

unRegTaskTemplate(partFrame.result);

end;

In the case of an auto part, the argument to the remove script is the remove
frame that was passed to the install script:

C H A P T E R 4

Managing and Building a Project

4-30 Building a Project

RemoveScript(removeFrame)

removeFrame The remove frame, which contains at least one slot,
which contains a copy of the remove script. The install
script can add other slots to the remove frame.

An auto part must have both an install script and a remove script. “Auto
Parts” beginning on page 4-44 describes auto parts.

Constants and Variables 4

NTK defines a number of constants and variables that you can use to access
files and templates and to check the status of build options.

Table 4-1 lists the constants NTK defines before and during a build.

Table 4-1 Build constants defined by NTK

Constant Value

home The path name of the folder containing the
open project file

kAppName The application name you specify through
the Application/Book section of the Output
Settings dialog box

kAppString The application symbol, which you specify
through the Application/Book section of the
Output Settings dialog box, stored as a
string instead of as a symbol

kAppSymbol The application symbol you specify through
the Application/Book section of the Output
Settings dialog box

kDebugOn True if Compile for Debugging is checked in
the Project Settings dialog box

kIgnoreNativeKeyword True if Ignore Native Keyword is checked in
the Project Settings dialog box

kPackageName The package name you specify through the
Package Settings dialog box

C H A P T E R 4

Managing and Building a Project

Building a Project 4-31

The home constant lets you reach a file in the same folder as the project file
without specifying the entire path name. For example:

OpenResFile(home & "picts.rsrc");

This statement opens the resource file named picts.rsrc in the same folder as
the open project file.

The constants kDebugOn, kIgnoreNativeKeyword , and kProfileOn let
you check the status of compiler options during a build, so you can leave
debugging and profiling code in place in your source code.

This statement, for example, prints a message to the Inspector window only
if the option Compile for Debugging is enabled:

if kDebugOn then Print(“Executing this code”);

The compiler removes simple conditional statements that always evaluate to
nil . The example here leaves no trace in the output whenever kDebugOn is
nil .

When NTK finishes processing a layout file, it creates a constant named
layout_ filename, which references the view hierarchy defined by that file.

The function GetLayout , described in “Compile-Time Functions” beginning
on page 4-32, returns a reference to a view hierarchy. It is the preferred way
to access an external layout file.

kProfileOn True if Compile for Profiling is checked in
the Project Settings dialog box

language The Language string specified through the
Project Settings dialog box

layout_ filename A reference to the view hierarchy of the
processed layout file named filename

streamFile_ filename A reference to the contents of a processed
stream file named filename.

Table 4-1 Build constants defined by NTK

Constant Value

C H A P T E R 4

Managing and Building a Project

4-32 Building a Project

When NTK finishes processing a print format layout file, it creates a variable
named printFormat_ filename, which also references the view hierarchy
defined by that file. This variable is redundant with the layout_ filename
constant; it remains for compatibility with earlier releases.

When NTK finishes processing an object stream file, it creates a constant
named streamFile_ filename, which references the contents of the stream
file.

Compile-Time Functions 4
NTK supplies a few compile-time functions that address the mechanics of
building software. You can use these functions to

■ define and use compile-time constants (DefineGlobalConstant ,
UndefineGlobalConstant , and IsGlobalConstant)

■ access the templates that result from processed layout files (GetLayout)

■ set and retrieve slots in the part frame (SetPartFrameSlot and
GetPartFrameSlot)

■ process a text file that’s not included in the project (Load)

■ read a Newton object stream file (ReadStreamFile)

Defining Global Constants 4

You can use the compile-time function DefineGlobalConstant in a text
file to create constants and initialize them with arbitrary expressions.
You use UndefineGlobalConstant and IsGlobalConstant to undefine
and test for global constants.

DefineGlobalConstant 4

DefineGlobalConstant (symbol, expr)

symbol A symbol that names the value.

expr An expression that defines the value of the symbol.

C H A P T E R 4

Managing and Building a Project

Building a Project 4-33

The DefineGlobalConstant function creates a constant referenced by the
specified symbol and with the specified expression value.

Use the NewtonScript constant syntax instead of creating a constant with
DefineGlobalConstant whenever possible. You must use
DefineGlobalConstant instead of the constant syntax to set a constant
equal to a function.

You can use DefineGlobalConstant to make compile-time values
available at run time without adding a slot to the application base view. You
could incorporate your own named 'PICT' resource, for example, by calling
GetPictAsBits in a definition:

DefineGlobalConstant('kWren,GetPictAsBits("Wren", true));

You could access the bits from within the application templates by
referencing the kWren constant. Suppose, for example, you’re using a
resource to draw an image when a button is tapped. You can send the
CopyBits message, documented in the book Newton Programmer’s Guide:
System Software, in the button’s viewClickScript method:

:CopyBits(kWren,5,5,modeMask);

Functions you define with DefineGlobalConstant can be called with the
NewtonScript call syntax or the Apply function. You could, for example,
define a function with the symbol kFunction :

DefineGlobalConstant('kFunction,func(x,y) x + y);

You could then call the function within your application, without regard to
inheritance, with

call kFunction with (2,40);

Functions you create with DefineGlobalConstant must be
self-contained, that is, they must not depend on the view context.

The DefineGlobalConstant function accepts any valid expression that
can be evaluated at compile time.

C H A P T E R 4

Managing and Building a Project

4-34 Building a Project

The DefineGlobalConstant function replaces the obsolete function
DefConst .

UndefineGlobalConstant 4

UndefineGlobalConstant(symbol)

symbol A symbol that names the constant.

The function UndefineGlobalConstant removes a global constant.

You use UndefineGlobalConstant to remove constants you’ve created
with DefineGlobalConstant . This line, for example, removes the global
constant with the symbol kWren :

UndefineGlobalConstant('kWren);

UndefineGlobalConstant always return nil .

IsGlobalConstant 4

IsGlobalConstant(symbol)

symbol A symbol that names the constant.

The function IsGlobalConstant reports whether a global constant with
the specified name exists; it returns true if the constant is defined, nil if it
isn’t.

Accessing Processed Templates 4

You can use the compile-time function GetLayout to reference the frame
containing a processed layout file.

GetLayout 4

GetLayout(filename)

filename A string containing the filename of a layout file.

C H A P T E R 4

Managing and Building a Project

Building a Project 4-35

The GetLayout function returns a reference to the view hierarchy that
resulted from the processing of the specified layout file. You use it to
incorporate templates from external layout files.

To add items at the top of a find slip, for example, you place in the
application base view a function that supplies the item templates, which you
lay out in a separate file and incorporate with a function slot something like
this:

myApp.FindSlipAdditions := func()

begin

return GetLayout("myFindSlipAdditions");

end;

You can also use GetLayout to place in your application a reference to a
non-view object, such as the routing format frames required for sending data.

You can use the GetLayout function in conjunction with the .form
command in the Book Maker application to incorporate the layout files for
any small, application-like elements included in your book files. The .form
command, documented in the manual that accompanies the Book Maker
application, requires the height and width of the layout base view, which
you can get from the viewBounds slot for the view as displayed in the
browser.

If the specified layout file hasn’t been processed, the GetLayout function
generates a compile-time error. The GetLayout function therefore provides
earlier detection of unprocessed files than the layout_ filename constant,
which doesn’t raise an error until the compiled code is executed.

Accessing the Part Frame 4

You can use the SetPartFrameSlot function to add a slot to the part frame
that’s constructed during a build. You can use the GetPartFrameSlot
function to retrieve the contents of slots added with SetPartFrameSlot .

You can use the SetPartFrameSlot function to define a deletion script—
that is, a block of code that’s executed when the icon for the package

C H A P T E R 4

Managing and Building a Project

4-36 Building a Project

containing a part is scrubbed on the Newton. The deletion script is a function
contained in the part frame in a slot with the symbol deletionScript . For
example:

SetPartFrameSlot('deletionScript, func()

begin

foreach store in GetStores() do

 if s:HasSoup(kSoupName) then

GetSoup(kSoupName):RemoveFromStoreXmit(kAppSymbol);

end);

SetPartFrameSlot 4

SetPartFrameSlot(slot, value)

slot A symbol for the slot to be added.

value The value of the new slot.

The SetPartFrameSlot function adds a slot with the specified symbol and
value to the part frame. If the slot already exists, SetPartFrameSlot
changes its value.

If you specify a slot symbol that’s also used by NTK, your definition is
overridden during construction of the final part frame. You can’t therefore
use SetPartFrameSlot to establish an installation or removal script, for
example, or to define the theForm slot.

GetPartFrameSlot 4

GetPartFrameSlot(slot)

slot A symbol for the slot whose value you want.

The GetPartFrameSlot function returns the value of the specified slot in
the part frame. Because NTK defines special slots like the install script and
the remove script at the end of the build, you can’t use GetPartFrameSlot
to access those slots.

C H A P T E R 4

Managing and Building a Project

Building a Project 4-37

Accessing Files That Aren’t in the Project 4

You can use the compile-time function Load to incorporate text files that
aren’t listed in your project.

You can use the ReadStreamFile function to read an object stream file—
that is, a file in Newton Streamed Object Format.

Load 4

Load(pathname)

pathname A string containing the path name of the file to be
processed.

The Load function compiles and executes the contents of a NewtonScript file
with the specified path name.

Placing files directly in the project list—instead of using Load —makes them
accessible to the NTK Search and Find commands and is the preferred way
to incorporate text files into a project.

ReadStreamFile 4

ReadStreamFile(pathname)

pathname A string containing the path name of the object stream
file.

The ReadStreamFile function returns the object written in the specified
stream file.

You can create object stream files in NTK, as described in “Output Options”
beginning on page 4-42.

As an alternative to the ReadStreamFile function, you can add a stream
file directly to your project and then access it with the constant
streamFile_ filename, which NTK defines when it processes the file.
“Stream Files” beginning on page 4-45 describes how NTK processes stream
files.

C H A P T E R 4

Managing and Building a Project

4-38 Building a Project

Project-Build Function Summary 4

DefineGlobalConstant(symbol, expr)
UndefineGlobalConstant(symbol)
IsGlobalConstant(symbol)
GetLayout(filename)
SetPartFrameSlot(slot, value)
GetPartFrameSlot(slot)
Load(pathname)
ReadStreamFile(pathname)

Build Options 4
This section provides more details about the build options available through
the dialog boxes described in “Establishing Settings and Preferences”
beginning on page 4-6.

Compiling Native Code 4

NTK can produce not only byte code to be processed by the Newton
interpreter but also native ARM code—that is, machine code to be executed
directly by the Newton’s ARM chip.

Native code executes significantly faster, but it occupies much more space in
memory. For compatibility with possible future models that don’t use the
ARM chip, NTK produces both byte code and native code when it compiles a
function into native code.

You can mark an individual function for native compiling by constructing it
with the func native syntax:

func native (paramList) expression

You can invoke options in the Project Settings dialog box that cause NTK to
ignore the func native syntax or to suppress the byte code when
compiling native code.

Compiling functions into native code is described more fully in “Compiling
Functions for Speed” beginning on page 8-10.

C H A P T E R 4

Managing and Building a Project

Building a Project 4-39

Embedding Debugging Information 4

You can specify a build with embedded debugging support through the
Project Settings item in the Project menu.

When Compile for Debugging is enabled, the compiler

■ adds a slot named debug to each view that you name through Template
Info in the Browser menu. The value of the debug slot is the view’s name.
If you create your own debug slot for a view, however, NTK does not
override that definition.

■ adds to each NewtonScript function it compiles a slot named
DebuggerInfo that contains either an integer or an array of debugging
information. This information is used by the debugging functions
described in Chapter 7, “Extended Debugging Functions.”

■ skips the step of combining objects, described in the following section.

You can check the value of the kDebugOn constant to provisionally compile
your own debugging code only when Compile for Debugging is enabled, as
illustrated in “Constants and Variables” beginning on page 4-30.

Combining Objects 4

To reduce application size, NTK combines objects as a final step in the build
process—that is, if two objects are identical, NTK combines them and
references the single object wherever either object is used. If the string
“New” appears in the text slot for two different buttons, for example, NTK
creates a single text string object and references it in both button templates.

NTK combines objects only in frame-based part types (that is, not in store
parts or stream files). Combining objects usually reduces package size by
10–20%. The main side effect is that combined objects are less likely to be
stored near the code that references them.

The impact on performance is variable. The Newton OS pages package data
in to system memory as the data is needed. Because objects might be further
from the objects that reference them, more segments of a package might be
paged in during execution. That probability is offset by the likelihood that
there will be fewer pages overall.

C H A P T E R 4

Managing and Building a Project

4-40 Building a Project

Be careful when using the functions that destructively modify strings; they
can affect more than intended when used on shared objects. The most
dangerous case is the empty string. Consider, for example, this frame:

constant kTemplate := {slot1: "", slot2: ""};

At the end of the build, NTK combines the two empty strings in the template
into a single object. Suppose you create an instance of the frame at run time
with DeepClone and then use StrMunger to alter the value of the instance:

local instance := DeepClone(kTemplate);

StrMunger(instance.slot1, 0, nil, "foo", 0, nil);

DeepClone creates a new writable string referenced in two places, and then
StrMunger destructively modifies that string. Evaluating
instance.slot2 yields "foo". You can avoid the problem in this example
by using nil instead of the empty string:

constant kTemplate := {slot1: nil, slot2: nil};

NTK normally combines objects in production builds, that is, builds where
Compile for Debugging is not enabled. You can suppress the combining of
objects in a production build by creating a global variable named
consolidateObjectsAfterBuilding and setting it to nil .

Profiling 4

NTK includes a profiling tool that keeps statistics on an application while it’s
executing on the Newton. You can specify a build with profiling support
through the Project Settings item in the Project menu.

To collect profiling statistics, you embed profiling code in your application
and then build the application with Compile for Profiling enabled. When this
option is enabled, the compiler assigns each function in the application a
unique identifier that it maps back to the source code, and it recognizes the
calls that turn profiling on and off during execution.

Chapter 8, “Tuning Performance,” describes the profiling tool in detail.

C H A P T E R 4

Managing and Building a Project

Building a Project 4-41

Establishing a Local Language 4

You can specify through Project Settings a language string that the LocObj
function uses to find localized versions of strings and other objects that
change when a piece of software is compiled for use in a specific country or
region.

The LocObj function takes two parameters: an object and a path name to an
alternative object. If the language setting for a build is English, then LocObj
returns the embedded object. If you set the localization string to any other
value, LocObj looks for the object in the place specified by the language
string together with the embedded path name.

If, for example, you display a message while searching for an object, you can
set up the message for any language by wrapping the string in the LocObj
function:

msg := LocObj("Searching for ^0…", 'find.searchfor)

The path name identifies a frame of localization data you establish—most
likely in a text file—with the SetLocalizationFrame function:

SetLocalizationFrame({

Swedish: {

find: {

searchFor:

"Söker efter ^0…", // "Searching for ^0…"

. . .}},

French: {

find: {

searchFor:

"Recherche dans ^0…",// "Searching for ^0…"

. . .}}

});

When the Language setting in the Project Settings dialog box is English, NTK
uses the string included in the code itself (“Searching for name”). When the

C H A P T E R 4

Managing and Building a Project

4-42 Building a Project

Language setting is Swedish, NTK looks for the string contained in the slot
Swedish.find.searchFor in the language frame.

The localization chapter in Newton Programmer’s Guide: System Software
describes the LocObj function.

Output Options 4

You can use NTK to create either a package file or an object stream file. A
package file holds software to be installed on the Newton. An object stream
file holds a hierarchy of NewtonScript frames encoded in Newton Streamed
Object Format. The NTK platform files, among other things, are stored in
Newton Streamed Object Format.

A package file consists of a header containing package information and one
or more parts containing code and data. Each build produces one new part.
You can incorporate additional parts in a package by putting their package
files in the project, as described in “Package Files” on page 4-5.

You specify the type of the new part through the Output Settings portion of
the Project Settings dialog box, illustrated in Figure 4-9 and described in
“Output Settings” beginning on page 4-10.

C H A P T E R 4

Managing and Building a Project

Building a Project 4-43

Figure 4-9 Output Settings

When you download a package to the Newton—or when you insert a
PCMCIA card or otherwise add a software package—the Newton system
software installs the package by reading the header information and
dispatching the parts to the appropriate handlers.

NTK places an application, book, or auto part into a single part frame that
holds the slots appropriate to a part of that type.

You can add your own slots to the part frame with the SetPartFrameSlot
function, described in “Accessing the Part Frame” beginning on page 4-35.

Application Parts 4

NTK stores an application in a part of type form . You assemble an
application from NTK layout files plus any text, resource, or other files you
need. You must designate one layout file as the main layout file; it holds the

C H A P T E R 4

Managing and Building a Project

4-44 Building a Project

application base view, which is the view that’s created when you start up the
application.

After processing all files in the project, NTK looks for global variables with
the special names installScript and removeScript . If it finds one or
both, it uses them to create install and remove scripts, which it places in the
part frame. The sections “Install Scripts” and “Remove Scripts,” beginning
on page 4-27, describe install and remove scripts in more detail.

NTK also looks for a global variable with the name partFrame . If one exists,
and if it contains a frame, then the slots in that frame are copied to the
application’s part frame. The approved way to add slots to the part frame,
however, is with the SetPartFrameSlot function, described on page 4-36.

Book Parts 4

NTK stores an interactive book in a part of type book . You build a book from
text files created by the Book Maker application, plus any layout files,
resource files, or other files containing book elements.

A book doesn’t have a main layout file, and it doesn’t use install and remove
scripts.

Auto Parts 4

An auto part holds software that isn’t represented by an icon in the Extras
drawer. You can use an auto part to add a panel to the Prefs roll, for example,
or supply an application with data. You build an auto part from one or more
text files, plus any layout files, resource files, or other files you’ve used.

An auto part has no application base view, no application name, and no
application symbol. Its part type is auto .

You can place your own data in an auto part frame by defining a global
variable with the special name partData . After processing all files in the
project, NTK looks for a variable named partData ; if it finds one, it places
its value in the part frame in a slot with the name partData . NTK also
recognizes the global variables installScript and removeScript . An
auto part must have an install script.

C H A P T E R 4

Managing and Building a Project

Building a Project 4-45

Parts in Auto-Remove Packages 4

You can activate Auto Remove Package in Package Settings to specify that
parts in the package are to be removed automatically immediately after
installation.

When it encounters an auto-remove package, the Newton system software
executes the install script for each part in the package and then removes the
software, without executing a remove script or a deletion script. The only
recommended constituent of an auto-remove package is a single auto part.

Store Parts 4

A store part holds a read-only store containing one or more soups.You create
store parts from one or more text files plus any other files you’ve used to
store the data. A store part is not a frames part; it has no slots for install and
remove scripts, a part name, or an application symbol. A store part is of type
soup .

When building a store part, NTK creates a global variable named theStore ,
which contains a store. Code that executes during the build can write data to
the store; at the end of the build, NTK creates a part of type soup that
contains all data written to the store during the build.

For more information about creating and using store parts, see Newton
Programmer’s Guide: System Software.

Stream Files 4

A stream file holds a hierarchy of NewtonScript frames in Newton Streamed
Object Format (NSOF).

You can use stream files to incorporate into a project code or data that’s
already been processed. You could place a large data structure into a stream
file, for example, and then incorporate it into a new project without
rebuilding the structure every time you build the project.

NTK builds a stream file essentially the same way it builds any other kind of
project: it processes the source files in order and places the results in a new

C H A P T E R 4

Managing and Building a Project

4-46 Building a Project

file. You can then place that file in the project, where it will be processed in
order during the build.

When it encounters a stream file during the build, NTK does two things:

■ It looks for an install slot in the frame at the top of the hierarchy, and if
it finds one, sends the install message to the frame. This allows your
stream file to define its own global functions or other objects.

■ It creates a constant named streamFile_ filename, which references the
contents of the stream file. You can then use this constant to incorporate
the contents of the stream file into your software.

The NSOF specification is available under some restrictions from Apple—to
request the specification, send mail to tools@newton.apple.com.

When you choose Stream File in Output Settings, NTK displays a Result
field. You must enter in the Result field an expression—typically a global
variable—that evaluates to the top-level frame of the output file.

Custom Parts 4

You can use NTK to create parts of any type, including dictionary parts and
font parts, by choosing Custom in Output Settings and entering a
four-character type code in the type field.

When it builds an application, a book, or an auto part, NTK builds a part
frame with the slots appropriate for a part of that type. When it builds a
custom part, NTK makes no assumptions about what slots to add to the
output frame. When you’re assembling a custom part, you must build your
own part frame.

When you choose Custom part in Output Settings, NTK displays a Result
field, as illustrated in Figure 4-10. You must enter in the Result field an
expression—typically a global variable—that evaluates to the top-level frame
of the output.

C H A P T E R 4

Managing and Building a Project

Building a Project 4-47

Figure 4-10 Custom part settings

Build Sequences 4

This section summarizes the guidelines for ordering files in the project
window and describes how NTK processes a layout file.

Building a Project 4

NTK processes the files in a project in the sequence you establish through the
project window. NTK requires that you group files by type, in this order:

■ resource files

■ package files

■ text files, layout files, and object stream files

■ package files

When it can identify the file types, NTK enforces the order as you add or
rearrange files through the project window.

To reorder files in the project, select one file at a time and

C H A P T E R 4

Managing and Building a Project

4-48 Building a Project

■ choose Process Earlier from the Project menu or press Option-Up Arrow
to move that file closer to the beginning of the build or

■ choose Process Later or from the Project menu or press or Option-Down
Arrow to move it closer to the end of the build.

NTK builds one new part out of the text and layout files in the project. If you
include package files in the project, NTK places them before or after the new
part, depending on where you placed them in the project.

The next section, “Processing a Template,” describes how NTK processes
layout files. “Stream Files” beginning on page 4-45 describes how NTK
processes stream files.

Processing a Template 4

When NTK processes a layout file, it starts by processing the template for the
layout view, the parent of all other templates in the file. In the course of
processing a template, NTK processes all of its children. Therefore, the
processing of a layout file begins and ends with the layout view, which is the
first template in a file whose processing is started and the last template
whose processing is completed.

After it finishes processing the template for the layout view, NTK creates the
constant layout_ filename, which contains a reference to the view hierarchy
defined by that file.

NTK processes each template in a layout in four steps:

1. NTK looks for a _proto or viewClass slot. If the template is based on an
unprocessed user proto, NTK displays an alert and halts the build.

2. NTK compiles and executes the code in the beforeScript slot, if it’s
present.
Memory objects created in the before script are available to evaluate slots
in the template and its descendants.
The beforeScript slot exists only during the processing of the current
template; the beforeScript slot does not appear in the frame that
results from the processing of a template.

C H A P T E R 4

Managing and Building a Project

Building a Project 4-49

The beforeScript and afterScript slots let you execute code specific
to a template during the build. You can use the beforeScript slot to
define functions and data that will be available during the processing of a
single template, the same way you use text files to define functions and
data that will be available during the rest of the build.

3. NTK builds the template:
■ NTK creates the template and adds the _proto or viewClass slot.
■ NTK creates the slots altered or added through the browser.

As it creates each slot, NTK establishes the slot’s value. When it creates
an evaluate or script slot, NTK compiles and executes any
NewtonScript code in the slot.

■ NTK creates the stepChildren slot (described in the “Views” chapter
of the book Newton Programmer’s Guide: System Software).

■ NTK processes the template’s children, adding each child to the
stepChildren array as it’s created.

4. NTK compiles and executes the code in the afterScript slot, if it’s
present.
The template is available to the after script through the variable
thisView , which is a reference to the view template. You can use
thisView to add slots or change the value of existing slots. This code in
an afterScript slot, for example, would conditionally add an extra slot
named debugInfo and place data in it:

if kDebugOn then thisView.debugInfo := data to be saved;

This code creates the extra slot only when Compile for Debugging is
enabled. “Embedding Debugging Information” beginning on page 4-39
documents the Compile for Debugging option.

Warning

The thisView variable gives your after script access to any
slot in a view. Use it carefully. ▲

The code in the afterScript slot is not part of the final application.

You can create beforeScript and afterScript slots for any view
through the New Slot item in the Browser menu, documented in “Adding

C H A P T E R 4

Managing and Building a Project

4-50 Using NTK With Other Applications

Slots” beginning on page 5-18. Create the slots as evaluate slots with the
names beforeScript and afterScript .

Error Messages 4
NTK displays its own error messages with explanatory text in the Inspector
window.

When NTK encounters errors in the code its compiling or receives errors
from other sources, it displays an error message with the error number. You
can look up error numbers in the “Errors” appendix in the book Newton
Programmer’s Guide: System Software.

If you’ve installed the Newton application Exception Printer, which is
shipped with NTK, the Newton itself displays more information about errors
that arise during execution.

Using NTK With Other Applications 4

This section describes the Apple events that NTK recognizes and describes
how NTK uses the 'ckid' resource.

Apple Events 4
NTK recognizes the four required Apple events (Open App, Open Doc, Print,
and Quit) and the Do Script event, and it defines its own Build event.

Do Script Event 4

NTK recognizes the Do Script event (event ID kAEDoScript , which has the
type 'dosc' , in event class kAEMiscStandards , which has the type
'misc'). The script must be valid NewtonScript code.

C H A P T E R 4

Managing and Building a Project

Using NTK With Other Applications 4-51

When it receives the Do Script event, NTK compiles and executes the code
on the Macintosh and returns a string that represents the result of the
execution. This result is currently limited to 256 characters.

Build Event 4

NTK defines its own Build event. When NTK receives a Build event, it
performs a project build, exactly as if the Build Package menu item had been
chosen.

NTK events are in a class of type 'NTK ' , and the Build event is of type
'BILD' .

If it encounters an error during the build, NTK returns an error number
(keyErrorNumber , 'errn') and error string (keyErrorString , 'errs').

The 'ckid' Resource 4
NTK respects the 'ckid' resource, which is used for source control.

If you try to save changes to a read-only file, NTK reports that the file must
be made modifiable before changes can be saved.

C H A P T E R 4

Managing and Building a Project

4-52 Using NTK With Other Applications

Laying Out Views 5-1

C H A P T E R 5

Laying Out and Editing
Views 5

You use NTK’s graphical editor to lay out your application’s views, and you
use the browser to add the code that defines how the views look and act.
This chapter describes how you use the graphical editor and the browser.

You can adjust some features of the editor and browser through the Layout
Preferences and Browser Preferences menu items, described in “Layout
Preferences” on page 4-19 and “Browser Preferences” on page 4-21.

Laying Out Views 5

You use NTK’s graphical editor to lay out views in a window that represents
the Newton screen.

Figure 5-1 illustrates the MessagePad layout window and the palette of
components, which NTK displays when you choose New Layout from the
File menu or open a layout window. You can open a layout window by

Figure 5-0
Table 5-0

C H A P T E R 5

Laying Out and Editing Views

5-2 Laying Out Views

selecting a layout file in the project window and choosing Open Layout from
the Windows menu.

When a project is open, the size of the layout window and the selection of
components on the palette depend on the platform you’ve chosen through
the Project Settings item in the Project menu. If no project is open, the size of
the window depends on the screen size set through the Layout Preferences
item in the Layout menu; the composition of the palette depends on the
platform file of the last project that was open.

Figure 5-1 Layout window and palette

Selection
pop-up
menu

View
alignment
buttons

User proto
pop-up
menu

View
template
buttons

C H A P T E R 5

Laying Out and Editing Views

Laying Out Views 5-3

You lay out views by choosing a proto or view class from one of the pop-up
menus and then drawing a view in the layout window, as described in
“Drawing a View” beginning on page 5-4. The template buttons provide
quick access to the most commonly used protos and view classes.

The graphical editor saves the views you lay out in a layout file, which
contains a hierarchy of templates. Each layout file must have a single layout
view, which contains all other views in the layout. The layout view can
contain any number of child views, which themselves can contain any
number of child views, and so on.

The view that opens when a user taps an application’s icon is the application
base view. The application base view—which is the layout view for the
application’s main layout file—is the ancestor of all other views in the
application.

The Selection pop-up menu lets you add these elements:

■ view classes, the basic building blocks of view templates
The view class clParagraphView , for example, is the generic text view,
used for static or editable text. The view classes are built into the Newton.

■ system protos constructed from the view classes
The system protos, also built into the Newton, provide ready-to-use
elements like radio buttons and slide controls.

■ linked subviews, an NTK device for bringing into the hierarchy views laid
out in separate layout files
You can lay out your application in modules and then link the files
together through linked subviews.

The User pop-up menu lets you add user protos, that is, protos you define
yourself. You can base your protos on view classes, system protos, or other
user protos.

The Newton Programmer’s Guide describes the view classes and system protos.
This chapter describes linked subviews in “Linking Multiple Layouts”
beginning on page 5-14.

The view alignment buttons align selected views as illustrated on the buttons.

C H A P T E R 5

Laying Out and Editing Views

5-4 Laying Out Views

Drawing, Resizing, and Moving Views 5

You use the mouse and a palette of templates to add views.

Drawing a View 5

To add a view to your application, you select the template you want from the
palette and then draw out the view in the layout window.

You select a template by either choosing an item from one of the two pop-up
menus or clicking a button on the palette. The Selection pop-up menu
contains the view classes and proto templates built into the Newton ROM.
The User pop-up menu contains proto templates you’ve created and added
to the current project. You activate the selection pop-up menu by clicking the
Selection button (the large button with an arrow on it); you activate the User
pop-up menu by clicking the User button (the button with the letter U on it).

Once you’ve activated a component, move the cursor to the layout window.

To draw a view:

1. Place the tip of the arrow cursor where you want any corner of the view to
appear.

2. Press and hold down the mouse button.
The cursor changes to a crosshair.

3. Hold down the mouse button while you drag the cursor to the opposite
corner.

C H A P T E R 5

Laying Out and Editing Views

Laying Out Views 5-5

4. When the view is the size and shape you want, release the mouse button.

The rectangle you’ve defined on the screen determines the location of the
view as stored in the viewBounds slot in the frame’s template. You can
anticipate different platforms by adjusting the viewBounds slot when a
view is instantiated, as described in the “Views” chapter in Newton
Programmer’s Guide: System Software.

Figure 5-2 illustrates a layout window with a layout view and one child view
in place.

C H A P T E R 5

Laying Out and Editing Views

5-6 Laying Out Views

Figure 5-2 A layout window with the layout view and one child view in place

The label in the upper-left corner of the view shows the view class or proto
template on which the view is based. After you’ve named a view, its name
appears instead.

Selection marks appear at the drawing corners of the selected view—
protoLabelInputLine in Figure 5-2. The selected view is the target of
whatever view-editing instructions you make through the mouse or
keyboard. You select a view by clicking it or by double-clicking its name in a
browser template list. To select multiple views, hold down the Shift key
while clicking in the layout window.

C H A P T E R 5

Laying Out and Editing Views

Laying Out Views 5-7

Resizing a View 5

You can resize a view with either the mouse or the keyboard.

To resize a view with the mouse:

1. Select the view.

2. Place the cursor on the bottom-right corner of the view. When the cursor is
placed for resizing, it changes to a two-headed arrow.

3. Press and hold down the mouse button while you drag the corner.

4. When the view is the size and shape you want, release the mouse button.

You can select and resize multiple views at once. If you simply resize
multiple views with the resize cursor, NTK resizes the views proportionally,
so that the selected views retain their relative sizes. If you hold down the
Option key while resizing multiple views, NTK resizes all the views by the
same absolute amount, that is, the same number of pixels.

To resize a view with the keyboard:

1. Select the view.

2. Hold down the Option key while pressing one of the arrow keys.
The Right-arrow key enlarges the view by moving the right edge one pixel
to the right. The Left-arrow key shrinks the view by moving the right edge
one pixel to the left. The Down-arrow enlarges the view by moving the
bottom edge one pixel down. The Up-arrow shrinks the view by moving
the bottom edge one pixel up.
To change the size of a view by five pixels at a time, hold down both the
Shift key and the Option key while pressing an arrow key. You can set the
numbers of pixels views are resized by an arrow key alone and by
Shift-Arrow key through the Layout Preferences item in the Layout menu,
described on page 4-19.

resize cursor

C H A P T E R 5

Laying Out and Editing Views

5-8 Laying Out Views

Moving a View 5

To move a view with the mouse:

1. Place the cursor anywhere on the view (except the bottom-right corner)
and press the mouse button.
The cursor changes to the shape of a hand.

2. Hold the mouse button while you drag the view, and release the button
when the view is in the position you want.

If you press and hold the Shift key while moving a view, NTK constrains the
movement to either the vertical or the horizontal axis, depending on which
direction you move in first.

To move a view with the keyboard:

1. Select the view.

2. Press any of the arrow keys.
The arrow keys move the view one pixel in the direction of the arrow. You
can move the view five pixels at a time by holding down the Shift key
while you press the arrow key.
You can set the number of pixels a view is moved by the arrow key alone
and by Shift-Arrow key through the Layout Preferences item in the
Layout menu, described on page 4-19.

You can select and move multiple views at once.

Aligning Views 5

You can align the sides or centers of two or more views by selecting the
views and clicking one of the alignment buttons on the palette.

move cursor

C H A P T E R 5

Laying Out and Editing Views

Laying Out Views 5-9

You can perform more sophisticated alignments through the Alignment and
Align items in the Layout menu. Choosing Alignment displays the dialog
box illustrated in Figure 5-3.

Figure 5-3 The Alignment dialog box

As you select various alignment options, the objects in the sample rectangle
move to show the effect. Once you’ve set up your alignment rules through
the Alignment dialog box, click Apply to apply them to the selected views.
You can later choose Align from the Layout menu to apply the current
alignment rules to the selected views.

Often it’s more appropriate to handle alignment programmatically through
the parent- and sibling-relative options of the view system.

Vertical Spacing 5

The options to the right of the sample rectangle control vertical spacing. You
can either align or distribute selected views during one alignment.

C H A P T E R 5

Laying Out and Editing Views

5-10 Laying Out Views

You can align the tops, centers, or bottoms of selected views. When aligning
tops and bottoms, NTK aligns all selected views to the top of the topmost
view or the bottom of the bottommost view. When aligning centers, NTK
centers all views over the line halfway between the top of the topmost view
and the bottom of the bottommost view.

You can distribute the selected views so that the tops, centers, or bottoms are
evenly spaced, or so that the distance is the same between the tops and
bottoms of adjacent views.

Horizontal Spacing 5

The options below the sample rectangle control the horizontal spacing. You
can either align or distribute selected views during one alignment.

You can align the left sides, centers, or right sides of selected views. When
aligning left and right sides, NTK aligns all views with the view furthest to
the left or right, respectively. When aligning centers, NTK centers all views
over the line halfway between the outer sides of the most distant views.

You can distribute the selected view so that the left sides, centers, or right
sides are evenly spaced, or so that the distance between the edges of adjacent
views is the same.

Ordering Views 5

Views are drawn on the Newton screen in the order in which they appear in
the drawing list. Views that appear later in the list can obscure views drawn
earlier.

Within each sibling group, views are added to the drawing list in the order
you lay them out in NTK’s graphical editor. You can move a view one place
ahead in the drawing list by selecting it and choosing Move Backward from
the Layout menu. You can move a view one place back in the drawing list by
choosing Move Forward. You can move a view behind all its siblings in the
drawing list by choosing Move To Front, and you can move a view ahead of
its siblings in the drawing list by choosing Move To Back.

C H A P T E R 5

Laying Out and Editing Views

Laying Out Views 5-11

You can also reorder views by selecting them in the browser template list and
pressing Option-Up arrow (to move a view forward in the drawing list) or
Option-Down arrow (to move a view back in the drawing list).

Previewing 5
You ordinarily draw views with the graphical editor in layout mode, in
which NTK displays the rectangular extents of the views and their names.
You can see a closer approximation of how the views will look on the
Newton screen by choosing Preview from the Layout menu.

Figure 5-4 illustrates a simple view in layout mode and preview mode.

C H A P T E R 5

Laying Out and Editing Views

5-12 Laying Out Views

Figure 5-4 The layout window in layout and preview modes

Views based on the most commonly used protos appear in preview mode
much like they’ll appear on the Newton screen. Text is displayed only in the
default font, and a protoStaticText view can display no more than 255
characters. User protos are not displayed.

You can toggle between layout and preview modes by choosing Preview
from the Layout menu or pressing Command-Y.

Preview mode is fully implemented for the templates protoApp ,
protoCheckBox , protoLabelInputLine , protoRadioButton ,

layout mode preview mode

C H A P T E R 5

Laying Out and Editing Views

Laying Out Views 5-13

protoStaticText , protoTextButton , protoPictureView ,
protoSlider , clGaugeView , and protoRadioCluster .

Naming and Declaring Views 5
You name and declare views through the Template Info item in the Browser
menu.

You must supply unique names for

■ views that declare themselves to other views and

■ views to which other views declare themselves.

You should also name all views that you’ll need to identify through the
browser template list. You don’t need to name all views—NTK identifies
unnamed views with a label based on the name of the view’s proto.

When you choose Template Info, NTK displays the dialog box illustrated in
Figure 5-5.

Figure 5-5 The Template Info dialog box, for naming and declaring views

You name a view by typing into the Name field. You activate the Declare To
pop-up menu by clicking its check box. Press and hold the mouse button
with the cursor on the menu to see a list of the view’s named ancestors.
Declare a view only to its immediate parent.

C H A P T E R 5

Laying Out and Editing Views

5-14 Laying Out Views

You must name a view before you can declare it. Declaring a view places a
slot for that view into the template in which you are declaring it, allowing
symbolic access from the parent to the child. The “Views” chapter in Newton
Programmer’s Guide: System Software contains a more complete discussion of
declaring views.

Linking Multiple Layouts 5

You can work on an application in separate layout files, each with its own
local main view. You link layout files with the special-purpose linked
subview element.

To link an external file to an application:

1. In either the main layout file or a layout file that’s linked to the main
layout file, lay out a small reference view, using the LinkedSubview item
in the Selection pop-up menu.

2. Link the linked subview to the external layout file by choosing Link
Layout from the File menu.

The section “Adding a Linked Layout” beginning on page 3-17 illustrates
how to link a separate layout file into an application.

If you make a link to a file that’s not already in the project, NTK
automatically adds the file to the project. If you remove a linked file from a
project (with the Remove File item in the Project menu), you also remove the
information about links to that file. The external file must appear in the
project list before the file that references it.

The linked subview is a placeholder in the parent view. When the parent
template is processed, the templates in the linked layout file replace the
linked subview template. The name of the linked subview, however, replaces
the name of the layout view in the linked file.

To declare a view in the linked layout file to an ancestor in the other file, you
must declare the placeholder view (the linked subview) in its parent file.
Child views in the linked layout file then declare themselves to the layout

C H A P T E R 5

Laying Out and Editing Views

Laying Out Views 5-15

view in the linked layout file; they send messages up the hierarchy by
referencing the placeholder view.

For example, consider a placeholder view with the name birds , in the
baseView template in the main layout file. The layout view in the linked
layout file is named bees , and it has a child named eggs , as illustrated in
Figure 5-6.

Figure 5-6 Declaring views across linked layout files

baseView

bees baseview

birds

eggs

eggs

Linked Layout File Main Layout File

Application Templates

declare todeclare to

The compiler processes
the Linked and Main layout

files and produces. . .

declared to

declared to

birds

linked to

declare to

C H A P T E R 5

Laying Out and Editing Views

5-16 Browsing and Editing Templates

In this example, the view birds declares itself to baseView , and the view
eggs declares itself to bees . To send a message to its parent, the view eggs
sends the message to birds . To send a message to eggs , baseView sends
the message to birds.eggs .

If you assign the same name to the placeholder view and the main layout
view in the linked layout file, you don’t need to remember which name to
reference.

Creating User Protos 5

You can use the New Proto Template item in the File menu to start your own
proto layout. You save the layout in a separate file and add it to the project
through the Project menu.

Once you’ve added your proto to the project, you can lay out views based on
it by choosing it from the User proto pop-up menu on the palette.

The tutorial section “Defining Your Own Proto” beginning on page 3-24
illustrates how to define and use your own proto template.

Browsing and Editing Templates 5

You use the NTK browser and slot editors to program your templates.

Browsing Templates 5
A browser window lets you examine the templates in a local view hierarchy
and the slots within each template.

You open a browser window by opening a saved layout file or by selecting a
view in a layout window and choosing New Browser from the Window
menu. You can examine and edit slots in the template for the selected view or
any of its descendants. If you want access to all of the templates in a layout
file, choose New Browser with no view selected, with the layout view

C H A P T E R 5

Laying Out and Editing Views

Browsing and Editing Templates 5-17

selected, or with the layout file selected in the project window. You can keep
several browser windows open at once.

Figure 5-7 illustrates a browser window with the viewFlags slot open for
editing.

Figure 5-7 A browser window with the view flags slot open for editing

The template list in the top-left corner lists the templates in the view
hierarchy. The slot list to the right lists the slots in the selected template.
Highlighting around either the template list or the slot list shows which is
active; you can change the selection in the active window by pressing the Up
arrow and Down arrow keys.

Slot list

Editing area

Template list

Slot pop-up
menus

Revert button

Apply button

Movable
boundaries

Slot-name
button

C H A P T E R 5

Laying Out and Editing Views

5-18 Browsing and Editing Templates

You open a slot for editing by clicking its name in the slot list. The browser
then displays the slot’s contents in the editing area in the lower part of the
window. If you’ve changed the template selection since opening a slot,
clicking on the slot-name button in the editing area restores the template and
slot selections.

You can resize the three panes of the window by moving the boundaries
with the mouse. You can customize the amount of information displayed and
the text styles used in the template and slot lists through Browser
Preferences, described in “Browser Preferences” beginning on page 4-21.

NTK provides different editors for different kinds of slots. Figure 5-7, for
example, illustrates the view flags slot editor. “Editing Slots” beginning on
page 5-20 describes the basic slot editors; Appendix E, “Slot Editors,” lists the
specialized slot editors

The Apply and Revert buttons in the bottom-left corner allow you to apply
or cancel any editing you’ve done to a slot since the last revert or apply.
When you click Apply (or press Command-E or choose Apply from the
Browser menu), NTK places any outstanding changes into the slot. When it
applies a change, NTK checks for syntax errors in NewtonScript code. It
reports errors in the Inspector window but applies the changes in any case.
NTK automatically applies changes to a slot when you

■ open a different slot for editing

■ close the browser window

■ save the file in which the slot is stored

■ build a package.

Adding Slots 5

You can add any of the slots defined by the Newton system software through
the three slot pop-up menus:

■ Specific—lists the proto-specific slots in the proto template on which the
selected template is based

C H A P T E R 5

Laying Out and Editing Views

Browsing and Editing Templates 5-19

■ Methods—lists the system-defined methods, that is, the code that executes
when a view receives one of the system messages

■ Attributes—lists attributes, that is, the view characteristics the Newton
system software uses when displaying and manipulating views.

You add your own slots to a template through the dialog box illustrated in
Figure 5-8, which NTK displays when you choose New Slot from the
Browser menu.

Figure 5-8 The New Slot dialog box

The name centered at the top of the window’s content area (protoApp in
this example) is the name of the template you’re adding slots to or—if the
template isn’t named—a label based on the name of the template’s proto or
view class. You can add any of the system-defined slots through the proto
pop-up menus, and you can add your own slot by typing the slot name into
the Slot Name field.

Whenever the Slot Name field contains the name of a system-defined slot,
the description field contains a brief description of the slot.

Slot description field

Template name or label

C H A P T E R 5

Laying Out and Editing Views

5-20 Browsing and Editing Templates

When you’re defining your own slots, you specify a slot type—which implies
a slot editor—through the Editor pop-up menu, illustrated in Figure 5-9. The
slot types are documented in the following section.

Figure 5-9 The Editor pop-up menu in the New Slot dialog box

When you’ve established a slot name and editor, click Add. To dismiss the
dialog box, click Done.

Editing Slots 5
You use the basic slot editors listed in this section to edit slots of the types
available through the New Slot dialog box. NTK also supplies specialized
editors for editing various system-defined slots, listed in Appendix D, “Slot
Editors.”

An evaluate slot is a slot that’s evaluated in place, that is, during the build
when the code is compiled. You use evaluate slots to embed data that’s
available only during the project build into the templates that will be used on
the Newton. The value of the slot is set to the value returned by the last
statement executed.

A script slot holds a function definition that’s compiled during the build for
execution at run time. NTK processes evaluate and script slots in exactly the
same way: During the build, NTK first compiles the contents of the slot, then
executes the resulting code with the NewtonScript interpreter, and finally
sets the value of the slot to the value returned by the last statement executed.

C H A P T E R 5

Laying Out and Editing Views

Browsing and Editing Templates 5-21

The result for an evaluate slot is a value. The result for a script slot is a
function.

A text slot holds text. During the build, NTK places the specified text in a
text string in the text slot.

Figure 5-9 illustrates the initial displays for evaluate, script, and text slots.

Figure 5-10 Initial contents of evaluate, script, and text slots

You edit evaluate, script, and text slots with the text editor described in
“Editing Text” beginning on page 5-23.

If you delete the keywords func() , begin , and end from a script slot, it
becomes equivalent to an evaluate slot; conversely, if you place a function in
an evaluate slot, it’s equivalent to a script slot.

Number, Boolean, rectangle, and picture slots use editors tailored to their
data. Figure 5-9 illustrates the initial display for these four slot types.

Evaluate slot Text slotScript slot

C H A P T E R 5

Laying Out and Editing Views

5-22 Browsing and Editing Templates

Figure 5-11 The number, Boolean, rectangle, and picture slot editors

A number slot can hold either an integer or a real number. If you enter an
integer in the range –536,870,912 to 536,870,911, NTK stores it as type
integer . If you enter an integer outside that range or a number containing a
decimal point, NTK stores it as type real .

A Boolean slot can hold only the value true or nil .

The rectangle slot holds four integers. NTK automatically calculates the
width and height based on the integers you supply. In your own rectangle

Boolean slot

Rectangle slot

Picture slot

Number slot

C H A P T E R 5

Laying Out and Editing Views

Browsing and Editing Templates 5-23

slots, you can use the four integers however you want. In a viewBounds
slot, the meanings of the four values depend on the value of the template’s
viewJustify slot, as documented in Appendix D, “Slot Editors.”

A picture slot holds a 'PICT' resource. You use the picture slot editor to
specify a resource file and a named picture within that file. The File pop-up
menu displays all resource files in the project. Named 'PICT' resources
within the selected file appear in the Picture list. The selected picture appears
in the rectangle to the right of the resource list. NTK displays the width and
height in pixels.

A picture’s mask is a parallel 'PICT' resource that’s used to display the
image when it’s selected. To supply your own mask, place it as a resource in
the same file, with a trailing exclamation point on the resource name and
check Include Mask!. If the resource is named wave, for example, the mask
takes the name wave! . If you don’t supply your own mask, NTK generates a
simple one automatically from the original.

Editing Text 5
You edit text in slots and text files with a text editor that follows the basic
Macintosh user interface conventions:

■ The blinking cursor marks the current insertion point, that is, the place
where keystrokes are inserted. You change the insertion point by moving
the cursor with the mouse and clicking at the new insertion point.

■ You select text by holding down the mouse button and dragging the
cursor through the text to be selected. Double-clicking selects the word in
which the cursor appears. Triple-clicking selects an entire line.

■ The Cut, Copy, and Paste items in the Edit menu (and their keyboard
equivalents: Command-X, Command-C, and Command-V) delete selected
text from the slot and place it on the clipboard, copy the selected text to
the clipboard without deleting it, and paste the contents of the clipboard,
respectively.

■ Keystrokes replace selected text.

C H A P T E R 5

Laying Out and Editing Views

5-24 Browsing and Editing Templates

You can also navigate, select, and manipulate text with the arrow keys and
keystroke combinations listed in Appendix A, “Keyboard Text-Editing
Commands.” To make the Option-key combinations available in NTK,
activate the Option Key for Commands option through Browser Preferences.

As a help mechanism, NTK supplies argument information when you’re
entering global functions and common messages. When you type a left
parenthesis after a token that’s listed in the editor’s internal database, NTK
displays a help line in the space to the left of the horizontal scroll bar. To see
the arguments for the setValue function, for example, type

setValue(

The help message appears in a box to the left of the horizontal scroll bar, in
either a browser or the Inspector window, as illustrated in Figure 5-12.

Figure 5-12 The Inspector window with a help message displayed

Help message

C H A P T E R 5

Laying Out and Editing Views

Browsing and Editing Templates 5-25

The search and display are triggered by the typing of the parenthesis, not by
the position of the cursor.

Searching for Text in Files 5

The Edit menu contains a number of items that let you search for strings in
various situations.

Searching Template Files 5

The Search item identifies all instances of a string in a template file or in all
template files in a project. You specify the string and the search criteria
through the dialog box illustrated in Figure 5-13.

Figure 5-13 The Search dialog box

C H A P T E R 5

Laying Out and Editing Views

5-26 Browsing and Editing Templates

Select one of the radio buttons at the top of the window to specify the files to
be searched.

In Layout (Command-L)
Searches only the layout file associated with the active
layout or browser window.

In Project (Command-P)
Searches all layout and text files in the open project.

Select one of the four radio buttons below the string field to specify the target
of the search.

Frame With Name (Command-F)
Searches layout files for frames whose name contains
the specified string.

Slot With Name (Command-S)
Searches layout files for slots whose name contains the
specified string.

Text In Slot (Command-T)
Searches layout and text files for slots whose value
contains the specified string.

All (Command-A) Searches layout and text files for the specified string in
frame names, slot names, or slot values.

You can limit the search by checking one or both of the boxes:

Whole Word (Command-W)
Finds only instances in which the specified string
appears as a word, that is, in which the specified string
is not embedded within other text.

Case Sensitive (Command-E)
Finds only strings that match the capitalization of the
specified string.

When you click Search, NTK finds and lists all occurrences of the specified
string. You can double-click any of the entries to open or activate a browser
window with that entry selected. If NTK finds no instances of the string, it
sounds the system beep.

C H A P T E R 5

Laying Out and Editing Views

Browsing and Editing Templates 5-27

Searching the Active Window 5

The Find and Find Next items search through text in the active window to
find and select a specified string.

Find displays a dialog box, illustrated in Figure 5-14, in which you specify
the string and search specifications.

Figure 5-14 The dialog for searching with Find

The Whole Word option finds only instances in which the specified string
appears as a word, that is, in which the specified string is not embedded
within other text. The Case Sensitive option finds only strings that match the
capitalization of the specified string. You can toggle the checkboxes by
pressing Command-W and Command-S on the keyboard for Whole Word
and Case Sensitive, respectively.

When you click Find, NTK finds and selects the next occurrence of the
specified string. If NTK finds no instances of the string, it sounds the system
beep.

The Find Next item finds the next occurrence of the string last found through
Find.

The Find and Find Next items are available when you’re working in the
Inspector window and when you’re editing a text file or a slot that contains
text.

C H A P T E R 5

Laying Out and Editing Views

5-28 Browsing and Editing Templates

Finding Views in a Layout File 5

The Find Inherited item finds and selects in the layout file the view that
contains a slot with the same name as the slot selected in the browser slot list.

The Find Inherited command looks first in the parent of the selected
template. If it doesn’t find the selected slot there, it continues up the parent
hierarchy to the top level. When it finds a slot with the same name as the
selected slot, NTK opens another browser window, with the slot and its
template selected. If it doesn’t find the slot in any template in the hierarchy,
NTK sounds the system beep.

Adding Non-View Objects 5
Although most Newton objects are views, you occasionally need a non-view
object, like the format frame required for beaming frame data.

To create a non-view object that you can edit in the browser, place a simple
view—such as a static text view—in a separate layout file. You can remove
the unneeded slots—the viewBounds and text slots in the case of a static
text view—by selecting and deleting them in the browser. You can add an
afterScript slot that redefines the _proto slot (or removes the _proto
slot and replaces it with a viewClass slot, if that’s what you need).

This afterScript slot, for example, redefines the _proto slot to a format
frame:

thisView._proto := protoFrameFormat

To remove frames in an afterScript slot, use the RemoveSlot function,
documented in Newton Programmer’s Guide: System Software.

Add the layout file to your project. You can access the processed templates
with the GetLayout function, which is described in “GetLayout” beginning
on page 4-34.

To create a non-view object without the browser, you can type the frame into
a text file.

C H A P T E R 5

Laying Out and Editing Views

Browsing and Editing Templates 5-29

Customizing the Text Editor 5

You can install your own keystroke definitions to the NTK text editor by
adding them to the array protoEditor.keys through your global data file,
which is described in “Global Data File” on page 4-25.

The following line in your global data file, for example, causes selected code
to be evaluated when you press the period key on the numeric keypad.

protoEditor:DefineKey({key: 65}, 'EvaluateSelection);

The EvaluateSelection method is built into the editor.

The following example defines a function upcaseSelection , which
converts selected text to upper-case text, and ties the function to the key
combination Option-U.

protoEditor.upcaseSelection := func(off, len)

begin

:ReplaceSelection(Upcase(:Selection()));

end;

protoEditor:DefineKey({key: $u, option: true},

'upcaseSelection);

C H A P T E R 5

Laying Out and Editing Views

5-30 Browsing and Editing Templates

6-1

C H A P T E R 6

Debugging 6

This chapter explains how you can use NTK to debug software running on
the Newton. This chapter describes

■ the Inspector, a debugging window that lets you examine the Newton
from the development system

■ a collection of debugging functions you can issue interactively or embed
in software under development

■ a few common NewtonScript programming problems

WARNING

The functions described in this chapter are for debugging
purposes only. Do not include them in released products. ▲

The file NS Debug Tools.pkg, which is shipped with NTK, contains a
collection of debugging functions that let you examine the execution
environment in more detail. For a further discussion of debugging, see
Chapter 7, “Extended Debugging Functions.”

NTK is also shipped with a collection of special-purpose debugging tools
that you can install on the Newton. These tools are listed in Appendix E,
“Newton Debugging Applications.”

Figure 6-0
Table 6-0

C H A P T E R 6

Debugging

6-2 The Inspector

Compatibility 6
This chapter describes the debugging functions that are built into the
Newton ROM and available through NTK. All but two of these functions are
available on both the MessagePad and Newton 2.0 platforms.

This chapter describes the stack trace display on a Newton 2.0 PDA. The
current function in a stack trace on a Newton MessagePad is at stack level 2.

The GetSelfFromStack and GetLocalFromStack functions described in
this chapter are available only on the MessagePad platform. To examine the
execution environment on a Newton 2.0 device, you must use the functions
described in Chapter 7, “Extended Debugging Functions.”

The Inspector 6

The Inspector is a debugging window that lets you browse the Newton
object storage system and execute NewtonScript code on the Newton. You
make an Inspector connection through the Toolkit application running on a
Newton attached to the development system by a serial cable or an
AppleTalk network, as described in Chapter 1, “Installation and Setup.”

You communicate with the Newton through the Inspector window,
illustrated (with an open connection) in Figure 6-1.

C H A P T E R 6

Debugging

The Inspector 6-3

Figure 6-1 Inspector window

You use the buttons along the top of the Inspector window to open and close
the connection with the Newton and to control the debugging environment,
as described in “Using the Inspector” beginning on page 6-5.

You edit text in the Inspector window with the editor described in “Editing
Text” beginning on page 5-23 and in Appendix A, “Keyboard Text-Editing
Commands.”

The help field displays the parameters and return values of common
functions and messages when you type a left parenthesis after a function or
message name, as illustrated in Figure 6-1.

You execute code you’ve typed in the Inspector window by selecting the text
and pressing Enter or Command-Return. If you press Enter with no text
selected, the Newton executes the current line.

Help field

Inspector
controls

Text-editing
and results
area

C H A P T E R 6

Debugging

6-4 The Inspector

NOTE

Pressing the Return key does not trigger an evaluation of
text. ◆

After the Newton executes the selected code, the Inspector window displays
the results of the last statement executed.

The Inspector window gives you access to the NewtonScript interpreter and
the object store on the Newton. You can execute any valid NewtonScript
code in the Inspector window, and you can examine the Newton with the
functions described in this chapter.

The Inspector window also displays warnings and error messages that arise
during execution, during a build, or when you apply changes in the browser.

You can save the contents of the Inspector window through the File menu,
and you can open the Inspector window without connecting to the Newton
by choosing Open Inspector from the Windows menu.

You can use the Inspector to study your program while it’s executing and to
test out proposed changes. You can then make changes in the source code,
rebuild the package, and download the new version. Figure 6-2 illustrates
the debugging cycle.

Figure 6-2 The debugging cycle

Build and
download

Change
source files in

browser

Create
source code

Study app
while it executes
on the Newton

C H A P T E R 6

Debugging

The Inspector 6-5

Using the Inspector 6

You can use an Inspector connection to

■ examine and edit views and other objects

■ trace the flow of execution

■ collect performance statistics.

■ study memory use

■ examine your application’s drawing efficiency

You interact with the Newton by entering commands in the text-editing area
and manipulating the Inspector controls, which are illustrated in Figure 6-3
and described in the following subsections.

Figure 6-3 Inspector controls

The Print Depth pop-up menu—to the right of the Inspector buttons—
determines how many levels of the frame hierarchy are displayed in the
Inspector window when you enter a command that displays frames. The
Print Depth pop-up menu sets the value of the printDepth variable, which
is described in Table 6-1 on page 6-21.

Making an Inspector Connection 6

You initiate an Inspector connection by clicking the Connect button or
choosing Connect Inspector in the Windows menu. The Newton must be

Connect/Disconnect Exit break loopSet trace to nil

Set printDepthStack traceStop on throws

C H A P T E R 6

Debugging

6-6 The Inspector

attached to the development system by a serial cable or an AppleTalk
network, as described in Chapter 1, “Installation and Setup.”

You complete the connection from the Newton side by opening the Toolkit
application and tapping Connect Inspector.

When you’re typing into the Inspector window, you’re communicating
directly with the Newton, at what’s referred to as the top level. You can
create objects and define global variables, which you can access by simply
typing their names. Suppose, for example, you enter this text:

seaFrame := {name: "Pacific",

color: "blue",

size: "large"};

You can then display the frame by entering its name:

seaFrame;

The Inspector processes the statement and displays the results in two ways: a
transient reference (a hexadecimal number preceded by a pound sign) and a
textual representation:

#440B9C9 {name: "Pacific",

color: "blue",

size: "large"}

Applications that you build on the Macintosh and download to the Newton
are declared in the root view under their application symbol—there’s a slot
in the root view whose name is the application symbol and whose value is
the application base view. To reach objects defined in an application, you
must find them within the hierarchy. To see whether an application with the
signature hello:TUT is open, for example, you could test the
viewCObject slot with this statement:

call kViewIsOpenFunc with (GetRoot().|hello:TUT|);

The rest of this chapter describes a number of functions that let you examine
objects on the Newton through an Inspector connection.

C H A P T E R 6

Debugging

The Inspector 6-7

WARNING

The functions described in the rest of this chapter are for
debugging purposes only. Do not include them in released
products. You can place them in your source code
conditionally, as described in “Constants and Variables”
beginning on page 4-30. ▲

Retrieving Views 6

In software that has been compiled for debugging, you can use the Debug
function to retrieve a view made from a named template. This statement, for
example, returns the view built from the template named helloBase .

Debug("helloBase");

The Debug function searches all templates on the Newton looking for a slot
named debug whose value is a string that begins with the specified
characters. When Compile for Debugging is enabled in Project Settings, NTK
automatically creates a debug slot containing the template’s name in any
named template in your project. You can also add a slot named debug to any
frame in your application. NTK does not override the value you assign to a
debug slot you create yourself.

If it finds a match, Debug returns the view and displays a text representation
of it in the Inspector window:

#440E4B1 {_Parent: {#440ABB1},

 _proto: {#600828A1},

 viewCObject: 0x110AAB9,

 floaterLink: {#440FCA9},

 viewBounds: {#440FCF9},

 viewclipper: 17865641,

 base: <1>,

 viewFlags: 5}.

The values of the printDepth and printLength variables, described in
Table 6-1 on page 6-21, control how much information the Debug function

C H A P T E R 6

Debugging

6-8 The Inspector

displays. The example here shows the display when printDepth is set to 0
and printLength is set to nil .

Displaying the View Hierarchy 6

You can display the hierarchy under a view with the DV function, which
takes a view as its parameter. To display the hierarchy under the view based
on the template named helloBase , for example, you would enter:

DV(Debug("mainHello"));

Figure 6-4 illustrates the output.

Figure 6-4 The DV display

For the view and each of its children, the DV function displays:

■ the name of the view or—if it’s based on a proto template and is not
otherwise named—the name of the view’s proto encoded as an integer

Note

If you install the Newton package DebugHashToNames.pkg,
the Inspector can translate some of the integers to proto
names. ◆

■ an internal reference to the object, prefaced with the pound sign (#)

C H A P T E R 6

Debugging

The Inspector 6-9

■ the view’s bounds (left, top, right, bottom) in global coordinates

■ ahexadecimal number that is the value of the viewFlags slot

■ a list of the view flags set for the view

The first view listed is the view specified as the parameter to DV. Child views
appear with their own children beneath them, with vertical bars to indicate
each view’s position in the hierarchy.

Like the global function GetView , DV recognizes three special symbols for
the view argument:

■ The 'viewFrontMost symbol returns the frontmost view on the screen
that has the vApplication flag set in its viewFlags slot.

■ The 'viewFrontMostApp symbol returns the frontmost view on the
screen that has the vApplication flag set in its viewFlags slot, but not
including floating views (those with vFloating set in their viewFlags
slot).

■ The 'viewFrontKey symbol returns the view on the screen that
currently accepts keystrokes.

These symbols are evaluated at run time.

Displaying Values in the Inspector Window 6

You can display the value of objects in the Inspector window with the
Print , Write , and Display functions, each of which takes an object and
displays its value. You can display a hexadecimal string representation of a
binary object with the StrHexDump function, described on page 6-25.

The Print , Write , and Display functions are similar to each other, but
they follow different display conventions.

The Print function displays an object and adds a newline. It places
quotation marks around strings and places a dollar sign in front of
characters. The Display function places quotation marks around output
and identifies characters but does not add a newline. The Write function
adds no special marks or newlines.

C H A P T E R 6

Debugging

6-10 The Inspector

Consider a button whose text slot contains the value "Show Print" and
whose buttonClickScript slot contains this method:

func()

begin

Print("Using the Print function");

Print(text);

Print("x");

Print("\n");

Print($x);

end

When you tap the button with an Inspector connection open, the Inspector
window displays this text:

"Using the Print function"

"Show Print"

"x"

"

"

$x

Similarly, a button with the text slot "Show Display" and a similar
buttonClickScript method produces this output:

"Using the Display function""Show Display""x""

"$x

Finally, a button with a text slot containing "Show Write" and a similar
buttonClickScript method produces this output:

Using the Write functionShow Writex

x

The Print , Display , and Write functions are useful for debugging, but
they do nothing but waste time and space on a stand-alone Newton.

C H A P T E R 6

Debugging

The Inspector 6-11

Examining a Binary Object 6

You can use the StrHexDump function to retrieve a string that’s the
hexadecimal representation of a binary object. This example displays the
object in the text slot in the view named showFloaterButton , with a
space after every four bytes of output:

print(StrHexDump(Debug("showFloaterButton").text, 4));

The output is a hexadecimal representation of the text string, with a space
after every four bytes:

"00530068 006F0077 0020004C 0069006E 006B0065 00640020

00560069 00650077 0000"

The StrHexDump function is described in the section “StrHexDump” on
page 6-25.

Breaking 6

You can often examine problems more closely by putting the Newton into a
break loop, in which execution of the program is suspended and the Newton
accepts input only from the Inspector window. While the Newton is in a
break loop, you can examine the program stack, examine and edit objects on
the Newton, and execute NewtonScript code.

You can set a fixed break point in your application by embedding the
BreakLoop function in your source code:

If kDebugOn then BreakLoop();

You can also instruct the Newton to enter a break loop when an exception is
thrown by clicking Stop on Throws or setting the breakOnThrows variable.
When breakOnThrows is set to a non-nil value, the NewtonScript
interpreter reports each exception to the Inspector— before it searches for a
NewtonScript exception handler—and then enters a break loop. This option
allows you to examine the situation before the exception handlers are
invoked.

C H A P T E R 6

Debugging

6-12 The Inspector

If the Newton encounters another exception or otherwise executes the
BreakLoop function when it’s already in a break loop, it enters a subsidiary
break loop. The Inspector reports the level of the break loop as the Newton
enters and exits.

To emerge from a break loop, click the Exit Break Loop button or enter the
ExitBreakLoop function:

ExitBreakLoop();

You can raise your own exceptions and define exception handlers to modify
the flow of execution. The NewtonScript Programming Language describes
NewtonScript exception handling.

You can disable breaking for exceptions by setting breakOnThrows to nil .

When breakOnThrows is nil , the Inspector reports only exceptions that
aren’t handled.

You can use the extended debugging functions to

■ set break points in code that’s already compiled and downloaded

■ examine the Newton more thoroughly from a break loop.

Chapter 7, “Extended Debugging Functions,” contains a further discussion
of break loops and a description of the extended debugging functions.

Examining the Program Stack 6

While the Newton is in a break loop, you can examine the program stack by
clicking the Stack Trace button, which executes the StackTrace function.

The Inspector displays a trace, which is a series of run-time stack frames. For
each frame on the stack, the Inspector displays this information:

stack level The number of the stack frame.
function name The name of the receiver. This is generally the name of a

method or of a global function. The value nil in this
field represents a built-in NewtonScript function
without a name.

C H A P T E R 6

Debugging

The Inspector 6-13

program counter The value of the NewtonScript program counter within
that function.

Suppose, for example, you’re using a method stored in a slot named
initVector . You attempt to invoke the initialization routine by calling the
method by the wrong name:

: initArray(vector, 25);

The application compiles, but when you execute it on the Newton, the
application throws an exception. To find out which function is executing
when the exception is raised, you enable Stop on Throws and execute the
application again. This time, when it reaches the exception, the Newton
reports the problem in the Inspector window and enters a break loop.

Undefined method: InitArray

evt.ex.fr.intrp;type.ref.frame

-48809

Entering break loop: level 1

You click the Stack Trace button, and the Newton displays a stack trace
something like this:

Frame 2:functions.BreakLoop -1

Frame 3:buttonClickScript 0

Frame 4:viewClickScript 10

The most recent record on the stack appears first. The stack trace display
does not show the first two frames (that is, frames 0 and 1), which are created
and used by the Inspector. The stack level for the first record in the display is
therefore 2. The current function—that is, the function that was executing at
the time of the break—is in frame 3. In the example here, the break occured
during execution of the buttonClickScript method, which was called by
the viewClickScript method.

You can examine the execution environment more closely with the functions
described in Chapter 7, “Extended Debugging Functions.” If you’re using a
Newton MessagePad, you can examine the environment with the

C H A P T E R 6

Debugging

6-14 The Inspector

GetSelfFromStack and GetLocalFromStack functions described in this
chapter on page 6-27.

If you’ve installed the extended debugging functions on the Newton, the
StackTrace function produces the display described in “NewtonScript
Stacks” beginning on page 7-6.

Tracing the Flow of Execution 6

You can instruct the Inspector to report the flow of execution by setting the
value of the trace variable.

You can set the trace variable to functions to instruct the Inspector to
trace every function call and message send:

trace := 'functions;

The sending of the TrackHilite message, for example, with trace set to
functions might appear like this:

Sending TrackHilite(18070494) to #440F671

=> TRUE

The number in parentheses after the function name is the argument value to
TrackHilite . The hexadecimal number preceded by the pound sign is a
reference to the view to which the message was sent. The second line (which
starts with =>) is the return value from the TrackHilite method.

Depending on the types of the arguments, the trace displays either a
reference to or a textual representation of the value of each. The function
trace of the InitVector method used in the previous section, for example,
might look like this:

Sending InitVector(#44124A1, 25) to #44104C1

Calling SetLength(#44124A1, 25)

=> #44124A1

Calling -(25, 1)

=> 24

Calling Random(0, 100)

C H A P T E R 6

Debugging

The Inspector 6-15

=> 32

Calling setAref(#44124A1, 0, 32)

=> 32

Calling Random(0, 100)

=> 29

Calling setAref(#44124A1, 1, 29)

 => 29

. . .

Calling Random(0, 100)

=> 84

Calling setAref(#44124A1, 24, 84)

=> 84

=> NIL

Setting trace to the value true causes the Inspector to report every frame
and variable access.

A full trace generates significantly more output than a function trace. The
trace of the TrackHilite function with trace set to true , for example,
looks something like this:

Sending TrackHilite(18070461) to #440C921

get #44046C9 / #477.penSoundEffects = TRUE

get #440C921.viewCObject = 17865612

get #440C921.viewFlags = 2563

set #440C921.viewFlags = 33556995

get #440C921 / #440C4B9.icon = #6008CE71

get #440C921 / #3027B1.viewJustify = 2

 => TRUE

With full tracing in effect, execution quickly outstrips the display.

To turn off tracing, click the Trace Off button or, if possible amidst the
scrolling output, set trace to nil . Scrolling may continue for some time, as
the Inspector displays accumulated data.

C H A P T E R 6

Debugging

6-16 The Inspector

Examining Memory Use 6

You can use the Stats function to find out how much free memory is
available in the NewtonScript heap and how big the largest contiguous free
area is. For example:

Stats();

Free: 59716, Largest: 59540

The NewtonScript heap is a reserved part of system memory from which
space for all NewtonScript objects is allocated.

You can execute the GC function immediately before Stats to ensure that all
unallocated space is consolidated before you retrieve the memory statistics.

You can use the TrueSize function to calculate how much space an
individual object requires in the NewtonScript heap. TrueSize adds
together the sizes of the object itself and all of the heap objects it points to.

The total does not include read-only objects, such as objects in ROM or in the
package. The total also excludes memory elements that can be automatically
purged when more memory is needed, such as cached objects.

The TrueSize function reports the total number of objects measured and a
breakdown by object type, as illustrated inFigure 6-5 .

Figure 6-5 A TrueSize display

The three columns list the object type, the total number of objects of that
type, and the total size of the objects. The first entry, Objects, lists the totals.

The TrueSize function can also list

■ some or all individual objects that were included in the calculation or

C H A P T E R 6

Debugging

The Inspector 6-17

■ all objects within the target that point to a specified object.

The Newton memory-management software can’t remove an object as long
as another object contains a reference to it. The listing of objects that
reference an object helps you find obsolete references.

You supply a filter parameter that either suppresses the object listing or
specifies which objects to list. Figure 6-6 illustrates a listing of all objects
measured.

Figure 6-6 A TrueSize display with object list

The four columns in the object-by-object listing show the size of the object
itself, the size of that object together with the objects it points to, the class of
the object, and its path name.

The paths are not exact path expressions. Frame maps, for example, cannot
normally be referenced from NewtonScript, but they appear in the object list.
Child views—which are listed with kids in the path name—are constructed
from the view system, not from the viewChildren or stepChildren slots.

The filter parameter can be any of these values:

nil Displays the summary of objects by type and the frame
in which it collected the data, as illustrated in Figure 6-7.

C H A P T E R 6

Debugging

6-18 The Inspector

Figure 6-7 The TrueSize summary and result frame

'all Displays the summary and all objects measured, sorted
by the size of the objects exclusive of the objects they
point to.

'allKids Displays the summary and all objects measured, sorted
by the size of the objects inclusive of the objects they
point to.

classSymbol Displays the summary and all measured objects of the
specified class. You can specify any of the classes listed
in the result frame in Figure 6-7.

reference Displays the summary and all paths within the specified
object that point to the object specified by the reference,
as illustrated in Figure 6-8.

C H A P T E R 6

Debugging

The Inspector 6-19

Figure 6-8 A TrueSize listing of references

If you specify nil for the object to be searched,
TrueSize searches the root view, the global variables,
and the undo-buffer frame—that is, most of memory—
for references to the object specified in the filter
parameter.

You can use TrueSize to track the space used by an object over time. You
can compare an application’s needs immediately after a reset, for example,
then while it’s executing, and again after it exits. Figure 6-9 illustrates a
TrueSize measurement over time of the tutorial application developed in
Chapter 3, “A Quick Tour of NTK.”

C H A P T E R 6

Debugging

6-20 The Inspector

Figure 6-9 TrueSize measurements over time

Examining Drawing Efficiency 6

You can use the ViewAutopsy function to examine the efficiency of your
application’s drawing routines.

You can use ViewAutopsy in two different ways:

outlining views If you call ViewAutopsy with an argument of nil , the
Newton toggles the outlining of views. When view
outlining is in effect, the Newton displays the boundary

C H A P T E R 6

Debugging

The Inspector 6-21

of each view with a gray line. You can use this display
to examine justification and view-layering problems.

slowing drawing If you call ViewAutopsy with an integer argument, the
Newton pauses for that number of tics after it draws
each view. This option allows you to examine the
sequence in which your application draws its views.
You might find that views are redrawn, or possibly
drawn and then obscured, before the display stabilizes.
You can improve performance by eliminating
unnecessary drawing.
To eliminate the delay, call ViewAutopsy with an
argument of 0.

The ViewAutopsy function is described in “ViewAutopsy” on page 6-30.

Debugging Variables 6
You can control how the Inspector operates by setting a number of variables,
which are summarized in Table 6-1. “Using the Inspector” beginning on
page 6-5 describes these variables as they arise.

Table 6-1 Debugging variables

Variable Value Effect

breakOnThrows non-nil The Inspector reports each
exception and enters a break loop.

nil The Inspector reports only
exceptions that are not handled by
either the application or the
Newton exception handlers.

trace 'functions The Inspector displays tracing
information for each function that’s
called and message that’s sent.

C H A P T E R 6

Debugging

6-22 The Inspector

Debugging Functions 6
This section describes the debugging functions that are built into the Newton
system software. You can embed these functions in an application under
development or call them interactively in the Inspector window.

WARNING

The functions described in this chapter are for debugging
purposes only. Do not include them in released products.
You can place these functions in your source code
conditionally, as described in “Constants and Variables”
beginning on page 4-30. ▲

You can use the debugging functions to

■ retrieve and display objects (Debug, DV, Display , Print , Write , and
StrHexDump)

■ enter and exit break loops and examine the program stack (BreakLoop ,
ExitBreakLoop , and StackTrace)

true The Inspector displays tracing
information for function calls and
for variable and slot accesses.

nil The Inspector displays no tracing
information.

printDepth nil A frame display shows all levels of
the hierarchy.

n A frame display shows n levels of
the hierarchy.

printLength nil A frame display shows all slots in
the frame.

n A frame display shows the first n
slots in the frame.

Table 6-1 Debugging variables (continued)

Variable Value Effect

C H A P T E R 6

Debugging

The Inspector 6-23

■ examine memory use (Stats , TrueSize , and GC)

■ slow down drawing and highlight view boundaries so you can examine
your application’s drawing efficiency (ViewAutopsy)

Retrieving and Displaying Objects 6

You use the functions described in this section to retrieve objects and to print
to the Inspector window.

Debug 6

Debug(templateName)

Returns the view whose template contains a slot named debug with a value
that matches the string in the templateName parameter. NTK automatically
creates a debug slot containing the name of any named slots on an
application built with the Compile for Debugging option in effect.

templateName The name of the template you want to examine, as a
string.

This function scans all of the templates in the system and returns the view
for the first match it finds. A template is considered a match if the initial
characters in a slot named debug match the characters in templateName. If no
match is found, the Debug function returns nil .

When Debug finds a match, it displays a textual representation of the view
contents in the Inspector window and returns the view. The value of the
PrintDepth variable, listed in Table 6-1 on page 6-21, controls the depth of the
view display.

DV 6

DV(view)

Displays a view and its children in the Inspector window.

view The view object that you want to display.

The DV function always returns nil .

C H A P T E R 6

Debugging

6-24 The Inspector

A quick way to display the contents of a view is to use the Debug function.
To display the view made from a template named helloBase , for example,
you would enter this text:

DV(Debug("helloBase"));

If a view is visible on the screen, DV produces a display of the view contents
in the Inspector window, as described in “Displaying the View Hierarchy”
beginning on page 6-8, and, if the application was built with Compile for
Debugging in effect, flashes the view on the Newton screen. If the view is not
visible, DV returns nil .

You can also specify one of three special symbols for the view argument:

■ The 'viewFrontMost symbol returns the frontmost view on the screen
that has the vApplication flag set in its viewFlags slot

■ The 'viewFrontMostApp symbol returns the frontmost view on the
screen that has the vApplication flag set in its viewFlags slot, but not
including floating views (those with vFloating set in their viewFlags
slot)

■ The 'viewFrontKey symbol returns the view on the screen that
currently accepts keystrokes

Print 6

Print(object)

Displays the value of object in the Inspector window.

object An object that you want displayed in the Inspector
window.

The Print function lets you print any NewtonScript object. The Print
function appends a newline character to its output, displays quotation marks
around strings, and prefixes characters with $.

The Print function always returns nil .

For examples illustrating the Print , Display , and Write functions, see the
section “Displaying Values in the Inspector Window” beginning on page 6-9.

C H A P T E R 6

Debugging

The Inspector 6-25

Display 6

Display(object)

Displays the value of object in the Inspector window.

object An object that you want displayed in the Inspector
window.

The Display function is exactly like the Print function except it does not
append a newline character to its output.

Write 6

Write(object)

Displays the value of object in the Inspector window.

object An object that you want displayed in the Inspector
window.

The Write function is exactly like the Print function except it does not
append a newline character and does not display quotation marks around its
text output.

StrHexDump 6

StrHexDump(object, spaceInterval)

Returns a hexadecimal string representing the value of the object.

object The binary object you want to examine.

spaceInterval An integer specifying where to put spaces in the hex
string output. To put spaces after every four bytes, for
example, specify 4. For no spaces at all, specify 0.

You can use StrHexDump to examine the contents of a binary object.

Note

This function can return an extremely large string object,
depending on the length of the binary object you specify.
Use it carefully. ◆

C H A P T E R 6

Debugging

6-26 The Inspector

Using Break Loops 6

This section describes the functions you use to enter and exit break loops and
to examine the program stack while in a break loop. You can examine the
stack more closely with the extended debugging functions, described in
Chapter 7, “Extended Debugging Functions.”

BreakLoop 6

BreakLoop()

Halts execution and allows you to examine the state of your application on
the Newton. You can also execute any valid NewtonScript code, including
the functions built into the Newton, while in a break loop, as described in
“Breaking” beginning on page 6-11.

If the Newton executes the BreakLoop function when it’s already in a break
loop, it enters a subsidiary breakloop.

To exit a break loop, click the Exit Break Loop button or execute the
ExitBreakLoop function.

ExitBreakLoop 6

ExitBreakLoop()

Exits a break loop.

When an Inspector connection is open, the Newton enters a break loop if

■ it executes the BreakLoop function or

■ an exception occurs while BreakOnThrows is true , as described in
“Breaking” beginning on page 6-11.

If one of these conditions arises when the Newton is already in a break loop,
it enters a subsidiary break loop. Execution of the ExitBreakLoop function
exits only the current-level break loop. Program execution resumes when
you exit the first-level break loop.

The ExitBreakLoop function always returns nil .

C H A P T E R 6

Debugging

The Inspector 6-27

StackTrace 6

StackTrace()

Prints a stack trace in the Inspector window.

“Examining the Program Stack” beginning on page 6-12 illustrates a stack
trace and describes its contents.

If you’ve installed the extended debugging functions, the StackTrace
function displays the stack trace described in “NewtonScript Stacks” on
page 7-6.

The StackTrace function always returns nil .

GetLocalFromStack 6

GetLocalFromStack(level, symbol)

Displays and returns the value of the local variable symbol.

level The number of the stack frame you want to examine.

symbol The symbol for the local variable you want to examine.

The first two entries on the stack—that is, levels 0 and 1—are used by the
Inspector itself. To access the frame for the current function when the
Newton is in a break loop, start at level 2.

The GetLocalFromStack function returns the value of the variable symbol.

Note

The GetLocalFromStack function is available only on the
Newton MessagePad platform. ◆

GetSelfFromStack 6

GetSelfFromStack(level)

Returns the function at the stack frame level specified by the level parameter.

level The number of the stack frame you want to examine.

C H A P T E R 6

Debugging

6-28 The Inspector

The first two entries on the stack—that is, levels 0 and 1—are used by the
Inspector itself. To access the frame for the current function when the
Newton is in a break loop, start at level 2.

Note

The GetSelfFromStack function is available only on the
Newton MessagePad platform.

Examining Memory Use 6

You use the functions described in this section to examine memory use on
the Newton and to force a garbage collection.

Stats 6

Stats()

Returns the amount of free memory in the NewtonScript heap and displays
the amount of free memory and the size of the largest area of free memory.

The Stats function returns the amount of free memory in bytes. You can call
GC first to ensure that any space occupied by unreferenced objects has been
reclaimed.

TrueSize 6

TrueSize(object, filter)

Measures the total RAM requirements of an object by adding together its size
and the sizes of all objects it points to. The total does not include read-only
objects, such as objects in ROM or in the package.

object A reference to the object to be measured.

If you pass a value of nil , TrueSize looks at the root
frame, the global variables, and the undo-buffer frame.
You use this option when looking for references to an

C H A P T E R 6

Debugging

The Inspector 6-29

object, as described in the description of the filter
parameter.

filter A filter that controls what data is collected and
displayed.
nil Displays the summary of objects by type

and the frame in which the data was
collected.

'all Displays the summary and a list of all
objects measured, sorted by the size of the
objects exclusive of the objects they point
to.

'allKids Displays the summary and a list of all
objects measured, sorted by the size of the
objects inclusive of the objects they point
to.

classSymbol Displays the summary and all objects of
the specified class.

reference Displays the summary and all paths
within the specified object that point to
the specified reference.
To look for the reference throughout most
of memory, pass a value of nil for the
object parameter.

The TrueSize function summarizes the number and kinds of objects
measured and collects specific data about some or all of them, as described in
“Examining Memory Use” beginning on page 6-16.

GC 6

GC()

Forces a garbage collection in the NewtonScript frames heap, a reserved area
of system memory from which the system allocates space for all
NewtonScript objects.

The GC function frees all allocated objects that are no longer referenced. The
Newton system software automatically performs a garbage collection when

C H A P T E R 6

Debugging

6-30 The Inspector

memory is needed. You can call GC to ensure that unallocated space is
consolidated before you call the Stats or TrueSize functions.

The GC function always returns nil .

Examining Drawing Efficiency 6

You use the ViewAutopsy function to slow down drawing and highlight
views so you can examine the efficiency of your application’s drawing.

ViewAutopsy 6

ViewAutopsy(functionSpec)

Provides two ways to examine how views are drawn. Supply a value of nil
to turn on and off the outlining of views, in which the boundary of each view
is marked by a gray line. Supply an integer to specify a pause (in ticks) after
each view is drawn.

functionSpec A value that specifies which drawing option you’re
manipulating:
nil Toggles view outlining.

This option affects both the Newton
screen and printed output. Use it for
debugging justification and view-layering
problems.

integer Forces a pause for the specified number of
ticks after each view is drawn.
This option allows you to examine the
drawing of views, so you can eliminate
unnecessary redrawing.
A value of 0 turns off the delay option
with no effect on outlining.

C H A P T E R 6

Debugging

The Inspector 6-31

Debugging Function Summary 6

Retrieving and Displaying Objects 6

Debug(templateName)
DV(view)
Print(object)
Display(object)
Write(object)

Using Break Loops 6

BreakLoop()
ExitBreakLoop()
StackTrace()
GetLocalFromStack(level, symbol)
GetSelfFromStack(level)

Examining Memory Use 6

Stats()
TrueSize(object, filter)
GC()

Examining Drawing Efficiency 6

ViewAutopsy(functionSpec)

C H A P T E R 6

Debugging

6-32 Newton Programming Problems and Tips

Newton Programming Problems and Tips 6

This section describes several common Newton programming problems and
provides some programming tips.

This section addresses

■ setting a slot in the wrong frame because of the inheritance rules

■ forgetting to set the function value before exiting the function

■ producing memory problems due to unused frame references

■ generating unexpected comparison results when a value is nil

■ generating errors when using nil in an expression

■ trying to resize a read-only object

■ drawing text that is not appearing on the screen

■ attempting to print from within communications code

■ using global variables to examine exceptions

■ accessing the built-in error codes and messages

Common Programming Problems 6
This section describes a number of common NewtonScript programming
problems.

Setting the Wrong Slot Value 6

If you make an assignment to a slot that doesn’t exist, NewtonScript
automatically creates the slot in the current view; you may have intended to
change a slot value elsewhere.

C H A P T E R 6

Debugging

Newton Programming Problems and Tips 6-33

If the slot you are setting already exists in the view, your assignment works
properly. For example, the assignment to the slot named time in the
following example always works as expected.

myTemplate := {

viewClass: clView,

viewBounds: SetBounds(0,0, screenWidth, screenHeight),

viewFlags: vApplication,

debug: "myTemplate",

time: 0,

viewSetupDoneScript: func()

time := Time()

...

}

If you make an assignment to a slot that doesn’t exist, NewtonScript creates
it as a local variable within the scope of the method only. If the slot exists
only in the parent of your view, its value is set in the parent view.

Suppose, for example, that in the view in this example there were no slot
named time , but the parent view did include a slot named time . Then, the
assignment

time := Time()

would assign the value of the Time function to that slot in the parent view.

You can use the special pseudo-variable self to make sure that the slot is
created in your view if it does not yet exist there. The value of self is
always the current receiver. In the following example, a slot named time is
created in the myTemplate view when the assignment statement is executed.

myTemplate := {

viewClass: clView,

viewBounds: SetBounds(0,0, screenWidth, screenHeight),

viewFlags: vApplication,

debug: "myTemplate",

C H A P T E R 6

Debugging

6-34 Newton Programming Problems and Tips

viewSetupDoneScript: func()

self.time := Time()

...

}

Using self ensures that the slot is created if it does not exist in the
current receiver.

Similarly, if you want to be sure that you are accessing or creating a slot in
the parent of your view, use the Parent method, as shown here:

self:Parent().time := Time()

For more details on how inheritance affects setting slot values, see The
NewtonScript Programming Language.

Failing to Set a Return Value 6

Every function in NewtonScript returns a value, whether or not you
explicitly assign one. If you use the return value, make sure that all pathways
through your function establish one.

Producing Memory Problems With Unused Frame References 6

If you maintain a reference to a child view, the Newton object system retains
the child view. If you keep references to child views that are no longer
needed, your application might run out of memory and display an exception.

The solution is to clean up (set to nil) your child view references when you
are done with the views. This allows the Newton object system to reclaim the
memory used by the view frame.

Generating Unexpected Comparison Results With nil Values 6

If NewtonScript can’t find a slot in a frame, it considers the slot’s value to be
nil . This assumption can mask mistyped slot names and produce
misleading results.

Consider, for example, this function:

C H A P T E R 6

Debugging

Newton Programming Problems and Tips 6-35

MyCompareFrame: func(frame1, frame2)

begin

if (frame1.date = frame2.date) and

(frame1.month = frame2.month) then

true;

end

If you made this call,

MyCompareFrame(frame1, frame2)

to compare the following two frames,

frame1 := {

 day: 5, // note day instead of date

 month: 12,

};

frame2 := {

 day: 3, // note day instead of date

 month: 12,

};

the result would be true . Neither frame1 nor frame2 contains a slot
named date , which is what the MyCompareFrame function is comparing.
The statement

frame1.date = frame2.date

evaluates to

nil = nil

which causes the function to return true .

C H A P T E R 6

Debugging

6-36 Newton Programming Problems and Tips

Using nil in Expressions 6

A non-numeric value in a mathematical expression generates an error. For
example, the following buttonClickScript method generates an
exception:

func()

begin

local index:=0;

local str:="myString";

print("The button has been clicked");

index := index + StrPos(str, "xyz", 0);

print("Reached the end of the button click script");

end

If you use this method, you’ll see the following output in the Inspector
window:

"The button has been clicked"

Exception |evt.ex.fr.type;type.ref.frame|: [-48404]

Expected a number. Got: {value: NIL}

You get this output because the StrPos function does not find the substring
"xyz" and thus returns nil as its value.

You can also generate this error if you define a template that is based on a
system proto and you forget to define one of the required numeric slots. If
the value of one of these slots is used in a computation, then an exception is
raised. For example, if you create a template based on the protoInputLine
proto and do not define the viewLineSpacing slot, an error occurs because
that value is used in the viewDrawScript method of the template.

Writing to a Read-Only Object 6

Templates are commonly read-only objects, and trying to alter one raises an
error. This error arises in two common cases:

■ trying to resize an array stored in a template

C H A P T E R 6

Debugging

Newton Programming Problems and Tips 6-37

■ trying to add children to a view whose stepChildren array is stored in
a template

Suppose, for example, you create an evaluate slot with an array defined as its
default value:

myArray: [1, 2, 3, 4]

When you instantiate the template at run time, a RAM-based view is created
that inherits the read-only array. If you try to modify this array by adding
elements to it, you receive a read-only error.

To add elements to the array, you need to clone it first to create a RAM-based
copy:

if IsReadOnly(myArray) then myArray := Clone(myArray);

Cloning the array copies the read-only array into RAM, creates a new
myArray slot in the RAM-based view, and puts a reference to the RAM copy
of the array in that slot.

A read-only error can also occur with slots that contain frames and strings.
The error is less common with strings, though, because they are usually
replaced rather than changed in place.

You might also encounter problems with writing to a read-only object when
you define a template that is composed of multiple sub-templates. The
template contains a stepChildren array that is predefined. When you
instantiate the template at run time, a RAM-based view is created that
inherits the read-only array. If you want to add children to the view at run
time, you need to clone the stepChildren array:

if not self.stepChildren then

self.stepChildren := [];

else if IsReadOnly(stepChildren) then

stepChildren := Clone(stepChildren);

AddArraySlot(stepChildren, newKidInTown);

C H A P T E R 6

Debugging

6-38 Newton Programming Problems and Tips

Text Is Not Drawing 6

If you’ve passed a valid string to the MakeText function, but the text does
not appear on the screen, it’s possible that the rectangle you’ve specified in
the arguments to MakeText is too small. Try passing a larger rectangle to the
MakeText function.

Problems with Printing and Communications 6

Problems with the Print , Write , or Display functions are common in
communications code, especially if the functions appear inside state frames.
Check first for these two likely causes:

■ The serial port is already in use for other communications. Only one
communications channel can be open at any time.

■ The Print statements are generating a lot of interrupts. This interferes
with the serial line and causes hang-ups in the communications.

If you need to issue a quick message from within your communications code
and need to avoid calling Print , Write , and Display , you can use the
system notification facility instead. For example, you could display a quick
message with the following code.

GetRoot():Notify(kNotifyAlert,

EnsureInternal("My Comms App"),

EnsureInternal("I'm low on memory"));

Another technique for reporting messages is to create an error array in the
application base view. You can then add strings to this array from within
your communications code, as shown here:

AddArraySlot(GetRoot().(kAppSymbol).DebugArray,

"My Comms App:" && myDebugData);

C H A P T E R 6

Debugging

Newton Programming Problems and Tips 6-39

Programming Tips for Debugging 6
This section provides several suggestions to help you add debugging code to
your applications.

Using Global Variables to Examine Exceptions 6

If you are handling exceptions in your application, you can use the global
variables shown in Table 6-2 to discover information about the exception.
Note that the values of these variables are assigned by the top-level (system)
exception handler, which means that you can use the values reliably only
after the exception alert message has been displayed on the Newton screen.

IMPORTANT

The system assigns the current exception values to lastEx ,
lastExError , and lastExMessage after the exception
message has been displayed on the screen. These variables
are not current when you set BreakOnThrows to true in
the Inspector. ▲

Maintaining View State 6

If you need to maintain the state of a view, store your state information in a
soup. If you maintain the view state in a view frame, you lose the state
information when the view is closed.

Table 6-2 Exception handling global variables

Variable Description

lastEx The string name of the most recent exception

lastExError The integer error code of the most recent exception

lastExMessage The string message associated with the most recent
exception, if the exception contains a message

C H A P T E R 6

Debugging

6-40 Newton Programming Problems and Tips

Accessing the Parent of a View 6

You can access the parent of a view with the Parent function For example:

myParent := myView:Parent();

Don’t use a path name that starts with _parent .

7-1

C H A P T E R 7

Extended Debugging
Functions 7

This document describes the extended NewtonScript debugging functions,
which let you study and manipulate an application running on a Newton
personal digital assistant.

You can use the functions described in this chapter to

■ set break points in an application after it’s been compiled and installed

■ step through program execution

■ examine and change the execution environment

■ display a textual representation of the interpreter instructions

WARNING

The functions described in this chapter are for debugging
purposes only. Do not include them in released products.

C H A P T E R 7

Extended Debugging Functions

7-2 Compatibility

Compatibility 7

You can install the extended debugging functions only on the Newton 2.0
platform.

Installing the Extended Debugging Functions 7

The extended debugging functions are distributed in a Newton package file
named NS Debug Tools.pkg. You download them to the Newton using the
Newton Package Installer. To get the most out of the extended debugging
functions, install the package named DebugHashToName.pkg as well.

To remove the extended debugging functions, scrub the NS Debug Tools icon
in the Extras drawer. To remove DebugHashToName, scrub its icon in the
Extensions folder in the Extras drawer.

Using the Extended Debugging Functions 7

The extended debugging functions let you study NewtonScript functions in
a Newton application, through an NTK Inspector window with an open
connection to a Newton. The extended debugging functions are executed on
the Newton.

When the NTK Compile for Debugging option is set, NTK saves debugging
information about each NewtonScript function it compiles. The extended
debugging functions use this information—always enable Compile for
Debugging when you’re compiling code that you plan to examine with the
functions described in this chapter.

C H A P T E R 7

Extended Debugging Functions

Using the Extended Debugging Functions 7-3

Break Loops and Break Points 7
Many of the debugging functions are most useful while the Newton is in a
break loop—that is, while program execution has been suspended and the
Newton is accepting input only from the Inspector connection. When it
receives input, the Newton processor evaluates it, prints a visual
representation of the value of the last statement evaluated, and resumes
waiting for input. This process is the read-evaluate-print (REP) loop.

You can set the BreakOnThrows variable to a non-nil value to cause the
Newton to go into into a break loop whenever an exception is raised.

With the extended debugging functions you can set and manipulate break
points in an application that’s already compiled and downloaded. While the
Newton is in a break loop, you can step through the application and examine
and change the state of the program.

Enabling Break Points 7

To use the break points you’ve added to functions that are already compiled,
you must turn on the interpreter code that checks for them by either:

■ checking Enable Breakpoints in the NS Debug Tools application, or

■ executing the GloballyEnableBreakPoints function with a non-nil
value as the argument.

Checking for break points slows down execution of all NewtonScript code,
whether or not it contains break points. Be sure to disable break points when
you’re not using the extended debugging functions.

When break points are disabled, the extended debugging functions might
not be able to supply complete information in some cases:

■ Program counter values might be inaccurate in the display upon entering
a break loop and in reports by the StackTrace , Where, and
GetCurrentPC functions. If an inaccurate program counter value is
possible, the display includes a question mark (?) after the value. You can
suppress the warning by placing a slot named NoInaccWarning with a
non-nil value in the NSDParamFrame, described in “Adjusting the
Debugging Environment” on page 7-10.

C H A P T E R 7

Extended Debugging Functions

7-4 Using the Extended Debugging Functions

■ Occasionally, the function name and the number of arguments are not
available. In this case, the display includes as much information as
possible.

■ Non-interpreted functions might not be reported in the stack trace
displays.

You can avoid all of these problems by enabling break points whenever
you’re using the extended debugging functions, whether or not you’re using
break points.

Creating, Removing, and Disabling Break Points 7

You can create a break point in an interpreted function with the
InstallBreakPoint function. You specify both a function object and a
program counter value, which represents an offset into the function. To insert
a break point at the beginning of a slider’s changedSlider method, for
example, you would execute a statement something like this:

point :=

InstallBreakPoint(Debug("mySlider").changedSlider,0);

If the function is in the current call chain, you can reach the function object
with the GetCurrentFunction function, which returns the function at the
specified place in the call chain. To set a break point in the function that was
executing just before a break occurred, for example, you would execute this
statement:

point := InstallBreakPoint(GetCurrentFunction(0), 0);

You can remove break points individually with RemoveBreakPoint —
passing the break point specification frame returned by
InstallBreakPoint —or you can remove all break points at once with
RemoveAllBreakPoints .

You can also disable an individual break point with the
EnableBreakPoint function, and you can name a break point for later
identification with SetBreakPointLabel .

C H A P T E R 7

Extended Debugging Functions

Using the Extended Debugging Functions 7-5

The stepping functions create temporary break points, which are removed as
soon as they’re used.

You can enable or disable all break points in an application without
removing them with the function GloballyEnableBreakPoints .

Making Break Points Conditional 7

You can make break points conditional by defining a function named
NSDBreakLoopEntry that evaluates the circumstances and either cancels or
authorizes the break.

The BreakLoop function—which is executed when the Newton reaches a
break point—looks for a global function with the name
NSDBreakLoopEntry and, if it finds one, executes it. The function is called
with three parameters:

■ the name of the function in which the break occurred

■ the value of that function’s program counter

■ an array containing the arguments to the function

If the NSDBreakLoopEntry function returns a non-nil value, the Newton
enters a break loop. If NSDBreakLoopEntry returns nil , the Newton does
not enter the break loop.

When the Newton exits the BreakLoop function, it looks for a global
function with the name NSDBreakLoopExit and, if it finds one, executes it.
The function is called with a single argument, which reports whether or not
the Newton actually entered the break loop. If NSDBreakLoopEntry
executed, NSDBreakLoopExit receives its return value; if no
NSDBreakLoopEntry was found, NSDBreakLoopExit receives the value
true .

Entering a Break Loop 7

When the Newton enters a break loop with the extended debugging
functions installed, the Inspector displays

■ the name of the current function

C H A P T E R 7

Extended Debugging Functions

7-6 Using the Extended Debugging Functions

■ the value of the current program counter and a textual representation of
the instruction that the program counter is pointing to

■ the break level number

The example here illustrates a break caused by a break just before instruction
25 of a changedSlider method.

mySlider.changedSlider(), 25: Pop

Entering break loop: level 1

NewtonScript Stacks 7
The NewtonScript interpreter keeps its own collection of data structures.
NTK presents the data to you as if there were a single function-call stack,
which contains an activation record for each active function. An activation
record is identified by its level on the stack; the current function is at level 0.
A stack activation record contains

■ a program counter that points to the next instruction that’s to be executed

■ the receiver and implementor, if any

■ the function’s parameters, temporary variables, and named variables

You can use the StackTrace function to display a summary of the
information in the function-call stack. For example,

mySlider.changedSlider():25

90112.viewFinalChangeScript(50, 83):29

Each line in the display represents one activation record. The current
function (changedSlider in this example) appears first in the display; it is
the record at stack level 0. In this example, viewFinalChangeScript is at
stack level 1. The display also shows the values of the local variables (in
parentheses) and the current program counter value (following the colon).

You can use the stack-access functions—described in “Accessing the Stack”
beginning on page 7-16—to examine the functions and their context in more
detail and to change stack values.

C H A P T E R 7

Extended Debugging Functions

Using the Extended Debugging Functions 7-7

Paths to Slots 7
You can use the GetPathToSlot and GetPathWhereSet functions to find
where in a frame’s parent chain a specified slot exists and where in the chain
the slot’s value would change.

Suppose, for example, the tutorial application developed in Chapter 3 is
open on the Newton screen. To find out where in the view hierarchy the
text slot in the slowFloaterButton view exists, you could enter this text:

GetPathToSlot(debug("showFloaterButton"), 'text);

The text slot is defined in the button’s proto template, and so the Newton
supplies this path expression:

#4419829 _proto.text

If you were to change the value of the text slot at run time, however, the
change would affect only the current instance. The GetPathWhereSet
function, therefore, returns a path expression to the text slot within the
button’s view:

GetPathWhereSet(debug("showFloaterButton"), 'text);

#4419A4D text

NewtonScript Byte Code 7
The NTK compiler turns the text—or source code—for a NewtonScript
function into a function object—that is, a frame containing, among other
things, the hardware-independent byte code instructions that are interpreted
when the function executes.

You can display a byte code listing of a NewtonScript function with the
Disasm function. This example shows a simple function and its
disassembled instructions:

func()

begin

SetValue(lowerDisplay, 'text, numberstr(viewValue));

C H A P T E R 7

Extended Debugging Functions

7-8 Using the Extended Debugging Functions

:changeLower(viewValue, count);

end

Disasm(Debug("mySlider").changedSlider);

0: FindVar lowerDisplay

1: Push 'text

2: FindVar viewValue

3: Push 'NumberStr

4: Call 1

5: Push 'SetValue

6: Call 3

7: Pop

8: FindVar viewValue

9: FindVar count

10: PushSelf

11: Push 'changeLower

14: Send 2

15: Return

You can disassemble a part of a function with the DisasmRange function.

The disassembly listing shows the offsets to instruction boundaries, which
you need for the program counter argument you pass to
InstallBreakPoint and the stepping function RunUntil .

If a function is throwing an exception, you can install a break point at a
specific instruction, well before the exception is raised, and then use the
stepping functions and the stack-access functions to examine the
circumstances leading up to the exception.

The disassembly listing is not identical to the actual byte code—it’s merely a
textual reconstruction of the binary instruction object. “Interpreter
Instructions” beginning on page 7-23 describes the disassembler output.

C H A P T E R 7

Extended Debugging Functions

Extended Debugging Functions Reference 7-9

Extended Debugging Functions Reference 7

This section describes the extended NewtonScript debugging functions.

WARNING

The functions described in this chapter are for debugging
purposes only. Do not include them in released products. ▲

You can use the extended debugging functions to

■ manipulate break points (InstallBreakPoint , RemoveBreakPoint ,
RemoveAllBreakPoints , GetAllBreakPoints , and
GloballyEnableBreakPoints , plus the optional user-defined
functions NSDBreakLoopEntry and NSDBreakLoopExit)

■ step through application execution (Step , StepIn , StepOut , and
RunUntil)

■ access the function-call stack (StackTrace , GetCurrentFunction ,
GetCurrentPC , SetCurrentPC , Where, GetAllTempVars ,
GetTempVar , SetTempVar , GetAllNamedVars , GetNamedVar ,
SetNamedVar , GetCurrentReceiver , and GetCurrentImplementor)

■ retrieve slot paths (GetPathToSlot and GetPathWhereSet)

■ display a disassembly listing of compiled code (Disasm and
DisasmRange).

C H A P T E R 7

Extended Debugging Functions

7-10 Extended Debugging Functions Reference

Adjusting the Debugging Environment 7
You can adjust the behavior of some extended debugging functions by
defining a global frame named NSDParamFrame, in which you place slots
with predefined meanings:

verbose A flag that controls how much information some
functions display.
nil a brief description
non-nil a longer description

NoInaccWarning A flag that controls whether or not some functions
display a warning when the information returned might
be inaccurate. These warnings are necessary only when
checking for break points is disabled.
nil a warning is displayed
non-nil no warning is displayed

This statement entered in the Inspector window, for example, suppresses the
longer comments and the warnings when information returned might be
inaccurate.

NSDParamFrame := {verbose: nil,

noInaccWarning: true

};

You can also include NSDParamFrame slots that specifically control the
display of disassembly listings, as described in “Interpreter Instructions”
beginning on page 7-23.

Manipulating Break Points 7
You use the functions described in this section to manipulate break points in
an application that’s already compiled and installed on the Newton.

C H A P T E R 7

Extended Debugging Functions

Extended Debugging Functions Reference 7-11

InstallBreakPoint 7

InstallBreakPoint(function, PC)

Sets a break point within a specified function just before a specified
instruction.

function A function object.

PC A program-counter value within the function; this value
must point to the beginning of a byte code instruction.

The InstallBreakPoint function returns a break point specification
frame, which you can later pass to RemoveBreakPoint .

RemoveBreakPoint 7

RemoveBreakPoint(breakPointSpec)

Removes the specified break point.

breakPointSpec A break point specification frame, returned previously
by InstallBreakPoint .

EnableBreakPoint 7

EnableBreakPoint(breakPointSpec, enableMode)

Enables or disables an individual break point, depending on the value of the
enableMode parameter.

breakPointSpec A break point specification frame, returned previously
by InstallBreakPoint .

enableMode The instruction to turn turn the break point on or off:

<>nil Enable the break point.
nil Disable the break point.

RemoveAllBreakPoints 7

RemoveAllBreakPoints()

Removes all break points installed by InstallBreakPoint .

C H A P T E R 7

Extended Debugging Functions

7-12 Extended Debugging Functions Reference

GetAllBreakPoints 7

GetAllBreakPoints()

Returns a frame describing all current break points. This frame contains a
slot named programCounter whose value is an array of break point
specifications. Each break point specification contains instructions and
programCounter slots used by the NewtonScript interpreter to determine
when to trigger the break point.

GloballyEnableBreakPoints 7

GloballyEnableBreakPoints(enableMode)

Enables or disables checking for break points in the NewtonScript interpreter.

enableMode The instruction to turn checking either on or off:

<>nil Enable checking for break points.
nil Disable checking for break points.

The GloballyEnableBreakPoints function returns the previous status of
breakpoint enabling. It also adjusts the NS Debug Tools package icon in the
Extras Drawer to reflect the breakpoint-enable status.

While break points are enabled, the execution of all NewtonScript code—
with or without break points—is slowed down while the interpreter checks
for break points. Disabling all break points allows NewtonScript code to run
at full speed.

You can also enable and disable break points through the Enable Breakpoints
checkbox in the NS Debug Tools application on the Newton.

C H A P T E R 7

Extended Debugging Functions

Extended Debugging Functions Reference 7-13

SetBreakPointLabel 7

SetBreakPointLabel(breakPointSpec, label)

Establishes a label for a specified break point.

breakPointSpec A break point specification frame, returned previously
by InstallBreakPoint .

label The label, which is placed in the break point
specification frame. The label can be a string, a symbol,
or any other valid NewtonScript value.

GetBreakPointLabel 7

GetBreakPointLabel(breakPointSpec)

Returns the label for the specified break point.

breakPointSpec A break point specification frame, returned previously
by InstallBreakPoint .

User-Defined Breakpoint Functions 7

You can make a break loop conditional or execute your own code on the way
into the loop by defining a function with the name NSDBreakLoopEntry ;
you can execute code on the way out of a break loop by defining a function
with the name NSDBreakLoopExit .

When the Newton enters a break loop with the extended debugging
functions installed, the BreakLoop function looks for a global function with
the name NSDBreakLoopEntry . If it finds one, it executes it.

As the Newton exits the BreakLoop function, it looks for a global function
with the name NSDBreakLoopExit . If it finds one, it executes it before
resuming program execution.

C H A P T E R 7

Extended Debugging Functions

7-14 Extended Debugging Functions Reference

NSDBreakLoopEntry 7

NSDBreakLoopEntry(function, PC, paramArray)

Screens a break point or executes user-defined code while entering a break
loop.

function A function object.

PC A program-counter value within the function. This
argument is nil for non-interpreted functions, such as
functions in ROM, functions compiled into native code,
or C functions.

paramArray An array containing the arguments to the current
function, in one of two formats.

If the class of the array is the symbol
'paramNameAndValues , the array is organized in
paired entries, that is:

[param1Name, param1Value, param2Name,
param2Value,…]

If the class of the array is the symbol 'paramValues ,
the array contains a series of values, that is:

[param1Value, param2Value,…]

You can define an NSDBreakLoopEntry function to suppress breaks that do
not fit the profile you’re interested in. You can check not only the function’s
name and program counter value but also the values of its arguments.

If your NSDBreakLoopEntry function returns nil , the Newton does not
enter the break loop but instead looks for a function named
NSDBreakLoopExit .

If your NSDBreakLoopEntry function returns any non-nil value, the
Newton enters a break loop.

C H A P T E R 7

Extended Debugging Functions

Extended Debugging Functions Reference 7-15

NSDBreakLoopExit 7

NSDBreakLoopExit(didBreakLoopHappen)

Executes user-defined code while exiting a break loop.

didBreakLoopHappen The return value of the NSDBreakLoopEntry function,
or true if no NSDBreakLoopEntry function executed.

You can define an NSDBreakLoopExit function to restore any data you’ve
changed in the NSDBreakLoopEntry function.

Stepping 7
You use the functions described in this section to step through code. These
functions are meaningful only while the Newton is in a break loop.

Step 7

Step()

Executes one byte code instruction and then returns to the REP loop.

StepIn 7

StepIn()

If the current instruction is a function call or a message send, enters the new
function and then returns to the REP loop without executing the first
instruction. If the function call or message send is a non-interpreted function,
StepIn displays a warning, does not enter the function, and leaves the
program counter unchanged.

StepOut 7

StepOut()

Continues execution until the current function returns, and then returns to
the REP loop. If the caller is not an interpreted function, execution stops just
before the first instruction of the next NewtonScript function on the
function-call stack.

C H A P T E R 7

Extended Debugging Functions

7-16 Extended Debugging Functions Reference

RunUntil 7

RunUntil(function, PC)

Continues execution until the interpreter reaches the specified location
within the specified function.

function A function object.

PC A program-counter value within the function; this value
must point to the beginning of a byte code instruction.

The RunUntil function sets a temporary break point and then allows the
Newton to resume execution. When execution reaches the break point, the
break point is removed and the Newton returns to the REP loop without
executing the next instruction.

Accessing the Stack 7
You use the functions described in this section to examine and manipulate
the function-call stack. The function that was executing when the Newton
entered the break loop is at level 0.

StackTrace 7

StackTrace()

Displays the names of the functions on the function-call stack, their program
counter values, and the values of their parameters.

When the extended debugging functions are installed, the stack trace
display—triggered by entering the StackTrace function or clicking the
Stack Trace button—is as described in this chapter on page 7-6, not as
described in Chapter 6, “Debugging.” To display a stack trace in the original
format, you can use the StackTraceOld function.

C H A P T E R 7

Extended Debugging Functions

Extended Debugging Functions Reference 7-17

Note

The debug slots of many system prototypes are encoded as
integers, which appear in the stack trace display. If you
install the DebugHashToName application on the Newton,
the debugging functions can map the integers to strings and
produce more readable output. ◆

GetCurrentFunction 7

GetCurrentFunction(level)

Returns the function object that is currently executing at the specified level of
the function-call stack.

level An integer that specifies which stack frame to examine.

GetCurrentPC 7

GetCurrentPC(level)

Returns the value of the program counter in the stack frame at the specified
level of the stack.

level An integer that specifies which stack frame to examine.

SetCurrentPC 7

SetCurrentPC(newPC)

Sets the value of the program counter in the current stack frame. When you
continue execution (using ExitBreakLoop or any of the stepping
functions), execution starts at newPC.

newPC A program counter value.

Warning

SetCurrentPC is a dangerous function. When you change
a program counter, be sure to adjust the values of the
temporary and named variables as necessary. Do not change
the program counter so that it points to an instruction that
needs a different number of temporary variables. ◆

C H A P T E R 7

Extended Debugging Functions

7-18 Extended Debugging Functions Reference

Where 7

Where()

Identifies the current function and displays the value of the current program
counter and a textual representation of the byte code instruction the program
counter is pointing to.

GetAllTempVars 7

GetAllTempVars(level)

Returns an array containing the values of the temporary variables pushed
and popped while a function executes.

level An integer that specifies which stack frame to examine.

GetTempVar 7

GetTempVar(level, offset)

Returns the value of the temporary variable at the specified offset into the
temporary variable list at the specified level of the stack.

level An integer that specifies which stack frame to examine.

offset An integer that specifies which temporary variable to
examine. The variable added most recently is at offset 0,
the one before that is at offset 1, and so on.

SetTempVar 7

SetTempVar(level, offset, newValue)

Sets the value of the temporary variable at the specified offset into the stack
of temporary variables at a specified level of the stack.

level An integer that specifies which stack frame to
manipulate.

offset An integer that specifies which temporary variable to
change. The most recent entry is at offset 0.

newValue The new value for the temporary variable.

C H A P T E R 7

Extended Debugging Functions

Extended Debugging Functions Reference 7-19

A temporary variable must already exist at the specified offset; its value is
replaced.

GetAllNamedVars 7

GetAllNamedVars(level)

Returns a frame containing the names and values of all declared, closed-over,
and otherwise locally defined variables at the specified level of the stack.

level An integer that specifies which stack frame to examine.

The GetAllNamedVars function displays a warning when it detects an
undeclared local variable, which is technically possible but not efficient
programming in NewtonScript.

GetNamedVar 7

GetNamedVar(level, varNameSymbol)

Returns the value of the specified varible from the list of named variables at
the specified level of the stack.

level An integer that specifies which stack frame to examine.

varNameSymbol The symbol for the named variable to be examined.

SetNamedVar 7

SetNamedVar(level, varNameSymbol, newValue)

Sets the value of the named variable at the in the list of named variables at a
specified level of the stack.

level An integer that specifies which stack frame to examine.

varNameSymbol The symbol for the named variable to be changed.

newValue The new value of the named variable.

A variable with the specified name must already exist; its value is replaced.

C H A P T E R 7

Extended Debugging Functions

7-20 Extended Debugging Functions Reference

GetCurrentReceiver 7

GetCurrentReceiver(level)

Returns the current receiver at the specified level of the stack.

level An integer that specifies which stack frame to examine.
The function that was executing when the Newton
entered the break loop is at level 0.

The GetCurrentReceiver function returns self .

The current receiver is the value of self .

GetCurrentImplementor 7

GetCurrentImplementor(level)

Returns the current implementor at the specified level of the stack.

level An integer that specifies which stack frame to examine.

Retrieving Paths 7
This section documents the functions that return path expressions to slots.
You can use these functions to search for a slot in a frame, using both parent
and proto inheritance rules.

GetPathToSlot 7

GetPathToSlot(aFrame, aSymbol)

Returns the path expression from the specified frame to the slot with the
specified symbol.

aFrame The frame where the search begins.

aSymbol The symbol for the slot.

The GetPathToSlot function returns the path to the slot whose value would
be returned by GetVariable(aFrame, aSymbol) .

If the symbol is not found, GetPathToSlot returns an empty path
expression.

C H A P T E R 7

Extended Debugging Functions

Extended Debugging Functions Reference 7-21

GetPathWhereSet 7

GetPathWhereSet(aFrame, aSymbol)

Returns the path expression for the path to the frame in which a specified
slot’s value would be set if the value of the slot changed.

aFrame The frame where the search begins.

aSymbol The symbol for the slot.

The GetPathWhereSet function returns the path to the slot whose value
would be changed by SetVariable(aFrame, aSymbol, aValue) . The
function begins its search for the slot in the specified frame and makes use of
full proto and parent inheritance.

Disassembling 7
You can use the Disasm and DisasmRange functions to disassemble a block
of code or part of a block of code. The disassembly functions produce a
textual representation of the function’s byte code.

“Interpreter Instructions” beginning on page 7-23 describes the output of the
disassembly functions.

Disasm 7

Disasm(function)

Displays a disassembly listing of function.

function A function object.

C H A P T E R 7

Extended Debugging Functions

7-22 Extended Debugging Functions Reference

DisasmRange 7

DisasmRange(function, start, end)

Displays a disassembler listing of function between start and end.

function A function object.

start A program counter value within function where
disassembly is to begin.

end A program counter value within function where
disassembly is to end.

Summary of Extended Debugging Functions 7
This section summarizes the extended debugging functions.

Manipulating Break Points 7

InstallBreakPoint(function, PC)
RemoveBreakPoint(breakPointSpec)
EnableBreakPoint(breakPointSpec, enableMode)
RemoveAllBreakPoints()
GetAllBreakPoints()
GloballyEnableBreakPoints(enableMode)
SetBreakPointLabel(breakPointSpec, label)
GetBreakPointLabel(breakPointSpec)
BreakLoop()
NSDBreakLoopEntry(function, PC, paramArray)
NSDBreakLoopExit(didBreakLoopHappen)

C H A P T E R 7

Extended Debugging Functions

Interpreter Instructions 7-23

Stepping 7

Step()
StepIn()
StepOut()
RunUntil(function, PC)

Accessing the Stack 7

QuickStackTrace()
GetCurrentFunction(level)
GetCurrentPC(level)
SetCurrentPC(newPC)
Where()
GetAllTempVars()
GetTempVar(level, offset)
SetTempVar(level, offset, newValue)
GetAllNamedVars(level)
GetNamedVar(level, varNameSymbol)
SetNamedVar(level, varNameSymbol, newValue)
GetCurrentReceiver(level)
GetCurrentImplementor(level)

Retrieving Paths 7

GetPathToSlot(aFrame, aSymbol)
GetPathWhereSet(aFrame, aSymbol)

Disassembling 7

Disasm()
DisasmRange(function, start, end)

Interpreter Instructions 7

C H A P T E R 7

Extended Debugging Functions

7-24 Interpreter Instructions

This section describes the interpreter instructions displayed by the Disasm
and DisasmRange functions and by the Inspector when the Newton enters a
break loop with the extended debugging functions installed.

The instructions displayed by the debugging tools are not identical to the
actual byte code generated by the NTK compiler—they are rather a textual
representation of the compiled function.

You can control the amount of information displayed in the disassembly
listings by creating a global frame named NSDParamFrame, in which you
define one or more of these slots:

verbose A flag that controls the display of some instructions.
The verbose display includes a brief description of the
instruction’s parameter and the parameter’s offset in the
current lexical scope.
nil no description and offset displayed
non-nil description and offset displayed

disasmInstWidth An integer that specifies the width, in spaces, of the
instruction column in a disassembly listing.
A value of true invokes the default column width; a
value of nil specifies only a space between columns.

disasmArgWidth An integer that specifies the width, in spaces, of the
comment column in a disassembly listing
A value of true invokes the default width; a value of
nil specifies only a space between the comment
column and the third column, which displays the
additional information triggered by the verbose flag.

This statement entered in the Inspector window, for example, suppresses the
descriptive comments and sets the column widths to the defaults.

NSDParamFrame := {verbose:nil,

disasmInstWidth:true,

DisasmArgWidth:true

};

C H A P T E R 7

Extended Debugging Functions

Interpreter Instructions 7-25

Stack Operations 7
The instructions described in this section manipulate the NewtonScript
stack. When a function is called, the parameters are passed on the stack and
the result is returned on the stack.

For the most part, if an interpreter instruction uses a value from the stack, it’s
popped. If there is a result, it’s pushed.

Pop 7

Pop

Pops the top element from the stack.

disasm(func() begin Sleep(10); true end);

0: PushConstant 10

3: Push 'Sleep

4: Call 1

5: Pop

6: PushConstant TRUE

9: Return

In this example, the Pop instruction appears where it does because the result
of the function call isn’t used and its value must be removed from the stack.

PushSelf 7

PushSelf

Pushes the current receiver onto the interpreter stack.

disasm(func() self)

0: PushSelf

1: Return

C H A P T E R 7

Extended Debugging Functions

7-26 Interpreter Instructions

Push 7

Push X

Pushes the value X on the top of the stack.

disasm(func() "foo")

0: Push "foo"

1: Return

PushConstant 7

PushConstant X

Pushes the value X on the top of the stack. PushConstant is used when X is
an immediate that fits into 16 bits.

disasm(func() nil);

0: PushConstant NIL

1: Return

FindVar 7

FindVar X

Looks for the variable namedX in the lexical context and then in the current
receiver (self), including both proto and parent inheritance. If that search
fails, FindVar searches the global variables for X. When it finds X, FindVar
pushes its value on the stack. If X is not found, FindVar pushes nil on the
stack.

This instruction implements variable lookup as described in The
NewtonScript Programming Language.

disasm(func() x)

0: FindVar x

1: Return

C H A P T E R 7

Extended Debugging Functions

Interpreter Instructions 7-27

You can control the amount of information displayed with the FindVar
instruction by setting the value of the verbose slot in the NSDParamFrame
frame, as described on page 7-24.

GetVar 7

GetVar X

Gets the paramater or local named X and pushes it onto the stack.

disasm(func(x) x)

0: GetVar x

1: Return

You can control the amount of information displayed with the GetVar
instruction by setting the value of the verbose slot in the NSDParamFrame
frame, as described on page 7-24.

MakeFrame 7

MakeFrame N

Using the frame map found on the top of the stack, constructs a frame using
the next N elements of the stack (in bottom-up order) to populate the slots in
the frame. The resulting frame is pushed on the stack.

disasm(func() {x: 1, y: 2})

0: PushConstant 1

1: PushConstant 2

4: Push [#4415A35]

5: MakeFrame 2

6: Return

C H A P T E R 7

Extended Debugging Functions

7-28 Interpreter Instructions

MakeArray 7

MakeArray N

Constructs an array of the class of the top element of the stack, placing the
next N elements of the stack (in bottom-up order) in the array. The resulting
array is pushed on the stack.

The default class of an array is Array . The instruction Push Array may
therefore appear just before MakeAarray for unclassed arrays.

The instruction MakeArray -1 pops an integer and array class from the
stack and allocates an array of that class and length. This is used in the
foreach/collect statement.

disasm(func() [foo: 1, 2])

0: PushConstant 1

1: PushConstant 2

4: Push 'foo

5: MakeArray 2

6: Return

GetPath 7

GetPath N

Looks for the slot on the top of the stack in the frame that’s second on the
stack, using _proto inheritance only. If N is 0 then nil.y is nil . If N is 1
then nil.y throws an exception.

disasm(func() x.y.z)

0: GetVar x

1: Push y.z

2: GetPath 1

3: Return

C H A P T E R 7

Extended Debugging Functions

Interpreter Instructions 7-29

SetPath 7

SetPath N

Assigns the value that’s on the top of the stack to the slot that’s second on the
stack in the frame that’s third on the stack. If N is 0 the result is not put on
the stack. If N is 1, the result is put on the stack.

disasm(func() x.y.z := 1)

0: FindVar x

1: Push y.z

2: PushConstant 1

3: SetPath 1

4: Return

SetVar 7

SetVar X

Assigns the value on the top of the stack to the local variable or paramater
namedX.

disasm(func(x) x := 1)

0: PushConstant 1

1: SetVar x

2: GetVar x

3: Return

You can control the amount of information displayed with the SetVar
instruction by setting the value of the verbose slot in the NSDParamFrame
frame, as described on page 7-24.

SetFindVar 7

SetFindVar X

Assigns the value on the top of the stack to the variable that’s second on the
stack, using FindVar to locate that variable.

C H A P T E R 7

Extended Debugging Functions

7-30 Interpreter Instructions

This instruction implments x := expr, where x is not declared as a local
variable.

disasm(func() x := 1)

0: PushConstant 1

1: SetFindVar x

2: FindVar x

3: Return

You can control the amount of information displayed with the SetFindVar
instruction by setting the value of the verbose slot in the NSDParamFrame
frame, as described on page 7-24.

SetLexScope 7

SetLexScope

Sets the lexical scope (inherited locals and parameters) of the object on the
top of the stack to that of the currently executing function.

disasm(func(x) func(y) x+y)

0: Push {#4413361}

1: SetLexScope

2: Return

Program Flow 7
This section describes the instructions that control program flow.

While and Repeat/Until Loops 7

Three branching operators provide most of the general program-flow
operations, including the implementation of while and repeat/until
loops.

C H A P T E R 7

Extended Debugging Functions

Interpreter Instructions 7-31

Branch 7

Branch I

Causes the interpreter to continue processing at the instruction at offset I.

disasm(func() if x then true)

0: FindVar x

1: BranchIfNil 10

4: PushConstant TRUE

7: Branch 11

10: PushConstant NIL

11: Return

BranchT 7

BranchT I

If the top of the stack is non-nil , causes the interpreter to continue
processing at the instruction at offset I.

disasm(func() while x do y)

0: Branch 5

3: FindVar y

4: Pop

5: FindVar x

6: BranchIfNotNil 3

7: PushConstant NIL

8: Return

BranchF 7

BranchF I
If the top of the stack is nil , causes the interpreter to continue processing at
the instruction at offsetI.

disasm(func() if x then true)

0: FindVar x

C H A P T E R 7

Extended Debugging Functions

7-32 Interpreter Instructions

1: BranchIfNil 10

4: PushConstant TRUE

7: Branch 11

10: PushConstant NIL

11: Return

For Loops 7

The for loop implementation uses a triplet of integers (a loop counter, a
limit value, and a counter increment) as loop variables. The byte code
instructions increment the loop counter and determine if the loop is done.

The current value of the loop counter is identified by the name of the
variable; the increment and end values are identified by the suffixes |incr
and |limit on the variable name. If the loop counter is i , for example, then
the other loop variables are i|incr and i|limit .

A simple branch exits the loop. Because the iterator counter and limit are
pseudo-local variables, nothing special needs to be done to clean them up on
breaks.

IncrVar 7

IncrVar X

Increments the local variable or parameter named X by the amount at the top
of the stack and pushes the result onto the stack. This instruction doesn’t pop
the increment value, which remains on the stack.

disasm(func() for x := a to b by c do getappparams())

0: FindVar a

1: SetVar x

2: FindVar b

3: SetVar x|limit

4: FindVar c

5: SetVar x|incr

6: GetVar x|incr

C H A P T E R 7

Extended Debugging Functions

Interpreter Instructions 7-33

7: GetVar x

8: Branch 16

11: Push 'GetAppParams

12: Call 0

13: Pop

14: GetVar x|incr

15: IncrVar x

16: GetVar x|limit

17: BranchIfLoopNotDone 11

20: PushConstant NIL

21: Return

BranchIfLoopNotDone 7

BranchIfLoopNotDone I

Determines if the loop is complete, using the top three elements of the stack
as the current loop variable, the loop limit, and the loop increment. If the
loop is not complete, this instruction branches to I.

disasm(func() for x:= 0 to 9 do nil)

0: PushConstant 0

1: SetVar x

2: PushConstant 9

5: SetVar x|limit

6: PushConstant 1

7: SetVar x|incr

8: GetVar x|incr

9: GetVar x

10: Branch 15

13: GetVar x|incr

14: IncrVar x

15: GetVar x|limit

16: BranchIfLoopNotDone 13

C H A P T E R 7

Extended Debugging Functions

7-34 Interpreter Instructions

19: PushConstant NIL

20: Return

Foreach Loops (Frame and Array Iterators) 7

The implementation of the foreach loop uses an “iterator” data structure that
tracks progress through the array. A frequently used function (number 17) is
used to create a new iterator for the object, and the instructions IterNext
and IterDone increment and test this iterator.

IterNext 7

IterNext

Increments the array or frame iterator.

disasm(func() foreach s, v in x do getappparams())

0: FindVar x

1: PushConstant NIL

2: NewIterator 2

5: SetVar sv|iter

6: Branch 22

9: GetVar sv|iter

10: PushConstant 1

11: Aref 2

12: SetVar v

13: GetVar sv|iter

14: PushConstant 0

15: Aref 2

16: SetVar s

17: Push 'GetAppParams

18: Call 0

19: Pop

20: GetVar sv|iter

21: IterNext

22: GetVar sv|iter

C H A P T E R 7

Extended Debugging Functions

Interpreter Instructions 7-35

23: IterDone

24: BranchIfNil 9

27: PushConstant NIL

28: PushConstant NIL

29: SetVar sv|iter

30: Return

IterDone 7

IterDone

Tests whether an array or frame iterator is complete and pushes result of the
test on the stack.

disasm(func() foreach elt in x do nil)

0: FindVar x

1: PushConstant NIL

2: NewIterator 2

5: SetVar elt|iter

6: Branch 15

9: GetVar elt|iter

10: PushConstant 1

11: Aref 2

12: SetVar elt

13: GetVar elt|iter

14: IterNext

15: GetVar elt|iter

16: IterDone

17: BranchIfNil 9

20: PushConstant NIL

21: PushConstant NIL

22: SetVar elt|iter

23: Return

C H A P T E R 7

Extended Debugging Functions

7-36 Interpreter Instructions

Exception Handling 7

The interpreter maintains a stack of exception-handler contexts, each of
which represents the dynamic scope of a try/onexception statement for a
single function object.

A pair of handler instructions registers and removes contexts on the
exception-handler stack. When an exception occurs, the interpreter first
checks the object’s handlers and branches to one of them if appropriate.

NewHandlers 7

NewHandlers N

Registers the top N pairs of elements on the stack as exception handlers for
the currently executing function. Within each pair of items, the second
(lowest) is the exception symbol and the first (highest) is the instruction
number to jump to to process that exception.

disasm(func() try nil onexception |evt.ex.msg| do true;

onexception |evt.ex| do 'foo)

0: Push 'evt.ex.msg

1: PushConstant 16

4: Push 'evt.ex

5: PushConstant 22

8: NewHandlers 2

9: PushConstant NIL

10: PopHandlers

13: Branch 26

16: PushConstant TRUE

19: Branch 23

22: Push 'foo

23: PopHandlers

26: Return

C H A P T E R 7

Extended Debugging Functions

Interpreter Instructions 7-37

PopHandlers 7

PopHandlers

Removes the most recently added set of exception handlers from the
exception-handler stack. (See NewHandlers .)

disasm(func() try true onexception |evt.ex| do 'foo)

0: Push 'evt.ex

1: PushConstant 14

4: NewHandlers 1

5: PushConstant TRUE

8: PopHandlers

11: Branch 18

14: Push 'foo

15: PopHandlers

18: Return

Calling and Returning Functions 7

In NewtonScript, you can invoke the execution of a function in a number of
different ways:

■ message sends

■ conditional sends

■ direct calls

To support these different calling strategies, the interpreter uses a number of
different instructions, documented in this section. The interpreter invokes the
Perform and Apply functions as it would any other global function, that is,
with the Call instruction.

A single instruction controls function return.

The interpreter optimizes the calling of a few functions that are expected to
be called often. The section “Primitive Functions” beginning on page 7-40
describes the optimized functions.

C H A P T E R 7

Extended Debugging Functions

7-38 Interpreter Instructions

Call 7

Call N

Executes the global function whose symbol is on top of the stack, passing N
elements on the stack as arguments.

disasm(func() GetAppParams())

0: Push 'GetAppParams

1: Call 0

2: Return

Invoke 7

Invoke N

Executes the function on the top of the stack, using its closed-over message
context and passing the next N stack elements as arguments.

disasm(func(x) call x with (y))

0: FindVar y

1: GetVar x

2: Invoke 1

3: Return

This instruction is the same as Call , except that Call finds the name of the
global function on the top of the stack, and Invoke finds the function itself
on the top of the stack.

Send 7

Send N

Sends the message on the top of the stack to the object that’s second on the
stack, passing the next N elements on the stack as arguments.

disasm(func(x, y) x:msg(y))

0: GetVar y

1: GetVar x

C H A P T E R 7

Extended Debugging Functions

Interpreter Instructions 7-39

2: Push 'msg

3: Send 1

4: Return

SendIfDefined 7

SendIfDefined N

Attempts to send the message on the top of the stack to the object that’s
second on the stack, passing the next N elements on the stack as arguments.
If a full proto/parent lookup does not find the specified message in the
object, SendIfDefined pushes nil on the stack. This instruction is like
send , but it implements the :? syntax.

disasm(func(x, y) x:?msg(y))

0: GetVar y

1: GetVar x

2: Push 'msg

3: SendIfDefined 1

4: Return

Resend 7

Resend N

Sends the message on the top of the stack using the current message context,
passing the next N elements on the stack as arguments. The Resend
instruction starts searching for the method to invokein the proto slot, if any,
of the current implementor. This instruction implements the inherited:
syntax.

disasm(func() inherited:msg())

0: Push 'msg

1: Resend 0

2: Return

C H A P T E R 7

Extended Debugging Functions

7-40 Interpreter Instructions

ResendIfDefined 7

ResendIfDefined N
Attempts to send the message on the top of the stack using the current
message context, passing the next N elements on the stack as argument. The
ResendIfDefined instruction starts looking for the method to invoke in
the proto slot, if any, of the current implementor. This instruction implements
the inherited:? syntax.

Return 7

Return

Returns from the function. The result of the function remains on the top of
the stack.

disasm(func() nil);

0: PushConstant NIL

1: Return

Primitive Functions 7

Some NewtonScript operations are not implemented directly as byte code
instructions but are defined as primitive functions—that is, operations that
are performed like function calls.

The primitive functions include

■ elements of the NewtonScript language, documented in The NewtonScript
Programming Language

■ functions used by the interpreter itself

The rest of this section lists the primitive functions, in this form:

C H A P T E R 7

Extended Debugging Functions

Interpreter Instructions 7-41

Name NumberOfStackElements
Description
Example

Add 7

+ 2

Adds together the first two elements on the stack.

disasm(func() x+y)

0: FindVar x

1: FindVar y

2: + 2

3: Return

Subtract 7

– 2

Subtracts the top element on the stack from the second element on the stack
and pushes the result.

disasm(func() x-y)

0: FindVar x

1: FindVar y

2: - 2

3: Return

Multiply 7

* 2

Multies the first two elements on the stack.

disasm(func() x * y)

0: FindVar x

1: FindVar y

C H A P T E R 7

Extended Debugging Functions

7-42 Interpreter Instructions

2: * 2

5: Return

Divide 7

/ 2

Divides the second element on the stack by the first.

disasm(func() x / y)

0: FindVar x

1: FindVar y

2: / 2

5: Return

Div 7

Div 2

Divides the second element on the stack by the first and truncates the
remainder to a whole number.

disasm(func() x div y)

0: FindVar x

1: FindVar y

2: Div 2

5: Return

ARef 7

ARef 2

Dereferences an array or string, using the stack elements this way:
topOfStack[secondOnStack]

disasm(func() x[y])

0: FindVar x

1: FindVar y

C H A P T E R 7

Extended Debugging Functions

Interpreter Instructions 7-43

2: ARef 2

3: Return

SetARef 7

SetARef 3

Assigns a string or array.

disasm(func() x[y] := z)

0: FindVar x

1: FindVar y

2: FindVar z

3: SetARef 3

4: Return

NewIterator 7

NewIterator 2

Creates an iterator data structure for an object. This function supports
foreach loops.

disasm(func() foreach elt in x do nil)

0: FindVar x

1: PushConstant NIL

2: NewIterator 2

5: SetVar elt|iter

6: Branch 15

9: GetVar elt|iter

10: PushConstant 1

11: Aref 2

12: SetVar elt

13: GetVar elt|iter

14: IterNext

15: GetVar elt|iter

16: IterDone

C H A P T E R 7

Extended Debugging Functions

7-44 Interpreter Instructions

17: BranchIfNil 9

20: PushConstant NIL

21: PushConstant NIL

22: SetVar elt|iter

23: Return

Length 7

Length 1

Returns the number of elements in the array on the top of the stack.

disasm(func() length(x))

0: FindVar x

1: Length 1

4: Return

AddArraySlot 7

AddArraySlot 2

Appends a new element onto an array.

disasm(func() AddArraySlot(x, y))

0: FindVar x

1: FindVar y

2: AddArraySlot 2

5: Return

Equals 7

= 2

Tests the top two elements on the stack for equality.

disasm(func() x = y)

0: FindVar x

1: FindVar y

C H A P T E R 7

Extended Debugging Functions

Interpreter Instructions 7-45

2: = 2

3: Return

NotEquals 7

<> 2

Tests the first two elements on the stack for inequality.

disasm(func() x <> y)

0: FindVar x

1: FindVar y

2: <> 2

3: Return

LessThan 7

< 2

Compares for inequality: Is the second element on the stack less than the
first?

disasm(func() x < y)

0: FindVar x

1: FindVar y

2: < 2

5: Return

GreaterThan 7

> 2

Compares for inequality: Is the second element on the stack greater than the
first?

disasm(func() x > y)

0: FindVar x

1: FindVar y

C H A P T E R 7

Extended Debugging Functions

7-46 Interpreter Instructions

2: > 2

5: Return

GreaterOrEqual 7

>= 2

Compares for inequality: Is the second element on the stack greater than or
equal to the first?

disasm(func() x >= y)

0: FindVar x

1: FindVar y

2: >= 2

5: Return

LessOrEqual 7

<= 2

Compares for inequality: Is the second element on the stack less than or
equal to the first?

disasm(func() x <= y)

0: FindVar x

1: FindVar y

2: <= 2

5: Return

Not 7

Not 1

Tests the top element on the stack for nil .

disasm(func() not x)

0: FindVar x

C H A P T E R 7

Extended Debugging Functions

Interpreter Instructions 7-47

1: Not 1

2: Return

BitAnd 7

BAnd 2

Performs a binary and on the first two elements of the stack.

disasm(func() band(x, y))

0: FindVar x

1: FindVar y

2: BAnd 2

5: Return

BitOr 7

BOr 2

Performs a binary or on the first two elements on the stack.

disasm(func() bor(x, y))

0: FindVar x

1: FindVar y

2: BOr 2

5: Return

BitNot 7

BNot 2

Performs a binary not on the first two elements on the stack.

disasm(func() bnot(x, y))

0: FindVar x

1: FindVar y

2: BNot 2

5: Return

C H A P T E R 7

Extended Debugging Functions

7-48 Interpreter Instructions

Clone 7

Clone 1

Makes a “shallow copy” of the object on the top of the stack.

disasm(func() clone(x))

0: FindVar x

1: Clone 1

4: Return

SetClass 7

SetClass 2

Sets the class of the object.

disasm(func() SetClass(x, y))

0: FindVar x

1: FindVar y

2: SetClass 2

5: Return

Stringer 7

Stringer 1

Concatenates strings, supporting the & keyword.

disasm(func() x&y)

0: FindVar x

1: FindVar y

2: Push 'Array

3: MakeArray 2

4: Stringer 1

7: Return

disasm(func() x&&y)

0: FindVar x

C H A P T E R 7

Extended Debugging Functions

Interpreter Instructions 7-49

1: Push " "

2: FindVar y

3: Push 'Array

4: MakeArray 3

5: Stringer 1

8: Return

HasPath 7

HasPath 2

Checks for the existence of an object.

disasm(func() x.y exists)

0: FindVar x

1: Push 'y

2: HasPath 2

5: Return

ClassOf 7

ClassOf 1

Returns the class of the object on the top of the stack.

disasm(func() ClassOf(x))

0: FindVar x

1: ClassOf 1

4: Return

C H A P T E R 7

Extended Debugging Functions

7-50 Interpreter Instructions

Measuring Performance 8-1

C H A P T E R 8

Tuning Performance 8

You can use NTK to collect performance statistics on your functions and to
optimize selected functions for speed, as described in this chapter.

Chapter 6, “Debugging,” describes the functions you use to examine
memory use and drawing efficiency.

Measuring Performance 8

The profiler times selected functions as they execute on the Newton. The
statistics are displayed at your request in the Inspector window on the
development system.

The profiler runs on any Newton MessagePad 120 or later model. To use the
profiler on an English-language MessagePad 100 or 110, install the
appropriate patch using the Newton Package Installer. The patches are
shipped with NTK in a folder named System Updates.

To collect performance statistics, you

Figure 7-0
Table 7-0

C H A P T E R 8

Tuning Performance

8-2 Measuring Performance

■ mark the functions you want to profile, as described in “Marking
Functions for Profiling” beginning on page 8-2

■ select Compile for Profiling through the Project Settings dialog box, as
described in “Configuring the Compiler for Profiling” beginning on
page 8-4

■ build and download the application

■ turn on profiling on the Newton in the Toolkit application, as described in
“Configuring the Profiler on the Newton” beginning on page 8-6

■ run the code to be profiled

■ upload the statistics

When you’re done profiling, be sure to turn off compiler profiling through
Project Settings. Before shipping your application, verify that the release
build does not contain profiling code.

Marking Functions for Profiling 8
You turn statistics collection on and off during execution by bracketing code
you want profiled with calls to the EnableProfiling function. You pass a
parameter of true to turn profiling on, a parameter of nil to turn it off. The
function returns the previous state of the profiler.

The following example shows a test method that retrieves and sorts an array,
in order to time the sorting function bubbleSort .

func(vector, size)

begin

if kProfileOn then // Compile for Profiling

// is set

local pFlag := // save state;

EnableProfiling(nil); // turn profiling off

:InitArray(vector); // don't profile init routine

if kProfileOn then

EnableProfiling(true); // turn profiling on

:bubbleSort(vector, size); // execute bubbleSort

C H A P T E R 8

Tuning Performance

Measuring Performance 8-3

if kProfileOn then // always check for profiling

EnableProfiling(pFlag); // restore profiler state

end

The EnableProfiling function is available only when Compile for
Profiling is enabled, which you can test by checking the value of the
kProfileOn constant. By testing the constant before making any calls to
EnableProfiling , you can leave profiling code in place in your source
code. (When the compiler evaluates if kProfileOn to nil , it strips the
statement from its output.)

The profiler records and times all functions that are executed between the
time profiling is turned on and the time it’s turned off, including functions
that are called indirectly. In this example, the profile reflects the execution of
the bubbleSort method and any other functions it invokes. Each function
appears separately in the profile.

Suppose, for example, that bubbleSort in the above example is defined as

func(vector, size)

begin

local i, j, element;

for i := 0 to size-2 do

begin

for j := 0 to size-i-2 do

begin

if vector[j+1] < vector[j] then

:Swap(vector, j, j+1);

end;

end;

end;

The time reported for bubbleSort does not include time spent in the Swap
method, which is reported separately, as illustrated in Figure 7-1.

C H A P T E R 8

Tuning Performance

8-4 Measuring Performance

Figure 7-1 A performance profile

“Interpreting a Profile” beginning on page 8-8 describes the display.

The profiling itself adds a disproportionate amount of execution time to
functions compiled into native code. You can reduce the impact of profiling
by collapsing the reports of native functions that call other native functions,
as described in “Profiling Native Functions” beginning on page 8-19.

NTK keeps one set of statistics on the Newton. You may add to the statistics
with paired calls to EnableProfiling .

Configuring the Compiler for Profiling 8
You instruct the NTK compiler to embed profiling code in its output through
the Project Settings dialog box, illustrated in Figure 7-2.

C H A P T E R 8

Tuning Performance

Measuring Performance 8-5

Figure 7-2 The Project Settings dialog box

Check Compile for Profiling to turn profiling on. While Compile for Profiling
is checked, the compiler assigns each function in the application a unique
identifier, which it maps to the source code, and it recognizes the calls that
enable and disable profiling. You can test for profiling by checking the
kProfileOn constant, which is true when Compile for Profiling is checked.

The Profile Native Functions option instructs the compiler to embed
profiling code even in functions that have been compiled into native code. As
described in “Profiling Native Functions” beginning on page 8-19, the
process of profiling adds significant distortion to native functions. If this
option is not checked, NTK compiles native functions as it would in an
ordinary build, with the result that the profiler can’t distinguish a native
function called from within another native function. A profile generated with
this option unchecked shows only the native functions that were called

Compile for
Profiling

C H A P T E R 8

Tuning Performance

8-6 Measuring Performance

directly from interpreted functions. The times reported include processor
time spent in any other native function calls.

Configuring the Profiler on the Newton 8
You control profiling on the Newton through the Profile Control view,
illustrated in Figure 7-3, which you reach by tapping Profile Control in the
Toolkit application.

Figure 7-3 Profile Control on the Newton

To configure the profiler, choose Prefs from the Info pop-up menu in the
lower-left corner of the view, as illustrated in Figure 7-4.

Figure 7-4 Profiler Info

Choosing Prefs displays the Profiler Settings view, illustrated in Figure 7-5.

C H A P T E R 8

Tuning Performance

Measuring Performance 8-7

Figure 7-5 Profiler Settings on the Newton

The Buffer Size setting lets you specify the amount of Newton memory
devoted to statistics storage. The profiler needs at least 4K of RAM. It’s best
to keep the allocation as small as possible, to minimize impact on the
Newton, but you can increase it if you need to. If the profiler runs out of
storage space, it turns itself off and reports that the results are incomplete.

The Detail System Calls checkbox instructs the profiler to track system calls
as thoroughly as it tracks your own functions. When this box is not checked,
the profiler reports only the total number of system call invocations and the
percentage of profiling time they represent. When this box is checked, the
profiler tracks and reports system calls individually. It tells you how often
each was executed and how much processor time it took.

Collecting Statistics 8
When you’ve compiled an application for profiling and downloaded it, you
set up the Newton for profiling through the Toolkit application.

■ Open the Toolkit by tapping its icon in the Extras drawer.

■ If there is not already an Inspector connection open, open one.

■ Tap Profile Control to open the profiler view

■ Tap Begin Profiling Run

■ Execute the application to be profiled

■ Tap Upload Results to display the statistics in the Inspector window.

C H A P T E R 8

Tuning Performance

8-8 Measuring Performance

If you need the screen space, you can close the Toolkit application once
you’ve tapped Begin Profiling Run. When you’re ready to upload the
statistics, open the Toolkit application again and tap Upload Results.

Interpreting a Profile 8
The first part of the profile provides a summary of the profiling:

■ the total execution time spent in profiling

■ the number of user functions profiled and the percentage of profiling time
they represent

■ the number of system calls profiled and the percentage of profiling time
they represent.

If garbage collection was performed during the profiling run, an entry for it
appears in the summary. If system functions created closures during the
profile, the total time spent in these closures is reported in an entry labeled
Other.

If there were calls from a native function to an interpreted function, those
calls are reported on the last line of the summary, as illustrated in Figure 7-6.

Figure 7-6 A performance profile

C H A P T E R 8

Tuning Performance

Measuring Performance 8-9

The second part of the profile lists the profiled functions in descending order
by the amount of processor time each used while profiling was enabled.
Figure 7-6 illustrates the profile of three variations on the bubbleSort
example used in “Marking Functions for Profiling” beginning on page 8-2.

The Entries column reports the number of times the function was executed.
A zero in this column reflects a function that occupied processor time while
profiling was in effect but whose entry point was not logged—that is, a
function that was started before profiling was enabled but whose execution
occupied some processor time during profiling, like the
buttonClickScript methods for the buttons that triggered the profiling
tests in the example in Figure 7-6.

The Time column reports the total processor time, in milliseconds, used by
the function.

The profile identifies by name functions defined in the template files.
Functions defined in text files (with the DefineGlobalConstant function,
described in “Defining Global Constants” beginning on page 4-32) appear
under the name of the text file, with a number if necessary. If a text file
named projectData defines a single profiled function, for example, the
function appears in the profile with this name:

projectData.text

If a text file named projectData defines two profiled functions, they appear in
the profile under these names:

projectData.text.1

projectData.text.2

The profiler identifies an anonymous nested function by appending an
integer to the path name of its parent. Consider, for example, a function in a
slot named myfunc :

func()

begin

local pos := ArrayPos(cardSoups, soupName, 0,

func(x,y) ClassOf(y) =

C H A P T E R 8

Tuning Performance

8-10 Compiling Functions for Speed

'String and StrEqual(x,y));

. . .

end

The fourth argument to ArrayPos is an anonymous function, which appears
in the profile as myLayout.myView.myFunc.1 . A second anonymous
function within myFunc would appear with the name
myLayout.myView.myFunc.2 , and so on.

The reporting of native functions depends on the setting of the Profile Native
Functions option in the Project Settings dialog box, as described in “Profiling
Native Functions” beginning on page 8-19.

The profiler depends on tables created during the build to match the
functions profiled on the Newton with their names in the source files. Once
you’ve shut down NTK, you must rebuild and download the application
again before you can match newly collected statistics to the source code.

Compiling Functions for Speed 8

You can instruct NTK to compile individual functions into native code—that
is, the machine language used by the ARM processor. By default, NTK
produces machine-independent byte code to be processed by the
NewtonScript interpreter.

The native version of a function can execute many time faster than the byte
code version, but it is also many times larger. For the most effective balance
between speed and size, compile only the most frequently used functions—
or the most time-critical—into native code.

You can turn native compiling on or off for a build through the Project
Settings item in the Project menu. For compatibility with future platforms,
NTK places in the application both the byte code and the native code
versions of marked functions. You can reduce the size slightly—at the
expense of future incompatibility—by suppressing the byte code through
Project Settings.

C H A P T E R 8

Tuning Performance

Compiling Functions for Speed 8-11

To mark an individual function for native compiling, construct it with the
native keyword:

func native (paramList) expression

The function

func (a, b, c) . . .

for example, becomes

func native (a, b, c) . . .

If native-code compiling is turned off through Project Settings, NTK ignores
the word native in the function statement. The native keyword is ignored
in the Inspector.

Note that native functions are not locked and are therefore not safely put in
the heap. Don’t deep clone a native function and then execute it.

A function compiled into native code can have no more than five arguments.

Declaring and Typing Variables 8
To get the fastest performance in a native function, declare all local variables
and specify the types of variables whenever possible.

Native code uses the same mechanism as the interpreter to look up inherited
variables and undeclared local variables. Both the native compiler and the
interpreter are much more efficient when handling declared local variables.
Always declare all local variables, either explicitly with the local statement
or implicitly with a for or foreach loop.

You can type your local variables by placing a specifier in the local
statement, between the keyword local and the name of the first variable.
For example:

local int x, y := 13;

local array a;

All the local variables defined in one statement are of the specified type.

C H A P T E R 8

Tuning Performance

8-12 Compiling Functions for Speed

NTK recognizes two type descriptors:

■ int , which specifies an integer

■ array , which specifies an array reference.

Local variables you create without a type descriptor are allowed to hold any
kind of value.

You can type function arguments by inserting a type before the argument’s
name in the function statement:

func native (int a, b, array c) . . .

In this example, the argument a is an integer, b is untyped, and c is an array
pointer.

The advantages of typing variables arise when the compiler can optimize an
operation using the known types of the operands. Notably, arithmetic
operations on int expressions are much faster than on untyped expressions.

Specifying a type for a variable restricts the values it can contain. The
generated code is type-checked at run time when checking is necessary to
ensure that typed variables contain values of the correct type—that is,
whenever a result of a broader type is assigned to a variable of a narrower
type. For example,

local int i:= SomeFunction();

generates a run-time check to ensure that SomeFunction returns an integer.
No checking is required, however, in the subsequent assignment

local int j := i;

because i is guaranteed to contain an integer.

The index variables in a for loop are automatically declared as integers. If
an index variable is also declared with a different type or without a type in a
local statement, the compiler issues a warning and uses the broader type.
For example:

C H A P T E R 8

Tuning Performance

Compiling Functions for Speed 8-13

func native ()

begin

local i;

for i := 1 to 10 do nil;

end

The compiler issues a warning and uses an untyped variable to hold the
value of i .

Stepping Through an Array 8
A native for loop is much faster than a native foreach loop for stepping
through an array.

Handling Exceptions 8
The system software maintains separate exception stacks for native and
interpreted execution. A native function called from within a non-native
function’s onexception block, therefore, cannot use the
CurrentException function to access the exception being handled by the
non-native function. A native function can call CurrentException only
from within its own onexception block.

The NewtonScript Programming Language describes exception handling and
the CurrentException function.

Calling Other Functions 8
Byte code is executed by the NewtonScript interpreter; native functions are
executed directly by the processor. Because each has its own stacks and
registers, transitions between the two execution environments affect
performance.

In general, the NewtonScript interpreter can call a native function and then
return with little overhead. When a native function is executing, however, a

C H A P T E R 8

Tuning Performance

8-14 Compiling Functions for Speed

call to an interpreted method invokes the relatively slow process of starting
up the interpreter.

The full impact of calls between different function types also depends on
how the call is made.

Calling Options 8

In NewtonScript, functions can be called in three different ways: globally,
with the call /with syntax, or with a message send.

Global Function Call 8

You can call a global function directly by name. For example,

RefreshViews();

When executing a global function call, the system looks up the function by
name and then executes it.

NTK provides an optimized dispatch mechanism that bypasses the lookup
when you call certain common utility functions from within a native
function. These functions’ locations are known at compile time, and they are
executed directly. The functions cannot therefore be redefined at run time (a
practice that is possible but discouraged).

Table 7-1 lists the optimized functions.

Table 7-1 Utility functions optimized for calling as global functions from a native
function

AddArraySlot DeepClone IsInstance StuffByte

ArrayMunger Downcase IsString StuffChar

ArrayPos EndsWith IsSubclass StuffCString

Band EnsureInternal IsSymbol StuffLong

BeginsWith ExtractByte Length StuffPString

C H A P T E R 8

Tuning Performance

Compiling Functions for Speed 8-15

Call/With Syntax 8

You can call a function with the call and with keywords. For example,

call myFunction with (x, y);

When the system executes a function called with this syntax, it can skip the
function lookup and thus complete the call faster.

This syntax saves time as long as the function expression is simple—if, for
example, you call the function with a local variable or a constant. You can
use the constants supplied in the platform files with the call /with syntax,
as described in “Platform Files” on page 4-26.

One of the standard NewtonScript optimization strategies is to cache a global
function that’s called from inside a loop in a local variable to avoid repeated
lookup. For example:

local fn := function.SomeGlobalFunction;

for i := 1 to 100000 do call fn with (x, y);

Message Send 8

You can send a message that causes a function to execute. For example,

BinaryMunger ExtractBytes ReplaceObject StuffUniChar

Bnot ExtractChar SetClass StuffWord

Bor ExtractCString SetLength StuffXLong

Bxor ExtractLong Sort Substr

Capitalize ExtractPString StrMunger TotalClone

CapitalizeWords ExtractUniChar StrPos TrimString

ClassOf ExtractWord StrReplace Upcase

Clone ExtractXLong

C H A P T E R 8

Tuning Performance

8-16 Compiling Functions for Speed

self:myFunction(x, y);

The send operation looks up the message in the receiver’s inheritance chain,
and then performs a variation on a function call. The function execution itself
is essentially the same speed as call /with , but the lookup is generally
more complicated and thus slower.

Timing Interactions 8

The native NewtonScript compiler normally generates code that tries to
eliminate as much overhead as possible. The code determines at run time
whether a function being called is native and if it is, bypasses the
interpreter’s function-call operation.

The price of this optimization is that a call from one native function to
another is invisible to both the profiler and the tracing system. You can force
these calls through the interpreter—to make them available for profiling and
tracing—by checking the Profile Native Functions option in Project Settings,
as described in “Configuring the Compiler for Profiling” beginning on
page 8-4.

Table 7-2 shows the operations required to do all combinations of function-
call operations and function-type transitions. The table uses these operation
codes:

■ II—the interpreter’s calling an interpreted function

■ IN—the interpreter’s calling a native function

■ NN—a direct native function call

■ O— an optimized native function call, that is, a call from a native function
to one of the optimized functions listed in Table 7-1

■ GL—a global-function lookup

■ ML—a message lookup

■ SI—starting up the interpreter

Calls from native functions to native functions are fastest; the operations
have these relative speeds:

C H A P T E R 8

Tuning Performance

Compiling Functions for Speed 8-17

O < NN < IN < II

Thus, it’s quicker to call even a non-optimized native function from another
native function than to call a native function from an interpreted function.

Figure 7-6 on page 8-8 illustrates the combined profile of a function executed
in three variations:

■ an interpreted function (bubbleSort) that calls another interpreted
function (Swap)

■ a native function (nativeBubbleSort) that calls another native function
(which doesn’t show up in the profile)

■ a native function (mixedBubbleSort) that calls an interpreted function
(Swap).

An Optimization Example 8
Suppose you’ve found through profiling that you’re spending a lot of time in
this binary search function (which searches array a for entry k):

func (a, k)

begin

Table 7-2 Function call operations

Calling an
interpreted
function from
an interpreted
function

Calling a
native
function from
an interpreted
function

Calling an
interpreted
function from
a native
function

Calling a
native
function from
a native
function

Call/with II IN SI + II NN

Global GL + II GL + IN GL + SI+ II GL + NN

Optimized global always native GL + IN always native O

Message send ML + II ML + IN ML + SI+ II ML + NN

C H A P T E R 8

Tuning Performance

8-18 Compiling Functions for Speed

local low := 0, high := Length(a)-1, mid;

while high >= low do

begin

mid := (low + high) div 2;

if a[mid] > k then high := mid - 1

else if a[mid] < k then low := mid + 1

else return mid;

end;

nil;

end;

The first optimization is to have the function compiled into native code by
inserting the keyword native .

Because this function performs a number of integer operations, typing the
variables is also straightforward. Argument a is an array; the local variables
low , high , and mid are integers. The function with the native keyword and
the type declarations looks like this:

func native (array a, k)

begin

local int low := 0, high := Length(a)-1, mid;

while high >= low do

begin

mid := (low + high) div 2;

if a[mid] > k then high := mid - 1

else if a[mid] < k then low := mid + 1

else return mid;

end;

nil;

end;

As it is now, the function can be used to search arrays of anything that can be
compared with the < and > operators. If you know you’re searching for an
integer in an array of integers, you can also type the k argument.

C H A P T E R 8

Tuning Performance

Compiling Functions for Speed 8-19

Finally, you can look for optimizations in the code itself. Note, for example,
that this function accesses a[mid] twice when a[mid] is less than or equal
to k . You can save a little bit of time by putting a[mid] in a local variable.

The function with these last two optimizations in place looks like this:

func native (array a, int k)

begin

local int low := 0, high := Length(a)-1, mid;

local int value;

while high >= low do

begin

mid := (low + high) div 2;

value := a[mid];

if value > k then high := mid - 1

else if value < k then low := mid + 1

else return mid;

end;

nil;

end;

In timings of the stand-alone functions searching an array of the numbers
from 0 to 999, with k set to 501, the optimized function ran in one
one-thousandth the time of the original function. Functions that manipulate
symbolic data—copying strings or frames, for example—are unlikely to
realize improvements of this magnitude through the use of the native
compiler.

Profiling Native Functions 8
The tracking itself adds a disproportionate amount of time to the execution
of native functions called from other native functions. The profiler therefore
gives you the choice of compiling native functions for accurate execution
time or compiling them for detailed profiling.

C H A P T E R 8

Tuning Performance

8-20 Compiling Functions for Speed

If you leave the Profile Native Functions option unchecked in Project
Settings, the profile shows only the native functions that are called from
interpreted functions—the time for each includes any time spent executing
other native functions. If you enable that option, all native functions appear
in the profile, but the times are distorted.

Consider, for example, the bubbleSort method used in “Marking
Functions for Profiling” beginning on page 8-2. The bubbleSort method
itself calls a function named Swap.

If the Swap method is also compiled native, and you have not checked the
Profile Native Functions option, only the bubbleSort method appears in
the profile, as illustrated in Figure 7-7.

Figure 7-7 A profile of a native function calling another native function, without
native-function profiling

If both methods are compiled native, and you have checked the Profile
Native Functions option, both functions appear in the profile, as illustrated
in Figure 7-8.

C H A P T E R 8

Tuning Performance

Compiling Functions for Speed 8-21

Figure 7-8 A profile of a native function calling another native function, with
native-function profiling

The increased execution time reflects the use of the interpreter’s function-call
operation, which is necessary to make the call visible to the profiler. The
impact is much like that of calling an interpreted function from a native
function, as described in “Timing Interactions” beginning on page 8-16.

C H A P T E R 8

Tuning Performance

8-22 Compiling Functions for Speed

File Menu 9-1

C H A P T E R 9

NTK Commands 9

This chapter describes the commands available through the NTK menus.

File Menu 9

You use the File menu to create, save, print, and otherwise manipulate files.

New Layout (Command-N) 9
Opens a new, untitled layout window.

You use this command to start a file to hold templates for your application’s
views. You name the file when you save it.

“Drawing, Resizing, and Moving Views” beginning on page 5-4 describes
how you lay out views in a layout file. “Layout Files” beginning on page 4-3
describes how you use layout files in a project.

Figure 8-0
Table 8-0

C H A P T E R 9

NTK Commands

9-2 File Menu

New Proto Template (Command-T) 9
Opens a new, untitled proto layout window.

You use this command to lay out your own protos. You name the file when
you save it.

“Creating User Protos” on page 5-16 describes user protos.

New Text File 9
Opens a new, untitled text file.

You use text files to hold an application’s install and remove scripts and any
other NewtonScript code that’s outside the scope of the view templates.
“Text Files” beginning on page 4-27 describes how you use text files in a
project.

Open (Command-O) 9
Opens a browser window on a saved layout file or a text-edting window on
a saved text file. The Open command displays a dialog box through which
you specify the file to be opened.

Shortcut: Double-click a file in the project window to open it for editing.

You open a project file the Project menu. You open layout windows and the
Inspector window through the Windows menu.

Link Layout 9
Brings an external layout file into the local hierarchy, by linking the external
file to a linked subview template selected in a layout window. The Link
Layout command displays the standard get-file dialog box for identifying the
external layout file.

“Linking Multiple Layouts” beginning on page 5-14 describes linked layouts.

C H A P T E R 9

NTK Commands

File Menu 9-3

Close (Command-W) 9
Closes the active window and its associated file.

If you close a window whose file has been edited since it was last saved,
NTK displays a dialog box that gives you a chance to save changes before
closing the window.

Save (Command-S) 9
Saves the file associated with the active window. The saved file replaces the
previously saved file of the same name. The file remains open.

The Save command affects only the one active window, that is,

■ the layout file for the active layout window,

■ the layout file for the active browser window,

■ the project file associated with the project window

■ the Inspector file, or

■ the active text file.

Save As 9
Saves a new copy of the file associated with the active window. The Save As
command opens a file-save dialog box, through which you specify the new
name and location. Save As changes the name of the active window and
closes any open file with the window’s previous name.

You use Save As to name or rename a layout file and to create a new file.

Save a Copy In 9
Saves a separate copy of a file, with the name and location you specify
through the file-save dialog box. The Save a Copy In command does not
change the name or path of the active window and leaves its associated file
open.

C H A P T E R 9

NTK Commands

9-4 File Menu

You use Save a Copy In to back up a file or to put a copy of a file into
another project.

Save All (Command-M) 9
Saves all open NTK files, that is, any text or layout files, the project file, and
the Inspector file. If you’ve not yet saved a file associated with one of the
windows, NTK prompts you for the necessary filename.

Revert 9
Restores the last saved version of the file associated with the active window.
Any changes you’ve made since the last save are discarded.

Page Setup 9
Displays the Page Setup dialog box, which lets you specify the paper size
and page orientation for printing.

Print One 9
Prints one copy of the file associated with the active window on the printer
already selected through the Chooser. This command prints without
displaying the Print dialog box for your verification.

Print (Command-P) 9
Displays the print dialog box, which identifies the selected printer and lets
you verify or change the printing options. Clicking OK in the print dialog
box triggers the printing of the current document according to the settings.

Note

You must select Color/Grayscale in the printing dialog box
to print a layout. ◆

C H A P T E R 9

NTK Commands

Edit Menu 9-5

Quit (Command-Q) 9
Closes all open files and quits the Newton Toolkit. If you have made changes
since saving any open files, NTK prompts you to save or discard the changes
before closing the files.

Edit Menu 9

You use the Edit menu to manipulate the contents of a window—editing
views in a layout window, for example, or text in a browser window.

Undo (Command-Z) 9
Cancels the last change made in the active window.

If NTK cannot undo the last operation, this command reads Can’t Undo and
is disabled. You cannot undo changes to a slot after you’ve applied them.

Cut (Command-X) 9
Deletes the current selection in the active window and places it on the
Clipboard. You can then paste the material elsewhere. (Cut replaces anything
previously copied or cut to the Clipboard.)

Copy (Command-C) 9
Places on the clipboard a copy of the current selection in the active window.
You can then paste the material elsewhere. (Copy replaces anything
previously copied or cut to the Clipboard.)

Paste (Command-V) 9
Pastes the contents of the Clipboard at the current insertion point.

C H A P T E R 9

NTK Commands

9-6 Edit Menu

If you’re pasting into a layout window, Paste places the contents of the
Clipboard inside the selected view.

Clear (Command-Delete) 9
Deletes the current selection without placing the material on the Clipboard.

Duplicate (Command-D) 9
Makes a copy of the currently selected view or views and places the copy in
the same parent view.

Shift Left (Command-[) 9
Shifts selected text or the line containing the insertion point one tab stop to
the left.

Shift Right (Command-]) 9
Shifts selected text or the line containing the insertion point one tab stop to
the right.

Select All (Command-A) 9
Selects everything in the active window (that is, all views in a layout
window, all text in an editor, or all files in a project window).

Select Hierarchy 9
Selects all child views of the selected view or views in a layout window.
Selection continues down the hierarchy to the last child view.

C H A P T E R 9

NTK Commands

Edit Menu 9-7

Select in Layout 9
Selects the view in a layout window that corresponds to the currently
selected view template in a browser. To use the Select in Layout command,
first select a template in a browser template list.

Shortcut: Double-click on a template name in a browser window to select the
corresponding view in an open layout window for the same file.

You can also use Select in Layout to select invisible or hidden views.

Search (Command-R) 9
Finds and lists instances of a string in the active layout file or in all layout
files in a project. The Search command displays a dialog box, illustrated in
Figure 8-1, in which you specify the string you want to find and select search
specifications.

Figure 8-1 The dialog for searching with Search

“Searching Template Files” beginning on page 5-25 describes the settings in
the Search dialog box.

C H A P T E R 9

NTK Commands

9-8 Edit Menu

Find (Command-F) 9
Finds a string in the active text window.

The Find command displays a dialog box, illustrated in Figure 8-2, in which
you specify the text you’re interested in and a pair of search specifications.

Figure 8-2 The dialog for searching with Find

The Find command is available only when a text window is active or a text
slot is open for editing.

“Searching the Active Window” beginning on page 5-27 describes the Find
dialog box.

Find Next (Command-G) 9
Finds the next instance of the last string specified through the Find
command, which is documented in “Searching the Active Window”
beginning on page 5-27.

Find Inherited 9
Finds the first occurrence of the currently selected slot in the parent view
template hierarchy. The Find Inherited command is available only when a
browser window is active.

C H A P T E R 9

NTK Commands

Edit Menu 9-9

The Find Inherited command looks first in the parent of the selected
template. If NTK doesn’t find the selected slot there, the search continues up
the parent hierarchy to the file’s layout view (that is, NTK does not search
across linked layouts). When it finds a slot with the same name as the
selected slot, NTK opens another browser window, with the slot and its
template selected. If it doesn’t find the slot in any template in the local
hierarchy, NTK sounds the system beep.

Screen Shot 9
Places a bitmap of the Newton screen on the Clipboard. This item is available
only when the Inspector is connected.

Show Clipboard 9
Opens the Clipboard window.

Toolkit Preferences 9
Displays the Toolkit Preferences dialog box, illustrated in Figure 8-3, through
which you set various characteristics of the Toolkit.

C H A P T E R 9

NTK Commands

9-10 Project Menu

Figure 8-3 The Toolkit Preferences dialog box

When you click OK, NTK stores your current settings in a file named
Newton Toolkit Preferences in the system Preferences folder.

The fields in the Toolkit Preferences dialog box are described in “Toolkit
Preferences” beginning on page 4-17.

Project Menu 9

You use the project menu to manage your application project.

C H A P T E R 9

NTK Commands

Project Menu 9-11

New Project 9
Creates and opens a new project file and opens a project window.

The project file contains project specifications and the list of files that make
up the project, that is, the files that NTK processes during the build.

“Project File” beginning on page 4-2 describes the project file.

Open Project 9
Opens an existing project file. You can have only on project open at a time.

Add This Window 9
Adds to the project the file associated with the active window.

Add File 9
Adds a file to the project from anywhere on the desktop. The Add File
command displays a dialog box through which you specify the name and
location of the file.

Remove File 9
Removes the selected file or files from a project.

Update Files 9
Verifies that all entries in the project file can be resolved to files that currently
exist. When it can’t resolve an entry, NTK displays a dialog box, through
which you identify the correct target file.

You use Update Files to update the project file when you’ve moved or
renamed a file since adding it to a project.

C H A P T E R 9

NTK Commands

9-12 Project Menu

Build Package (Command-1) 9
Builds a project—usually a package—from the files and specifications in the
open project file.

NTK places the package file in the same folder as the project file. The name
of the package file is the name of the project with the suffix .pkg.

If the Output option in the Output Settings dialog box is set to Stream file,
NTK builds an object stream file and places it in a file with the name of the
project and the suffix .stream .

You can rename the output file.

The section“Building a Project” beginning on page 4-24 describes how NTK
builds a project.

Download Package (Command-2) 9
Downloads the package file for the open project to a Newton.

You must install the Toolkit application on the Newton, as described in
Chapter 1, “Installation and Setup,” before you can download a package to it.

Export Package to Text 9
Writes the contents of the project data file and all files in a project into a text
file. The name of the file is the project name with the suffix .TEXT .

You can open this file in any application that recognizes text files.

C H A P T E R 9

NTK Commands

Project Menu 9-13

Install Toolkit App 9
Installs the Toolkit application on a Newton PDA connected to the
development system.

The Toolkit application handles the downloading of packages and supports
the Inspector and performance profiler.

Chapter 1, “Installation and Setup,” describes how to set up a connection
between the development system and the PDA prior to downloading the
Toolkit application.

Mark as Main Layout 9
Designates the selected file in the project window as the main layout file—
that is, the layout file whose base view is the application base view.

This item applies only to application projects, that is, projects configured to
produce a new part of type form .

Process Earlier (Option-Up Arrow) 9
Moves the selected file in the project window one place closer to the
beginning of the build list.

Process Later (Option-Down Arrow) 9
Moves the selected file in the project window one place closer to the end of
the build list.

Project Settings 9
Displays the Project Settings dialog box, illustrated in Figure 8-4, through
which you establish the project specifications described in “Project Settings”
beginning on page 4-6.

C H A P T E R 9

NTK Commands

9-14 Project Menu

Figure 8-4 The Project Settings panel of the Project Settings dialog box

C H A P T E R 9

NTK Commands

Project Menu 9-15

Figure 8-5 The Output Settings panel of the Project Settings dialog box

C H A P T E R 9

NTK Commands

9-16 Layout Menu

Figure 8-6 The Package Settings panel of the Project Settings dialog box

Layout Menu 9

You use the layout menu to control the layout environment and manipulate
views in the layout window.

C H A P T E R 9

NTK Commands

Layout Menu 9-17

Layout Size 9
Displays a dialog box, illustrated in Figure 8-7, that lets you set the size of
the layout.

Figure 8-7 The Layout Size dialog box

If you choose a platform from the Platform pop-up menu, NTK fills in the
width and height from the information in the platform file. If you choose
Custom from the pop-up menu, NTK lets you set your own values for the
width and height of the layout in pixels.

Autogrid On 9
Turns Autogrid on and off. Autogrid constrains the corners of views to nodes
on the grid. The default grid resolution is 8 by 8 pixels. You can change the
resolution through the Set Grid command.

Set Grid 9
Opens the dialog box, illustrated in Figure 8-8, that lets you change the grid
size used with Autogrid. The units are pixels.

C H A P T E R 9

NTK Commands

9-18 Layout Menu

Figure 8-8 The Set Grid dialog box

Move To Front 9
Moves the selected view in front of its siblings on the screen by placing it
behind its siblings in the drawing list.

“Ordering Views” on page 5-10 describes how views are ordered.

Move Forward (Option-Down Arrow) 9
Moves the selected view one step later in the drawing list, so that it’s drawn
after the view it previously preceded.

You can also move a view forward by selecting it in the browser template list
and pressing Option-Down arrow.

“Ordering Views” on page 5-10 describes how views are ordered.

Move To Back 9
Moves the selected view behind its siblings by placing it ahead of its siblings
in the drawing list.

“Ordering Views” on page 5-10 describes how views are ordered.

C H A P T E R 9

NTK Commands

Layout Menu 9-19

Move Backward (Option-Up Arrow) 9
Moves the selected view one step earlier in the drawing list, so that it’s
drawn before the view it previously followed.

You can also move a view backward by selecting it in the browser template
list and pressing Option-Up arrow.

“Ordering Views” on page 5-10 describes how views are ordered.

Alignment 9
Opens the dialog box, illustrated in Figure 8-9, through which you establish a
view alignment scheme that’s applied to the selected views when you click
Apply or subsequently choose Align.

Figure 8-9 The Alignment dialog box

“Aligning Views” beginning on page 5-8 describes the Alignment
dialog box.

C H A P T E R 9

NTK Commands

9-20 Layout Menu

A subset of the alignment options, illustrated in Figure 8-10, appears on the
drawing palette.

Figure 8-10 The alignment buttons on the palette

Align 9
Aligns the selected views using the alignment scheme specified through
Alignment.

Preview (Command-Y) 9
Toggles the layout screen between layout mode and preview mode. In
Layout mode, NTK shows the rectangular extents of each view on the screen.
In preview mode, NTK displays the views approximately as they would
appear on the Newton screen.

“Previewing” beginning on page 5-11 describes preview mode.

Layout Preferences 9
Displays the Layout Preferences dialog box, illustrated in Figure 8-11 and
documented in “Layout Preferences” beginning on page 4-19.

C H A P T E R 9

NTK Commands

Browser Menu 9-21

Figure 8-11 The Layout Preferences dialog box

Browser Menu 9

You use the Browser menu to manipulate slots and to control how the
browser displays templates and slots.

Template Info (Command-I) 9
Opens a dialog box in which you can name and declare a selected view. A
view name operates as a symbol in NewtonScript. Declaring a view allows
you to access it symbolically from the view in which it’s declared and from
descendants of that view.

Figure 8-12 illustrates the Template Info dialog box.

“Naming and Declaring Views” beginning on page 5-13 describes the
Template Info dialog box.

C H A P T E R 9

NTK Commands

9-22 Browser Menu

Figure 8-12 The Template Info dialog box, for naming and declaring views

New Slot (Command-=) 9
Opens a dialog box, illustrated in Figure 8-13, for adding new slots to the
selected template.

Figure 8-13 The New Slot dialog box

“Adding Slots” beginning on page 5-18 describes the New Slot dialog box.

C H A P T E R 9

NTK Commands

Browser Menu 9-23

Rename Slot 9
Opens a dialog box, illustrated in Figure 8-14, that lets you rename the
selected slot.

Figure 8-14 The Rename Slot dialog box

If the slot is open for editing, Rename Slot applies outstanding changes and
closes the slot editor before changing the name.

Note that changing the name of the slot does not change existing occurrences
of the name in scripts. Changing the case of a name through Rename Slot
changes the name.

Templates by Type 9
Lists templates alphabetically by type.

Templates by Hierarchy 9
Lists templates by hierarchy, with sibling views listed in the order they’re
created.

C H A P T E R 9

NTK Commands

9-24 Browser Menu

Slots by Name 9
Orders slots alphabetically in the browser slot list.

Slots by Type 9
Orders slots by type in the browser slot list.

Show Slot Values 9
Displays the value of each slot next to the slot name in the browser slot list.

Apply (Command-E) 9
Checks syntax and inserts into the slot changes made in a slot editor.

Revert 9
Discards any changes made since the last Apply or Save.

Use for Default Placement 9
Establishes the size and location of new browser windows.

Browser Preferences 9
Displays the Browser Preferences dialog box, illustrated in Figure 8-15 and
documented in “Browser Preferences” beginning on page 4-21.

C H A P T E R 9

NTK Commands

Browser Menu 9-25

Figure 8-15 The Browser Preferences dialog box

C H A P T E R 9

NTK Commands

9-26 Window Menu

Window Menu 9

You use the Window menu to open browser windows and to open the
Inspector window or connect the Inspector.

Open Inspector 9
Opens the Inspector without making a connection to a Newton. You can
have only one Inspector window open at a time.

Connect Inspector (Command-K) 9
Connects the Inspector to a Newton PDA with the Toolkit application
installed and a connection to the development system. If the Inspector
window is not open, Connect Inspector opens it.

Chapter 1, “Installation and Setup,” describes how to set up a connection
between the development system and the Newton and how to install the
Toolkit application. Chapter 6, “Debugging” describes the commands
available through the Inspector.

New Browser (Command-B) 9
Opens a new template browser on a layout file selected in a project window
or at the level of the selected view in a layout window.

You use the browser to edit templates in a layout file. “Browsing and Editing
Templates” beginning on page 5-16 describes the browser.

Open Layout (Command-L) 9
Opens a layout window for the layout file selected in the project window.

Setting the Insertion Point A-1

A P P E N D I X A

Keyboard Text-Editing
Commands A

This appendix lists the keyboard commands for navigating and manipulating
text in NTK slots, the project data file, and the Inspector window.

You can use the keyboard to

■ specify an insertion point

■ select text

■ manipulate selected text

■ delete text

■ change the effect of the next keystroke

The keyboard text-editing commands operate relative to the current insertion
point or the selected text. “Editing Text” beginning on page 5-23 describes
the basic NTK text editor.

You can reverse the last keyboard command by pressing Command-Z (Undo).

Setting the Insertion Point A

You can set the insertion point with the commands in Table A-1. If text is
selected when you set the insertion point, it is simply deselected.

Figure A-0
Table A-0

A P P E N D I X A

Keyboard Text-Editing Commands

A-2 Setting the Insertion Point

Table A-1 Moving the insertion point

Motion Keystrokes

Back one character Left arrow
Control-B

Forward one character Right arrow
Control-F

Down one line Down arrow
Control-N
Option-Down arrow

Up one line Up arrow
Control-P
Option-Up arrow

To beginning of word,
or back one word

Option-Left arrow
Option-B

To end of word, or to
end of next word

Option-Right arrow
Option-F

To beginning of line Command-Left arrow
Control-A
Command-Option-Left arrow

To end of line Command-Right arrow
Control-E
Command-Option-Right arrow

To next page Page down
Command-Down arrow
Control-V

To previous page Page up
Command-Up arrow
Option-V

To beginning of text Option-<
Command-Option-Up arrow

To end of text Option->
Command-Option-Down arrow

A P P E N D I X A

Keyboard Text-Editing Commands

Selecting Text A-3

Selecting Text A

You can select text with the commands listed in Table A-2. If text is already
selected when you issue one of the text-selection commands, the selection
is extended.

Table A-2 Selecting text with keyboard commands

Selection Keystrokes

One character back Shift-Left arrow

One character forward Shift-Right arrow

One word back Option-Shift-Left arrow

One word forward Option-Shift-Right arrow

Back to beginning of line Command-Shift-Left arrow
Command-Option-Shift-Left arrow

Forward to end of line Command-Shift-Right arrow
Command-Option-Shift-Right arrow

Previous line Shift-Up arrow
Option-Shift-Up arrow

Next line Shift-Down arrow
Option-Shift-Down arrow

Back to beginning of page Command-Shift-Up arrow

Forward to end of page Command-Shift-Down arrow

Back to beginning of text Command-Option-Shift-Up arrow

Forward to end of text Command-Option-Shift-Down arrow

A P P E N D I X A

Keyboard Text-Editing Commands

A-4 Manipulating Selected Text

Manipulating Selected Text A

You can use the commands listed in Table A-3 to manipulate selected text. As
the table shows, NTK supports the customary Macintosh commands for
cutting (Command-X), copying (Command-C), and pasting (Command-V).

Table A-3 Manipulating selected text

Manipulation Kaystrokes

Indent selection left Command-[

Indent selection right Command-]

Transpose selection with one
character forward

Control-T

Cut selection to Clipboard Command-X

Copy selection to Clipboard Command-C

Paste contents of Clipboard
over selection

Command-V

A P P E N D I X A

Keyboard Text-Editing Commands

Deleting Text A-5

Deleting Text A

You can delete text with the keyboard commands listed in Table A-4. The
NTK keyboard editing commands do not place deleted text onto the
Clipboard; to delete the selection and place it on the Clipboard, use
Command-X.

Table A-4 Deleting text with keyboard commands

Scope of deletion Keystrokes

Selection only Clear
Shift-Clear

Selection or one character back Delete
Shift-Delete

Selection or one character
forward

Control-D
Delete forward
Shift-Delete forward

Selection or one word back Option-Delete

Selection or one word forward Option-D
Option-Delete forward

Selection and to end of line Control-K

Selection and to end of text Command-Delete
Command-Option-Delete
Command-Delete forward
Command-Option-Delete forward

A P P E N D I X A

Keyboard Text-Editing Commands

A-6 Changing the Meaning of the Next Keystroke

Changing the Meaning of the Next Keystroke A

You can use the key combinations listed in Table A-5 to modify the
interpretation applied to the next keystroke.

Table A-5 Changing the interpretation of the next keystroke

Kaystrokes Effect

Control-[
Escape

Interpret next keystroke as Option-keystroke

Control-U Multiply next keystroke by four

The sequence Control-U Option-B, for example, moves
the insertion point back four words

Control-Q Quote next character—that is, ignore any special meaning
and insert character code into text

The sequence Control-Q Option-B, for example, inserts an
integral sign; Option-B alone moves the insertion point
back one word

B-1

A P P E N D I X B

Keyboard Shortcuts B

This appendix lists keystroke combinations that invoke NTK menu items or
otherwise substitute for mouse selections.

The Command key on a Macintosh keyboard is the key with the propeller
symbol and, possibly, an open Apple symbol.

Table B-1 Keyboard equivalents to menu items

Key combination Effect

Command-N New Layout

Command-T New Proto Template

Command-O Open

Command-W Close

Command-S Save

Command-M Save All

Command-P Print

Command-Q Quit

Command-Z Undo

Command-X Cut

Command-C Copy

Command-V Paste

Command-Delete Clear

Command-D Duplicate

Command-[Shift Left

Figure B-0
Table B-0

A P P E N D I X B

Keyboard Shortcuts

B-2

The keyboard commands listed in Table B-1 move templates within the view
hierarchy. You can issue these commands with a template selected in a
browser window. When a view is selected in a layout window, the Option
key in combination with the arrow keys resizes the view, as described in
“Resizing a View” beginning on page 5-7.

Command-] Shift Right

Command-A Select All

Command-R Search

Command-F Find

Command-G Find Next

Command-1 Build Package

Command-2 Download Package

Option-Down arrow Move Forward

Option-Up arrow Move Backward

Command-Y Preview

Command-I Template Info

Command-= New Slot

Command-E Apply

Option-Down arrow Process Later

Option-Up arrow Process Earlier

Command-K Connect Inspector

Command-B New Browser

Command-L Open Layout

Table B-1 Keyboard equivalents to menu items (continued)

Key combination Effect

A P P E N D I X B

Keyboard Shortcuts

B-3

The keyboard commands listed in Table B-1 control the NTK Search
mechanism. You can issue them when the Search dialog box is active.

The keyboard commands listed in Table B-1 control the NTK Find
mechanism. You can issue them when the Find dialog box is active.

Table B-2 Keyboard commands that affect the hierarchy

Key combination Effect

Option-Left arrow Move a template one layer up in
the hierarchy

Option-Right arrow Move a template one layer down
in the hierarchy

Option-Up arrow Move a template one place up in the drawing list
(that is, move view backward).

Option-Down arrow Move a template one place down in the drawing
list (that is, move view forward)

Table B-3 Keyboard commands for searching

Key combination Effect

Command-L Search layout

Command-P Search project

Command-F Search frame names

Command-S Search slot names

Command-T Search text in slot

Command-A Search all

Command-W Search for whole word

Command-E Search sensitive to case

A P P E N D I X B

Keyboard Shortcuts

B-4

Table B-4 Keyboard commands for finding

Key combination Effect

Command-W Find whole word

Command-E Find sensitive to case

About Resources C-1

A P P E N D I X C

Resources C

A resource is a piece of data stored on the development system and
incorporated into a Newton application during the project build. You can
use resources to bring data from other sources into your application. NTK
explicitly supports 'PICT' resources and 'SND ' resources, and it includes
functions for retrieving any other resources your application can handle.

This appendix describes how to embed 'PICT' and 'SND ' resources in
Newton applications and how to retrieve your own resources.

About Resources 9

A resource is a collection of data with a defined structure, stored in a
designated resource file. Each resource has a type—an identifier specifying
the format used to store the data—and a resource number that’s unique
within resources of the same type. Resources can also have names.

The Macintosh environment provides predefined resource types for
commonly used data formats such as pictures, sounds, and fonts. NTK
recognizes these resource types and provides functions that let you make
use of Macintosh-style resource data in your Newton application.

The functions described in this appendix—for opening and closing resource
files and retrieving resources from them—are available on the development
system during the build. They’re not available on the Newton at run time.
Therefore, you can manipulate resources only in code that’s executed only
during the build.

Figure C-0
Table C-0

A P P E N D I X C

Resources

C-2 About Resources

Resource Files C
Resource data itself can come from a number of sources—it may be the out-
put from a utility program that captures sound or picture data and stores it
in a file; it can be described textually and then compiled in a Macintosh
application development environment such as the Macintosh Programmer’s
Workshop (MPW); or it can be copied, cut, pasted, and otherwise manipu-
lated with a resource-editing program like ResEdit. (ResEdit comes with
NTK. Complete documentation is available from APDA.)

Compiled resource data ultimately resides in a file known as a resource file.
Macintosh resource files in NTK are customarily identified by a .rsrc
filename extension.

A single resource file can contain multiple resources of dissimilar types.

Adding Resource Files to a Project C
You add a resource file to a project through the Add File item in the File
menu. Place resource files at the beginning of the build list.

Using Resources C
You can include 'PICT' resources in an application by inserting them into
any picture slot. To retrieve other resources, you must

1. open the resource file

2. extract the resource data

3. embed the resource data into the application

4. close the resource file.

You typically retrieve resources in code in a text file that’s included in the
project.

A P P E N D I X C

Resources

About Resources C-3

Opening and Closing Resource Files C

NTK automatically opens and closes the resource files containing 'PICT'
resources that you acess through the picture slot editor or the Project Settings
dialog box. You need to open and close resource files only if you’re manipu-
lating the resources directly—when you’re using sound resources, for
example, or when you’re using resources specific to your application.

Manipulating Single Resource Files C

To open and close resource files one at a time, use the OpenResFile
and CloseResFile functions. OpenResFile accepts as its argument
the path name to the resource file to be opened; this function closes any
resource files that’s currently open and opens the one specified by its
argument. CloseResFile accepts no arguments; it expects only one
resource file to be open when it’s called. This example illustrates opening
and closing two resource files sequentially.

// open first rsrc file; note use of HOME variable

OpenResFile(HOME&"My1stResourceFile.rsrc");

// do things with My1stResourceFile while it’s open

. . .

// next call to OpenResFile closes My1stResourceFile.rsrc

OpenResFile ("HD:Folder:MyNextResourceFile.rsrc");

// do things with MyNextResourceFile while it’s open

. . .

// close .rsrc files before exiting Project Data

CloseResFile();

Manipulating Multiple Resource Files C

If you need to open multiple resource files simultaneously, you can use the
OpenResFileX and CloseResFileX functions, rather than their single-file
counterparts.

The OpenResFileX function accepts as its argument the path name to the
resource file to be opened; it does not close any resource files that are

A P P E N D I X C

Resources

C-4 About Resources

currently open. This function returns a reference to the resource file that
it opens; you later pass the reference to the CloseResFileX function to
close the file.

This example shows how to open and later close two resource files at once.

// save the refnum -- you’ll need it to close the file

refNum1 := OpenResFileX(home&"Happy.rsrc");

refNum2 := OpenResFileX("HD:Folder:Joy.rsrc");

. . .

// do things with resources while files are open

// close resource files before exiting Project Data

CloseResFileX(refNum1);

CloseResFileX(refNum2);

Extracting Resource Data C

Once the resource file is opened, you’ll need to extract the resource data
itself. You can use the functions GetResource and GetNamedResource to
retrieve from an open resource file any resources your code can handle.

Because a resource file can contain multiple resources of any type, NTK
provides functions for extracting resources in various ways. For example,
you can specify the resources to be retrieved by name or by resource ID.

Each Macintosh resource is identified by a number that is unique within its
resource type; this number is called its resource ID and is assigned when the
resource is created. The GetResource function retrieves from the open
resource file the resource having the specified type and ID number. The
resource is returned as a binary object having the class symbol specified by
the final argument to this function. This example uses GetResource to
retrieve a resource.

OpenResFile(home&"Happy.rsrc");

myPict:= GetResource("PICT", 1001, 'picture)

CloseResFile();

A P P E N D I X C

Resources

About Resources C-5

This code returns resource number 1001 of type 'PICT' as a binary object
of class 'picture ; the binary object returned is assigned to the compile-time
variable myPict .

Each resource has a resource ID; you can also assign a name string to a
resource. This name can be used in conjunction with a resource type
to specify the resource that the GetNamedResource function is to retrieve
from an open resource file. Like GetResource , the GetNamedResource
function also accepts an argument specifying the class that the returned
binary object is to have. This example illustrates the GetNamedResource
function.

gCheckerBoard := GetNamedResource("PAT ",

 "checkerBoard", 'pattern);

This line returns the resource named checkerBoard of type 'PAT ' as a
binary object of class 'pattern ; the binary object returned is assigned to the
compile-time variable gCheckerBoard .

Specialized Resource Extraction Functions C

The resource-extraction funcions described here do not interpret or process
the binary resource data and therefore work with resources of all types. NTK
also provides several specialized resource-extraction functions that interpret
or process the retrieved resource data in some way; these functions are
described later in this appendix, in the sections “Using 'PICT' Resources”
and “Using External Sound Resources.”

Extracting Raw Binary Data C

You can also use various data-extraction functions to return raw binary data
from a custom resource of your own design. For more information on these
data-extraction functions, see the Utility Functions chapter of Newton
Programmer’s Guide: System Software.

A P P E N D I X C

Resources

C-6 Using the Resource-Handling Functions

Defining custom resources is not discussed in this book; for detailed
information about creating Macintosh-style resources, see

■ the Resource Manager chapter of Inside Macintosh: Overview

■ the Resource Manager chapter of Inside Macintosh: More Macintosh Toolbox

■ the Resource Compiler and Decompiler chapter in MPW: The Macintosh
Programmer’s Workshop Development Environment.

■ the documentation that accompanies ResEdit.

Using the Resource-Handling Functions C

Current versions of NTK and the Newton object system support some kinds
of resources more fully than others.

The use of 'PICT' resources is well supported in the Newton object system
and NTK. For many of the system-supplied view prototypes, NTK locates
the appropriate resource automatically when an external resource file is
included in the application’s NTK project file.

On the other hand, the object system does not currently supply any proto-
types that use external sound resource files; thus, you need to do a little
more work to incorporate them in your application.

This section describes how NTK handles 'PICT' and sound resources and
describes data extraction functions that are specialized for these resource
types.The information in this appendix is based on version 1.05 of the
Newton ROM and version 1.0 of Newton Toolkit.

Using 'PICT' Resources 9
You can draw your pictures in any graphics program, and then paste them as
'PICT' resources into a resource file in ResEdit. You add the resource file to
an NTK project through the Add File item in the Project menu.

A P P E N D I X C

Resources

Using the Resource-Handling Functions C-7

NTK lets you add named'PICT' resources to picture slots in your templates
through the standard picture slot editor, illustrated in Figure C-1

Figure C-1 Adding a named 'PICT' resource to a picture slot

The File pop-up menu contains all resources files that have been added to the
project file. The Picture list shows all named 'PICT' resources in the selected
file. For more information on the picture slot editor, see “Editing Slots”
beginning on page 5-20.

Making a Bitmap From a 'PICT' Resource C

NTK also supplies the GetPictAsBits function for extracting bitmaps
from 'PICT' resources. NTK itself uses this function when manipulating the
resources you access through the picture slot editor.

The GetPICTAsBits function retrieves a 'PICT' resource by name from
an open resource file, converts the 'PICT' to a bitmap, and returns a frame
containing a bitmap object. It accepts as its arguments the name of the
'PICT' resource to be retrieved and a Boolean value specifying whether to
retrieve the mask for the bitmap from the resource. This function is described
completely in “GetPictAsBits” beginning on page C-12, in the reference
section of this appendix.

The following code example retrieves the 'PICT' resource named Rosie
and stores it in the compile-time constant kPictureAsBitMap.

A P P E N D I X C

Resources

C-8 Using the Resource-Handling Functions

OpenResFile(home&"MyPicts.rsrc");

DefConst('kPictureAsBitMap,
GetPictAsBits("Rosie", nil));

CloseResFile();

You can make the bitmap data available at run time by storing it in an
evaluate slot.

The Drawing and Graphics chapter in Newton Programmer’s Guide: System
Software illustrates how you can use bitmap data when drawing.

Using External Sound Resources 9
You can use any program that saves 'SND ' resources to create sounds for
your application. Some Macintosh models have a built-in sound-sampling
program. NTK supplies the two functions, GetSound and GetSound11 , for
extracting sound data from these resources.

The GetSound function reads a sound sampled at 22kHz and returns a
Newton sound frame. The GetSound11 function reads a sound sampled at
either 11 kHz or 22kHz, and returns a Newton sound frame. When
GetSound11 read a sound sampled at 22kHz, it down-samples and filters it
to produce data simulating the same sound sampled at 11kHz. The
GetSound11 function reduces the space required to store sound data, at the
expense of some of the resolution offered by a comparable 22kHz sample.
Both functions expect the resource file containing the sound resource to be
open already, and both functions accept as their sole argument a string
specifying the name of the sound resource.

The following code example retrieves by name the 'SND ' resource
chickadee and stores it in the compile-time variable gChickadee .

OpenResFile(home&"MySounds.rsrc");

gChickadee := GetSound("chickadee");

CloseResFile();

You can make the sound available at run time by storing it in an evaluate slot.

A P P E N D I X C

Resources

Resource Functions C-9

See the Sound chapter in Newton Programmer’s Guide: System Software for
more complete information on using sound in Newton applications.

Resource Functions 9

This section describes the functions used to make frame objects from resource
data.These function are available only during compile time—they are not
available at run time.

Opening and Closing Resource Files C
This section describes the functions you use for opening and closing
resource files.

OpenResFile 9

OpenResFile(pathName)

Opens the specified resource file.

pathName The path name to the resource file to be opened. Path
names that contain spaces must be enclosed in double
quotation marks.

This function opens only one resource file at a time. If another resource file is
open, OpenResFile closes it before opening the file specified by the value of
the pathName parameter.

Note

To open multiple resource files at one time,
use the OpenResFileX function. ◆

A P P E N D I X C

Resources

C-10 Resource Functions

OpenResFileX 9

OpenResFileX(pathName)

Opens the specified resource file and returns a reference to the open file. The
reference that this function returns is typically saved in a local variable and
passed as the argument to the CloseResFileX function.

pathName The path name to the resource file to be opened. Path
names that contain spaces must be enclosed in double
quotation marks.

CloseResFile 9

CloseResFile()

Closes the currently open resource file.

CloseResFileX 9

CloseResFileX(fileRef)

Closes the specified resource file.

fileRef A reference to the file to be closed; this reference is
returned by the OpenResFileX function and must be
saved for use with CloseResFileX .

Retrieving Resources C
This section documents the functions to use to retrieve resources from an
open resource file. You can retrieve resources by type and either name or
resource ID.

A P P E N D I X C

Resources

Resource Functions C-11

GetNamedResource 9

GetNamedResource(typeString, nameString, class)

Retrieves from an open resource file the resource specified by nameString and
typeString and returns the resource data as a frame having the specified class
symbol.

typeString A four-character string specifying the resource type of
the data to be retrieved

nameString A string specifying the name of the resource to be
retrieved.

class The symbol to be stored in the class slot of the frame
returned by this function

GetResource 9

GetResource(typeString, id, class)

Retrieves the specified resource from an open resource file and returns the
resource data as a frame having the specified class symbol.

typeString A four-character string specifying the resource type of
the data to be retrieved

 id A numeric string specifying the resource ID of the data
to be retrieved

 class The symbol to be stored in the class slot of the frame
returned by this function

A P P E N D I X C

Resources

C-12 Resource Functions

GetPictAsBits 9

GetPictAsBits(nameString, maskToo)

Retrieves the specified 'PICT' resource by name from an open resource file,
converts the 'PICT' to a bitmap, and returns a frame containing a bitmap
object and an optional mask.

nameString A string specifying the name of the resource to
be retrieved.

maskToo A Boolean value indicating whether to include a mask
in the returned frame. A mask is a companion bitmap
used for highlighting a screen element. If maskToo is
non-nil , a mask is obtained by one of two means:

First, GetPictAsBits looks in the resource file for a
resource with the same name as the specified 'PICT'
resource but with an exclamation point apended. If the
resource is found, it is returned in the mask slot.

Second, if no mask resource is found, a resource is
automatically constructed and returned in the mask slot
of the bitmap object.

If the maskToo parameter is nil , no mask is found or
constructed for the bitmap.

The bitmap object returned by this function is a frame with the
following slots:

bits A reference to a binary object containing the bitmap data

bounds A bounds frame specifying the dimensions of the
bitmap; for example,

{left: 0,
 top: 0,

A P P E N D I X C

Resources

Resource Functions C-13

 right: bitmapWidth,
 bottom: bitmapHeight}

mask A reference to a binary object containing the mask
bitmap.This slot is included only if the maskToo
argument was not nil .

Note

Picture objects are stored much more compactly as binary
'PICT' objects (obtained with GetNamedResource) than
as bitmap objects (obtained with GetPictAsBits).
Drawing from a bitmap, however, may be significantly
faster. The Drawing and Graphics chapter of Newton
Programmer’s Guide: Sysltem Software contains more
discussion of picture objects. ◆

GetSound C

GetSound(nameString)

Retrieves the specified 22KHz sound resource from the currently open
resource file and returns a Newton sound frame.

nameString A string specifying the name of the sound resource to be
retrieved. The sound must have been sampled at 22kHz.
If the specified sound is not sampled at that rate, NTK
reports a compiler error something like this one:

Error in myLayoutFile, myView.sound, line7:

Sound resource:"Boing" must be sampled at 22 KHz

To retrieve a sound samples at 11 Hz, use the
GetSound11 function.

The sound frame that this function returns has the following slots.

sndFrameType The format of this sound frame. Currently, Newton
sound frames always have the symbol 'simpleSound

A P P E N D I X C

Resources

C-14 Resource Functions

in this slot; future Newton devices may store other
values here.

samples A frame of class 'samples containing the binary sound
data. The sound data must have been sampled at 11Khz
or 22KHz.

samplingRate A floating-point value specifying the rate at which the
sample data is to be played back

dataType A code that reflects the data type. Currently, the value of
this slot is always 1, indicating 8-bit samples.

compressionType A code that reflects the compression strategy. Currently,
the value of this slot is always 0 (zero), indicating no
compression.

GetSound11 9

GetSound11(nameString)

Retrieves the specified 11KHz sound resource from the currently open
resource file and returns a Newton sound frame.

nameString A string specifying the name of the sound resource to be
retrieved. The sound must have been sampled at
11KHz. If the specified sound is sampled at 22 Khz,
NTK down-samples the sound (with filtering) from 22
Khz to 11 Khz, and returns a Newton sound frame that
packages this sound as an 11kHz sample.

The sound frame that this function returns has the following slots.

sndFrameType Specifies the format of this sound frame. Currently,
Newton sound frames always have the symbol

A P P E N D I X C

Resources

Resource Functions C-15

'simpleSound in this slot; future Newton devices may
store other values here.

samples A frame of class 'samples containing the binary
sound data. The sound data must have been sampled at
11Khz or 22KHz.

samplingRate A floating-point value specifying the rate at which the
sample data is to be played back

dataType C urrently, the value of this slot is always 1, indicating
8-bit samples.

compressionType
Currently, the value of this slot is always 0 (zero),
indicating no compression.

A P P E N D I X C

Resources

C-16 Summary of Resource-Manipulation Functions

Summary of Resource-Manipulation Functions C

This section categorizes the resource-manipulation functions by task.

Opening and Closing Resource Files C
OpenResFile(pathName)
OpenResFileX(pathName) // for multiple files
CloseResFile()
CloseResFileX(fileRef)// for multiple files

Getting Resource Data C
GetNamedResource(typeString, nameString, class)
GetResource(typeString, id, class)
GetPictAsBits(nameString, maskToo)
GetSound(nameString)
GetSound11(name)

Script Slots D-1

A P P E N D I X D

Specialized Slot Editors D

This appendix describes the specialized slot editors you use for editing the
system-defined slots. The description of the viewBounds slot, which is a
simple rectangle slot, articulates the meanings of the four integers under
different justification settings.

Script Slots D

You edit the slots containing system-defined messages with the basic NTK
text editor described in “Editing Text” beginning on page 5-23.

The system messages appear in the Specific and Methods pop-up menus
in the browser and New Slot dialog boxes. When you add one of these
slots, NTK places the skeletal structure of the method in the slot. If you
add a viewStrokeScript slot, for example, NTK defines the initial slot
contents as

func(unit)

begin

end

If a method takes no parameters or requires no special return value, NTK
sets the initial contents to the simple function statement

func()

begin

end

The system-defined messages are described in in the Newton Programmer’s
Guide.

Figure D-0
Table D-0

C H A P T E R D

D-2 View Attributes

View Attributes D

The view attributes slots contain various specifications that the Newton uses
to create, display, and manipulate views. Some of the slots contain a single
value or string. The viewOriginX and viewOriginY slots, for example,
each contain a number, which you edit through the number editor. The
viewFont slot contains a single statement that specifies a font name. You
edit it and the other attribute slots containing text with the standard NTK
text editor, described in “Editing Text” beginning on page 5-23.

This section illustrates the specialized editors you use to use to edit the more
complex view attributes slots. For detailed descriptions of the fields, see the
“Views” chapter in Newton Programmer’s Guide: System Software.

viewBounds D

The viewBounds slot defines the bounds of a view. NTK automatically fills in
the viewBounds values when you lay out a view in the graphical editor. The
values in the four slots are relative to the parent or sibling view, and the exact
meaning varies with different justification strategies, as defined in the
viewJustify slot. Table D-1 summarizes the meanings of the Left and Right
fields with different horizontal view justification settings. Positive numbers
are offset to the right, negative to the left. Table D-2 summarizes the
meanings of the Top and Bottom fields with different vertical view
justification settings. Positive numbers are offset down, negative up.

A P P E N D I X D

Specialized Slot Editors

View Attributes D-3

Table D-1 Meaning of viewBounds fields for horizontal justification

Justification Meaning of Left Meaning of Right

Left Relative The offset from the parent’s or
sibling’s left edge to the view’s
left edge.

The offset from the parent’s or
sibling’s left edge to the view’s
right edge.

Right Relative The offset from the parent’s or
sibling’s right edge to the view’s
left edge.

The offset from the parent’s or
sibling’s right edge to the view’s
right edge.

Center Relative The left offset of the view’s
center from the parent’s or
sibling’s center.

The total width of the view.

Full Relative The offset of the view’s left edge
from the parent’s or sibling’s left
edge.

The offset of the view’s right
edge from the parent’s or
sibling’s right edge.

Table D-2 Meaning of viewBounds fields for vertical justification

Justification Meaning of Top Meaning of Bottom

Top Relative The offset from the parent’s or
sibling’s top edge to the view’s
top edge.

The offset from the parent’s or
sibling’s top edge to the view’s
bottom edge.

Bottom
Relative

The offset from the parent’s or
sibling’s bottom edge to the
view’s to the view’s top edge

The offset from the parent’s or
sibling’s bottom edge to the
view’s bottom edge.

Center Relative The vertical offset of the view’s
vertical center from the parent’s
or sibling’s center.

The total height of the view

Full Relative The offset of the view’s top edge
from the parent’s or sibling’s
top edge.

The offset of the view’s bottom
edge from the parent’s or
sibling’s bottom edge.

A P P E N D I X D

Specialized Slot Editors

D-4 View Attributes

viewFlags D

viewFormat D

viewJustify D

A P P E N D I X D

Specialized Slot Editors

Specific Slots D-5

viewEffect D

viewTransferMode D

Specific Slots D

The slots in the Specific pop-up menu represent the slots that are specific to
the selected proto. These slots hold methods or simple values that you edit
with one of the standard slot editors.

A P P E N D I X D

Specialized Slot Editors

D-6 Specific Slots

Installing the Debugging Packages E-1

A P P E N D I X E

Newton Debugging
Applications E

This appendix describes a handful of Newton applications that help you test
and examine your software.

NTK is shipped with a number of small debugging tools:

■ HeapShow, which displays heap statistics while they’re happening and
lets you force low-memory conditions

■ Snarf, which adds a simulated transport for testing communication
software

■ Exception Printer, which adds more information to exception reports on
the Newton

■ vFlags, which lets you manipulate the recognition flags for a clEdit view
and test the effect on input recognition

The vFlags application is shipped with its source code, so you can modify
the application for your own purposes.

The Newton Debugging Tools folder also contains a project named
NSDShortCuts, which lets you manipulate your own debugging
environment.

The bulk of this appendix is the HeapShow documentation.

Installing the Debugging Packages E

The Newton debugging applications are shipped as package files, which you
can install on the Newton using the Newton Package Installer.

A P P E N D I X E

Newton Debugging Applications

E-2 HeapShow

To remove an application from a Newton 2.0 unit, scrub its icon in the Extras
drawer. To remove an application from a Newton MessagePad, use the
Remove Software option in the Prefs application.

HeapShow E

This section describes the HeapShow application, which allows you to
examine heap use on the Newton.

About HeapShow E
HeapShow is a Newton application that displays statistics about the Newton
heaps—that is, the portions of Newton memory allocated for storing
pointers, handles, and frames—in a floating view on the Newton screen.

While HeapShow is running, you can start up and use other applications and
then watch the impact on the heaps.

About Newton Memory Management E
Memory is allocated in the Newton system in a number of ways, but most
memory allocations are for either heaps or stacks. HeapShow lets you
monitor

■ the two biggest heaps: the pointers heap and the handles heap

■ the frames “heap,” which is actually a large pointer allocation within the
pointers heap

■ the amount of unallocated memory

Heaps grow and shrink only as needed. If a memory allocation cannot be
accommodated by the free space available in the target heap, then the heap
grows in 1 KB increments until there’s enough contiguous space available.
You can watch the changes in HeapShow: If the target heap is the pointers
heap, for example, then the size of the pointers heap grows, and the amount

A P P E N D I X E

Newton Debugging Applications

HeapShow E-3

of free system memory shrinks. The amount of free space within the pointers
heap might change.

When there’s no more space to grow the size of the heap, the stack manager
asks the various tasks to reduce the size of their heaps to free up memory—
heaps and stacks free space only when asked, which is why a memory
allocation in one heap can reduce the size of the pointers heap.

C-code often creates heaps specific to its tasks. Communication tools, for
example, typically allocate a separate heap. Moreover, C-code needs memory
to hold its stacks. HeapShow cannot display statistics about special heap or
stack allocations.

If a piece of C-code allocates a pointer without specifying a heap, the
memory comes out of the pointers heap. If a piece of C-code allocates a
handle without specifying a heap, the memory comes out of the handles
heap.

Allocations in NewtonScript are always made in the frames “heap,” which is
actually a pointer allocation within the pointers heap. The frames heap has
its own heap manager and does not grow and shrink like the other heaps.

The frames heap manager deallocates memory (that is, garbage collects) only
when there’s not enough space for a frame allocation. HeapShow lets you
force the frames heap manager to deallocate memory every time it check the
system, so you can see the minimum space needed.

Using HeapShow E
You start up HeapShow by tapping its icon, illustrated in Figure D-1.

Figure D-1 The HeapShow icon

A P P E N D I X E

Newton Debugging Applications

E-4 HeapShow

The HeapShow application displays the sizes and number of free bytes in the
pointer, handles, and frames heaps, as illustrated in Figure D-2.

Figure D-2 The default HeapShow display

The Info button in the lower-left corner lets you set the preferences, which
are described in “Preferences” beginning on page E-5.

The buttons along the lower-right edge, which are described in “HeapShow
Controls” beginning on page E-8, let you

■ control what information is displayed and how it’s presented

■ force memory or statistics updates

Statistics Display E

HeapShow lets you examine the pointer, handles, and frames heaps on the
Newton. You can adjust the display to show either numerical data or a
graphical representation of the heap, as illustrated in Figure D-3.

Free bytes
in system

Size of heap
Free bytes within heap

Info button

A P P E N D I X E

Newton Debugging Applications

HeapShow E-5

Figure D-3 Numerical data versus fragmentation graphics

You can also change the numerical display to show either

■ the total sizes and number of bytes free in the three heaps or

■ the differences in each since the display was last changed.

Note that the frames heap is of fixed size; only the number of free bytes
changes.

“HeapShow Controls” beginning on page E-8 describes how to change the
HeapShow display.

Preferences E

You can adjust the HeapShow Preferences to

■ turn sound cues on and off

■ balance the amount of data collected against the time spent collecting it

■ set the interval at which HeapShow checks the status of the heaps.

To reach the Preferences settings, tap the Info button in the statistics display.
Figure D-4 illustrates the HeapShow Preferences view.

Numerical data Heap fragmentation graphics

A P P E N D I X E

Newton Debugging Applications

E-6 HeapShow

Figure D-4 HeapShow Preferences

You can adjust sound effects and accuracy independently for the heaps and
for system memory.

Annoying Sounds Controls the HeapShow sound effects.
When Frames is checked, different sounds play if the
amount of space used in either the pointer or handle
heap grows or shrinks.
When System is checked, a sound plays if the
availability of system memory changes.

More Accuracy Adjusts how thoroughly HeapShow researches the state
of the heaps
When Frames is checked, HeapShow performs a
garbage collection in the frames heap before reporting
the statistics.
When System is checked, HeapShow includes the
memory that stacks are willing to give back to the stack
manager when calculating the system-wide free
memory figure.

Reserve (kB) Allocates memory out of the frames heap, the pointer
heap, or a newly created heap. You can use this option

A P P E N D I X E

Newton Debugging Applications

HeapShow E-7

to create out-of-memory situations when testing your
application.
When you tap one of the Reserve entries, HeapShow
displays a view that lets you set the amount of memory
to reserve.
If you set this number for Frames, HeapShow allocates
the specified number of kilobytes in the frames heap. If
you set this number for System, the memory comes out
of the pointers heap. You can create a new heap and
reserve it by activating the Separate Heap option, which
appears in the Reserve System pop-up view, illustrated
in Figure D-5.
Memory set aside by HeapShow is released when
HeapShow exits.

Figure D-5 Sizing the reserve pointers heap or a newly created heap

Check Interval Determines the interval at which HeapShow
automatically checks memory statistics and updates the
display. Tap the time field to access the list illustrated in
Figure D-6.

A P P E N D I X E

Newton Debugging Applications

E-8 HeapShow

Figure D-6 Check Interval options

If you choose None, HeapShow updates the statistics
only when you tap the Heap Check button, described
on page E-9.

HeapShow Controls E

You tap the buttons on the lower-right edge of the HeapShow view to change
the display and to force a garbage collection or a heap check. Figure D-7
illustrates the HeapShow controls.

Figure D-7 The HeapShow controls

Tap the Sum/Difference button to toggle the display between

■ the total sizes of all heaps and

■ the size differences since the display was changed to show differences.

Tap the Garbage Collection button to force the Newton to reclaim unused
memory.

Sum/Difference

Garbage Collection

Heap Map

Heap Check

A P P E N D I X E

Newton Debugging Applications

HeapShow E-9

Tap the Heap Check button to force an immediate update of the stack
statistics.

Tap the Heap Map button to toggle the display between

■ a numerical presentation of the data and

■ a display of heap maps that illustrate heap fragmentation

Figure D-8 Heap fragmentation graphics

You can use the controls illustrated in Figure D-8 to zoom in or out and to
scroll through the map.

Allocated memory shown in black;
free memory shown in white

Zoom In Zoom Out

Scroll Through Display

Ending address

Starting address

Current bytes per pixel

A P P E N D I X E

Newton Debugging Applications

E-10 HeapShow

GL-1

Glossary 10

application base view
The topmost parent view in an application. The applica-
tion base view encloses all other views that make up the
application.

array A sequence of numerically indexed slots (also known as
the array elements) that contain objects. The first
element is indexed by zero. Like other non-immediate
objects, an array can have a user-specified class, and can
have its length changed dynamically.

binary object A sequence of bytes that can represent any kind of data,
can be adjusted in size dynamically, and can have a
user-specified class. Examples of binary objects include
strings, real numbers, sounds, and bitmaps.

Boolean A special kind of immediate value. In NewtonScript,
there is only one Boolean, and it is called true .
Functions and control structures use nil to represent
false. When testing for a true/false value, nil
represents false, and any other value is equivalent to
true .

Figure E-0
Table E-0

G L O S S A R Y

GL-2

break loop A state of the Newton processor in which program
execution is suspended and the Newton accepts input
only from an Inspector connection.

byte code The hardware-independent instructions that are
interpreted when a NewtonScript function executes.

child A frame that references another frame (its parent) from
a _parent slot. With regard to views, a child view is
enclosed by its parent view.

class A symbol that describes the data referenced by an
object. Arrays, frames, and binary objects can have
user-defined classes.

constant A value that does not change. In NewtonScript the
value of the constant is substituted wherever the
constant is used in code.

declaring a template
Registering a template in another view (usually its
parent) so that the template’s view is pre-allocated
when the other view is opened. This allows access to
methods and slots in the declared view.

evaluate slot A slot that’s evaluated when NTK compiles the
application.

flag A value that is set either on or off to enable a feature.
Typically flag values are single bits, though they can be
groups of bits or a whole byte.

font spec A structure used to store information about a font,
including the font family, the font style, and the point
size.

frame An unordered collection of slots, each of which consists
of a name and value pair. The value of a slot can be any
type of object, and slots can be added or removed from
frames dynamically. A frame can have a user-specified
class. Frames can be used like records in Pascal and
structs in C, but can also be used as objects which
respond to messages.

function-call stack A virtual stack that contains an activation record for
each active function. See stack activation record.

G L O S S A R Y

GL-3

function object An executable object in NewtonScript.
Function objects are created by the NTK compiler from
the function constructor:

func(args) funcBody.

An executable function object includes values for its
lexical and message environment, as well as code. This
information is captured when the function constructor
is evaluated at run time.

global A variable or function that is accesible from any
NewtonScript code.

global data file An NTK file named “GlobalData,” in the same folder as
the NTK application, that is compiled once each time
you launch NTK. You can place in it NewtonScript code
that you want available from any project.

immediate A value that is stored directly rather than through an
indirect reference to a heap object. Immediates are
characters, integers, or Booleans. See also reference.

implementor The frame in which a method is defined. See also
receiver.

inheritance The mechanism by which attributes (slots or data) and
behaviors (methods) are made available to objects.
Parent inheritance allows views of dissimilar types to
share slots containing data or methods. Prototype
inheritance allows a template to base its definition on
that of another template or prototype.

instantiate To make a run-time object in the NewtonScript heap
from a template. Usually this term refers to the process
of creating a view from a template.

layout file A file that contains view templates laid out in NTK.
layout view The topmost parent of all other views in a single NTK

layout file.
local A variable whose scope is the function within which it

is defined. You use the local keyword to explicitly
create a local variable within a function.

G L O S S A R Y

GL-4

message A symbol with a set of arguments. A message is sent
using the message send syntax, frame: messageName() ,
where the message, messageName, is sent to the
receiver, frame.

method A function object in a frame slot that is invoked in
response to a message.

NewtonScript heap
An area of RAM used by the system for dynamically
allocated objects, including NewtonScript objects.

nil A value that indicates nothing, none, no, or anything
negative or empty. It is similar to (void*)0 in C. The
value nil represents “false” in boolean expressions;
any other value represents “true.”

object A typed piece of data that can be an immediate, array,
frame, or binary object. In NewtonScript, only frame
objects can hold methods and receive messages.

object stream file See stream file.

package The unit in which software can be installed on and
removed from the Newton. A package consists of a
header, which contains the package name and other
information, and one or more parts, which contain
the software.

package file A file that contains downloadable Newton software.
package store See store part.

parent A frame that is referenced through the _parent slot of
another frame. With regard to views, a parent view
encloses its child views.

part A unit of software—either code or data—that’s created
during a single NTK build of an application, book,
store, or auto part. The format of the part is identified
by a four-character identifier called its type or its part
code.

part frame The top-level frame that holds an application, book, or
auto part.

picker A type of view on the Newton that pops up and contains
a list of items. The user can select an item by tapping it

G L O S S A R Y

GL-5

in the list. This type of view closes when the user taps
an item in the list or taps outside of it without making
a selection.

pop-up See picker.
project The collected files and specifications that NTK uses to

build a package that can be downloaded and executed
on the Newton.

project file An NTK file that contains a list of files to be included in
a build and the build specifications.

proto A frame that is referenced through another frame’s
_proto slot. With regard to views, a proto is not
intended to be directly instantiated—you reference the
proto from a template. The system supplies several
view protos, which an application can use to implement
user interface elements such as buttons, input fields,
and so on.

receiver The frame that was sent a message. The receiver for the
invocation of a function object is accessible through the
pseudo-variable self . See also implementor.

reference A value that indirectly refers to an array, frame, or
binary object. See also immediate.

resource Raw data—usually bitmaps or sounds—stored on the
development system and incorporated into a Newton
application during the project build.

resource file A file that contains Macintosh-style resources, to be
used during an NTK project build.

root view The topmost parent view in the view hierarchy. All
other views descend from the root view.

self A pseudo-variable that is set to the current receiver.
siblings Child frames that have the same parent frame.
slot An element of a frame or array that can hold an

immediate or reference.
soup A persistently stored object that contains a series

of frames called entries. Like a database, a soup

G L O S S A R Y

GL-6

has indexes that can be used to access entries in a
sorted order.

stack activation record
A frame on the function-call stack that describes a
function that has not yet completed execution. A stack
activation record contains a pointer to the next
instruction that’s to be executed; the function’s receiver
and implementor, if any; and the function’s parameters,
temporary variables, and named variables.

store A physical repository that can contain soups and
packages. A store is like a volume on a disk on a
personal computer.

store part A part that encapsulates a read-only store. This store
may contain one or more soup objects. Store parts
permit soup-like access to read-only data residing in a
package. Store parts are sometimes referred to as
package stores.

stream file A file encoded in Newton Streamed Object Format
(NSOF). You can use NTK to build stream files, and you
can incorporate stream files into NTK projects.

template A frame that contains the data description of an
object (usually a view). A template is intended
to be instantiated at run time. See also proto.

text file A file that contains text to be compiled during the build.
user proto A proto defined by an application developer, not

supplied by the system.
view The object that is instantiated at run time from a

template. A view is a frame that represents a visual
object on the screen. The _proto slot of a view
references its template, which defines its characteristics.

view class A primitive building block on which a view is based.
All view protos are based directly or indirectly (through
another proto) on a view class. The view class of a
view is specified in the viewClass slot of its template
or proto.

IN-1

Index

A

activation records 6-12, 7-6
Add File command 9-11
Add This Window command 9-11
afterScript slots 4-49
Align command 9-20
Alignment command 5-9 to 5-10, 9-19
application base view 3-6, 5-3
Application/Book Characteristics 4-13 to 4-14
application parts 4-12, 4-43
Apply command 5-18, 9-24
ARM machine code. See native code
array GL-1
Arrow Keys Move By 4-21
Auto Close 4-14
Auto Download After Building Package 4-18
Autogrid On command 9-17
Auto Indent 4-24
auto parts 4-12, 4-44
Auto Remove Package 4-16
Auto Save Before Building Package 4-18

B

base view
application 3-6
layout 3-17

beforeScript slots 4-48
binary object GL-1
book parts 4-12, 4-44
Boolean GL-1
Boolean slots 5-22
BreakLoop function 6-5, 6-11 to 6-12, 6-26

user modification functions 7-5, 7-13 to 7-14
break loops 6-11 to 6-12, 6-26, 7-3 to 7-5, 7-13 to 7-15
breakOnThrows variable 6-12, 6-21
break points 7-3 to 7-5, 7-10 to 7-15
browser 5-16 to 5-25

adding non-view objects 5-28
browsing templates 5-16 to 5-19
editing templates 5-18 to 5-25, 5-28
preferences settings 4-21 to 4-24
searching for text 5-25 to 5-28

Browser Preferences command 4-21 to 4-24, 9-24
build heap 4-19
Build Package command 4-38 to 4-50, 9-12

Output Settings 4-10 to 4-14
Package Settings 4-15
processing templates 4-48 to 4-50
Project Settings 4-6

byte code 4-38, 7-7
displaying 7-7 to 7-8
interpreter instructions 7-24 to 7-49
suppressing 4-9

C

Check Global Function Calls 4-8
child GL-2
class GL-2
Clear command 9-6
Clone function 6-37
Close command 9-3
CloseResFile function C-10
CloseResFileX function C-10
Compile for Debugging 4-7, 4-39 to 4-40, 7-2
Compile for Profiling 4-9
compiler options 4-6 to 4-17, 4-38 to 4-45
compile-time functions 4-32 to 4-37
Connect Inspector command 9-26
constants GL-2

defined by NTK 4-30 to 4-32
defining 4-27, 4-32

Copy command 9-5
Copy Protected 4-16
copyright, package 4-17
custom parts 4-12, 4-46
Cut command 9-5

D

Debug function 3-34, 6-7 to 6-8, 6-23
DebuggerInfo slot 7-2
debugging 6-1 to 6-40, 7-1 to 7-49

break loops 6-11 to 6-13, 6-26, 7-3 to 7-5
break points 7-3 to 7-5, 7-10 to 7-15
displaying interpreter instructions 7-7 to 7-8, 7-21 to

7-22, 7-24 to 7-49
examining the stack 6-12 to 6-13, 7-6, 7-16 to 7-20
functions for 6-22 to 6-30, 7-9 to 7-22
stepping through code 7-15 to 7-16

I N D E X

IN-2

trace variable 6-14, 6-21
tracing execution flow 6-14 to 6-15
tutorial 3-32 to 3-36
variables for 6-21 to 6-22

DebugHashToName package 7-2
debug slot 4-7, 6-7
declaring views 5-13
DefConst function 4-34
DefineGlobalConstant function 4-32 to 4-33
Delete Old Package on Download 4-16
deletion script 4-35
Disasm function 7-7, 7-21

controlling display 7-24
DisasmRange function 7-21
Display function 6-9, 6-25
Download Package command 9-12

Auto Download After Building Package 4-18
Delete Old Package on Download 4-16

drawing 6-20 to 6-21
Duplicate command 9-6
DV function 3-35, 6-8 to 6-9, 6-23

E

EnableBreakPoint function 7-11
error messages 4-50
evaluate slots 5-20
Exception Printer application E-1
exceptions, breaking for 6-11
execution flow, tracing 6-14 to 6-15
Exit Break Loop button 6-12
ExitBreakLoop function 6-12, 6-26
Export Package to Text command 9-12
extended debugging functions 7-2 to 7-22

F

Faster Compression 4-16
Faster Functions 4-10
Faster Stores 4-12
files

adding to a project 4-2
global data 4-25
layout 4-3, 5-14
object stream 4-5, 4-12, 4-45 to 4-46
package 4-5
project 4-2 to 4-3
proto 5-16
resource 4-4, 4-14
saving automatically 4-18
text 4-4, 4-27 to 4-33

Find command 5-27, 9-8
Find Inherited command 5-28, 9-8
Find Next command 5-27, 9-8
font spec GL-2
For Newton 2.0 Only 4-10
frames GL-2
function-call stack 7-6
function objects 7-7, GL-3
functions

BreakLoop 6-5, 6-11 to 6-12, 6-26, 7-5, 7-13 to 7-14
Clone 6-37
CloseResFile C-10
CloseResFileX C-10
compile-time 4-32 to 4-37
Debug 3-34, 6-23
debugging 6-22 to 6-30, 7-9 to 7-22
DefineGlobalConstant 4-32 to 4-33
Disasm 7-7, 7-21
DisasmRange 7-21
Display 6-9, 6-25
DV 3-35, 6-8 to 6-9, 6-23
EnableBreakPoint 7-11
ExitBreakLoop 6-12, 6-26
GC 6-29
GetAllBreakPoints 7-12
GetAllNamedVars 7-19
GetAllTempVars 7-18
GetBreakPointLabel 7-13
GetCurrentFunction 7-17
GetCurrentImplementor 7-20
GetCurrentPC 7-17
GetCurrentReceiver 7-20
GetLayout 4-34
GetLocalFromStack 6-27
GetNamedResource C-5, C-11
GetNamedVar 7-19
GetPathToSlot 7-7, 7-20
GetPathWhereSet 7-7, 7-21
GetPictAsBits C-12
GetResource C-4, C-11
GetSelfFromStack 6-27
GetSound C-13
GetSound11 C-14
GetTempVar 7-18
GloballyEnableBreakPoints 7-12
HasSlot 6-37
InstallBreakPoint 7-4, 7-11
IsGlobalConstant 4-34
Load 4-37
LocObj 4-41
NSDBreakLoopEntry 7-5, 7-14
NSDBreakLoopExit 7-5, 7-15
OpenResFile C-3, C-9
OpenResFileX C-4, C-10
primitive 7-40

I N D E X

IN-3

Print 6-9, 6-24
QuickStackTrace 7-16
ReadStreamFile 4-37
RemoveAllBreakPoints 7-11
RemoveBreakPoint 7-11
resource-handling C-9 to C-13
RunUntil 7-16
SetBreakPointLabel 7-13
SetCurrentPC 7-17
SetNamedVar 7-19
SetTempVar 7-18
StackTrace 6-12 to 6-13, 6-27, 7-6, 7-16
Stats 6-16, 6-28
Step 7-15
StepIn 7-15
StepOut 7-15
TrueSize 6-16 to 6-20, 6-28
UndefineGlobalConstant 4-34
ViewAutopsy 6-20 to 6-21, 6-30
Where 7-18
Write 6-9, 6-25

G

GC function 6-29
GetAllBreakPoints function 7-12
GetAllNamedVars function 7-19
GetAllTempVars function 7-18
GetBreakPointLabel function 7-13
GetCurrentFunction function 7-17
GetCurrentImplementor function 7-20
GetCurrentPC function 7-17
GetCurrentReceiver function 7-20
GetLayout function 4-34
GetLocalFromStack function 6-27
GetNamedResource function C-5, C-11
GetNamedVar function 7-19
GetPathToSlot function 7-7, 7-20
GetPathWhereSet function 7-7, 7-21
GetPictAsBits function C-12
GetResource function C-4, C-11
GetSelfFromStack function 6-27
GetSound11 function C-14
GetSound function C-13
GetTempVar function 7-18
global GL-3
global data file 4-25
GloballyEnableBreakPoints function 7-12
glossary GL-1
Grid On 4-20

H

hardware requirements 1-2
HasSlot function 6-37
HeapShow application E-2 to E-9
heap sizes 4-19
home constant 4-30, 4-31

I

icon, application 4-14
Ignore Native Keyword 4-8
immediate value GL-3
indenting 4-24
inheritance GL-3
Inspector 6-2 to 6-22

connecting 1-8 to 1-9
installation

connecting a Newton to a Macintosh 1-5
installing NS Debug Tools on a Newton 7-2
installing NTK on a Macintosh 1-2 to 1-4
installing the Toolkit application on a Newton 1-6 to

1-7
troubleshooting 1-9 to 1-10

InstallBreakPoint function 7-4, 7-11
install scripts 4-27 to 4-29
Install Toolkit App command 1-6, 9-13
instantiation 2-2
IsGlobalConstant function 4-34

K

kAppName constant 4-30
kAppString constant 4-30
kAppSymbol constant 4-30
kDebugOn constant 4-31
keyboard text-editing commands A-1 to A-4
kIgnoreNativeKeyword constant 4-31
kPackageName constant 4-30
kProfileOn constant 4-31

L

language string, for localization 4-7, 4-31, 4-41
lastExError variable 6-39
lastExMessage variable 6-39
lastEx variable 6-39
layout_filename constant 4-31, 4-48
layout base view 3-17

I N D E X

IN-4

layout files 4-3
constants and variables referencing 4-31 to 4-32
creating 3-7, 5-1
defined 2-3, 5-3
linking 3-20 to 3-22, 5-14 to 5-16

Layout Preferences command 4-19 to 4-21, 9-20
Layout Size command 9-17
layout view 5-3
linked subviews 3-17, 5-14 to 5-16

defined 5-3
Link Layout command 5-14, 9-2
Load function 4-37
localization frame 4-41
LocObj function 4-41

M

main heap 4-19
Mark As Main Layout command 4-2
Mark as Main Layout command 9-13
masks 5-23
memory

adjusting heap sizes 4-19
displaying heap-use statistics E-2 to E-9
measuring free memory 6-16
measuring objects in memory 6-16 to 6-20
Newton memory management E-2 to E-3

messages GL-4
methods GL-4
Move Backward command 5-10, 9-19
Move Forward command 5-10, 9-18
Move To Back command 5-10, 9-18
Move To Front command 5-10, 9-18

N

name
application or book, setting 4-13
package 4-15

naming views 5-13
native code 8-10 to 8-20

compiler options 4-8, 4-9, 4-38
functions optimized for calling from 8-13
marking functions for native compiling 8-11
profiling 8-19 to 8-20
suppressing 4-8

New Browser command 5-16, 9-26
New Layout command 5-1 to 5-3, 9-1
New Project command 9-11
New Proto Template command 5-16, 9-2
New Slot command 5-19 to 5-20, 9-22

New Text File command 9-2
NewtonScript heap GL-4
NewtonScript heap. See also memory
nil GL-4
NSDBreakLoopEntry function 7-5, 7-14
NSDBreakLoopExit function 7-5, 7-15
NS Debug Tools package 7-2
NSDParamFrame 7-24
NTK 1.0 Build Rules 4-8
number slots 5-22

O

objects GL-4
object stream files 4-5, 4-12, 4-37, 4-45 to 4-46
Open command 9-2
Open Inspector command 6-4, 9-26
Open Layout command 5-2, 9-26
Open Project command 9-11
OpenResFile function C-3, C-9
OpenResFileX function C-4, C-10
Option Key for Commands 4-24
Output Settings command 4-10 to 4-14

P

package files 4-5
packages

copy protecting 4-16
defined 2-3
downloading 4-16, 4-18
part types 4-42 to 4-45
version number 4-17

Package Settings command 4-15 to 4-17
Page Setup command 9-4
parent GL-4
part frame 4-28, 4-29
parts 4-42 to 4-45

in auto-remove packages 4-45
specifying type 4-12 to 4-14

Paste command 9-5
picker GL-4
'PICT' resources 4-4, C-6 to C-8

application icon 4-14
in picture slots 5-21 to 5-23

picture slots 5-23
platform files 4-26

specifying 4-7
Preview command 5-11, 9-20
primitive functions 7-40
Print command 9-4

I N D E X

IN-5

printDepth variable 6-22
printFormat_filename variable 4-32
Print function 6-9, 6-24
printLength variable 6-22
Print One command 9-4
Process Earlier command 4-3, 9-13
Process Later command 4-3, 9-13
Profile Native Functions 4-9
profiler 8-1 to 8-10

configuring on the development system 8-4 to 8-6
configuring on the Newton 8-6 to 8-7
marking functions for profiling 8-2 to 8-4
profiling native functions 8-19 to 8-21

program counter 6-13, 7-8
programming problems 6-32 to 6-40

comparing with nil 6-34 to 6-35
dangling frame references 6-34
printing in communications code 6-38
resizing read-only objects 6-36 to 6-37
setting the function value 6-34
setting the wrong slot value 6-32 to 6-34
text not drawing 6-38
using nil in expressions 6-36

programming tips 6-32 to 6-40
accessing parent view 6-40
examining exceptions 6-39
maintaining view state 6-39

project file 4-2 to 4-3
projects

defined 2-3
managing 4-1 to 4-6
Project Settings 4-6 to 4-9
project window 4-2

Project Settings command 4-6 to 4-9, 9-13
protos 5-3, GL-5

previewing 5-11
user protos 5-16

Q

QuickStackTrace function 7-16
Quit command 9-5

R

read-only objects, copying 6-37
ReadStreamFile function 4-37
receiver GL-5
rectangle slots 5-23
references GL-5
RemoveAllBreakPoints function 7-11

RemoveBreakPoint function 7-11
Remove File command 9-11
remove frame 4-28, 4-30
remove scripts 4-29 to 4-30
Rename Slot command 9-23
REP loop 7-3
resource files 4-4, C-2

adding to a project C-2
opening and closing C-3 to C-4, C-9 to C-10

resources C-1 to C-16
application icon 4-14
'PICT' 4-14, 5-23, C-6 to C-8
retrieving C-4 to C-6, C-10 to C-13
'SND ' C-8 to C-9

Result field 4-14
Revert command 9-4, 9-24
root view GL-5
RunUntil function 7-16

S

Save a Copy In command 9-3
Save All command 9-4
Save As command 9-3
Save command 9-3
Screen Shot command 9-9
Screen Size 4-20
script slots 5-21
Search command 5-25 to 5-26, 9-7
Select All command 9-6
Select Hierarchy command 9-6
Select in Layout command 9-7
self GL-5
SetBreakPointLabel function 7-13
SetCurrentPC function 7-17
Set Grid command 9-17
SetLocalizationFrame function 4-41 to 4-42
SetNamedVar function 7-19
SetTempVar function 7-18
Shift Left command 9-6
Shift Right command 9-6
Show Clipboard command 9-9
Show Slot Values command 9-24
slot

global GL-3
slots

creating 5-19 to 5-23
displaying in browser 4-23
editing 5-20 to 5-25
in stack trace 6-12
searching for 5-25 to 5-28
slot types 5-20 to 5-23

Slots By Name command 9-24

I N D E X

IN-6

Slots By Type command 9-24
Snarf application E-1
'SND ' resources C-8 to C-9
software requirements 1-2
stack activation records 6-12, 7-6
stack level 6-12, 7-16
stacks 7-6

functions for manipulating 7-16 to 7-20
stack trace 6-12 to 6-13

StackTrace function 6-12 to 6-13, 6-27, 7-6, 7-16
Stats function 6-16, 6-28
Step function 7-15
StepIn function 7-15
StepOut function 7-15
store parts 4-12, 4-45, GL-6
stores GL-6
stream files 4-5, 4-12, 4-37, 4-45 to 4-46
Suppress Byte Code 4-9
symbol, application or book 4-13

T

tabs, setting 4-24
Template Info command 3-9, 5-13 to 5-14, 9-21
templates

defined 2-2
displaying in browser 4-22
editing 3-11 to 3-14, 5-16 to 5-25
processing 4-48 to 4-50
searching for 5-25 to 5-28

Templates By Hierarchy command 9-23
Templates By Type command 9-23
text

editing 5-23 to 5-25, A-1 to A-6
enabling Option-key editing 4-24
searching for 5-25 to 5-27
setting display characteristics 4-24
setting tabs 4-24

text files 4-4, 4-27 to 4-33
text slots 5-21
Tighter Object Packing 4-10
Toolkit application 1-6 to 1-7
Toolkit Preferences command 4-17 to 4-19, 9-9
Trace Off button 6-15
trace variable 6-14, 6-21
troubleshooting 1-9 to 1-10
TrueSize function 6-16 to 6-20, 6-28

U

UndefineGlobalConstant function 4-34

Undo command 9-5
Update File command 9-11
Use compression 4-16
Use for Default Placement command 9-24
user proto templates

creating 5-16
example 3-24 to 3-31

V

variables defined by NTK 4-30 to 4-32
version number, package 4-17
vFlags application E-1
ViewAutopsy function 6-20 to 6-21, 6-30
viewBounds slot fields D-2
view classes 5-3, GL-6
view frames 2-2
viewFrontKey 6-9, 6-24
viewFrontMost 6-9, 6-24
viewFrontMostApp 6-9, 6-24
views

aligning 5-8 to 5-10
declaring 5-13
defined 2-1
displaying hierarchy 6-8 to 6-9, 6-23
displaying in browser 4-22
drawing 3-6 to 3-9, 5-4 to 5-6
moving 5-8
naming 3-9, 5-13
ordering 5-10
previewing 5-11
resizing 5-7
root GL-5

W

Where function 7-18
Write function 6-9, 6-25

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter Pro 630 printer. Final page
negatives were output directly from the
text and graphics files. Line art was
created using Adobe™ Illustrator.
PostScript™, the page-description
language for the LaserWriter, was
developed by Adobe Systems
Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple
Courier.

LEAD WRITER
Sue Luttner

WRITERS
Bob Ebert, Sue Luttner, John Perry

PROJECT LEADER
Christopher Bey

ILLUSTRATOR
Peggy Kunz

EDITOR
David Schneider

PROJECT MANAGER
Gerry Kane

Special thanks to Andy Atkins, Peter
Canning, Jerome Coonen, Bob Ebert,
Mike Engber, Sandy McEntee, Jeff
Piazza, Uri Rabin, Walter Smith, Michael
Tibbott, Gregory Toto.

	Contents
	List of Figures
	About This Book
	Related Books
	How to Use This Book
	Conventions
	Developer Products and Support

	Installation and Setup
	System Requirements
	Table�1-1 Hardware and software requirements

	Installing NTK on the Development System
	Figure�1-1 Installtion instructions and installer ...
	Figure�1-2 The installed NTK folder

	Installing the Toolkit Application on the Newton
	Making the Physical Connection
	Downloading the Toolkit Application
	Figure�1-3 The Newton Toolkit application icon
	Figure�1-4 The Toolkit Preferences dialog box

	Testing an Inspector Connection
	Figure�1-5 The Toolkit application open on the New...

	Troubleshooting

	Programming With the Newton Toolkit
	Terms and Concepts
	The NTK Development Process
	Figure�2-1 The Newton application development proc...

	A Quick Tour of NTK
	Starting Up NTK
	Setting Up a New Project
	Starting a Layout File and Adding It to the Projec...
	Figure�3-1 Layout window and palette

	Laying Out Application Elements
	Customizing a View Template
	Editing a Slot
	Figure�3-2 A browser window

	Adding a Slot

	Building and Downloading a Package
	Adding a Linked Layout
	Laying Out a Linked View
	Linking in the Layout
	Adding a Button That Displays the View

	Defining Your Own Proto
	Laying Out a Proto and Adding It to the Palette
	Using Your Proto

	Using the Inspector
	Connecting the Inspector
	Executing Commands
	Looking at a Frame and a View
	Making a Change in a Running Application

	Managing and Building a Project
	Setting Up a Project
	Project File
	Figure�4-1 The project window

	Layout Files
	Text Files
	Resource Files
	Package Files
	Object Stream Files

	Establishing Settings and Preferences
	Project Settings
	Figure�4-2 Project settings

	Output Settings
	Figure�4-3 Output settings
	Output
	Application/Book Characteristics
	Result Field

	Package Settings
	Figure�4-4 Package settings

	Toolkit Preferences
	Figure�4-5 Toolkit Preferences
	Build Preferences
	Connection
	Heap Sizes in KBytes

	Layout Preferences
	Figure�4-6 Layout Preferences

	Browser Preferences
	Figure�4-7 Browser Preferences
	Browsers
	View List
	Figure�4-8 The Text Style dialog box

	Slot List

	Text Views

	Building a Project
	The Build Environment
	Global Data File
	Platform Files
	Text Files
	Install Scripts
	Remove Scripts

	Constants and Variables
	Table�4-1 Build constants defined by NTK

	Compile-Time Functions
	Defining Global Constants
	DefineGlobalConstant
	UndefineGlobalConstant
	IsGlobalConstant

	Accessing Processed Templates
	GetLayout

	Accessing the Part Frame
	SetPartFrameSlot
	GetPartFrameSlot

	Accessing Files That Aren’t in the Project
	Load
	ReadStreamFile

	Project-Build Function Summary

	Build Options
	Compiling Native Code
	Embedding Debugging Information
	Combining Objects
	Profiling
	Establishing a Local Language
	Output Options
	Figure�4-9 Output Settings
	Application Parts
	Book Parts
	Auto Parts
	Parts in Auto-Remove Packages
	Store Parts
	Stream Files
	Custom Parts
	Figure�4-10 Custom part settings

	Build Sequences
	Building a Project
	Processing a Template

	Error Messages

	Using NTK With Other Applications
	Apple Events
	Do Script Event
	Build Event

	The 'ckid' Resource

	Laying Out and Editing Views
	Laying Out Views
	Figure�5-1 Layout window and palette
	Drawing, Resizing, and Moving Views
	Drawing a View
	Figure�5-2 A layout window with the layout view an...

	Resizing a View
	Moving a View
	Aligning Views
	Figure�5-3 The Alignment dialog box
	Vertical Spacing
	Horizontal Spacing

	Ordering Views

	Previewing
	Figure�5-4 The layout window in layout and preview...

	Naming and Declaring Views
	Figure�5-5 The Template Info dialog box, for namin...

	Linking Multiple Layouts
	Figure�5-6 Declaring views across linked layout fi...

	Creating User Protos

	Browsing and Editing Templates
	Browsing Templates
	Figure�5-7 A browser window with the view flags sl...

	Adding Slots
	Figure�5-8 The New Slot dialog box
	Figure�5-9 The Editor pop-up menu in the New Slot ...

	Editing Slots
	Figure�5-10 Initial contents of evaluate, script, ...
	Figure�5-11 The number, Boolean, rectangle, and pi...

	Editing Text
	Figure�5-12 The Inspector window with a help messa...

	Searching for Text in Files
	Searching Template Files
	Figure�5-13 The Search dialog box

	Searching the Active Window
	Figure�5-14 The dialog for searching with Find

	Finding Views in a Layout File

	Adding Non-View Objects
	Customizing the Text Editor

	Debugging
	Compatibility
	The Inspector
	Figure�6-1 Inspector window
	Figure�6-2 The debugging cycle
	Using the Inspector
	Figure�6-3 Inspector controls
	Making an Inspector Connection
	Retrieving Views
	Displaying the View Hierarchy
	Figure�6-4 The DV display

	Displaying Values in the Inspector Window
	Examining a Binary Object
	Breaking
	Examining the Program Stack
	Tracing the Flow of Execution
	Examining Memory Use
	Figure�6-5 A TrueSize display
	Figure�6-6 A TrueSize display with object list
	Figure�6-7 The TrueSize summary and result frame
	Figure�6-8 A TrueSize listing of references
	Figure�6-9 TrueSize measurements over time

	Examining Drawing Efficiency

	Debugging Variables
	Table�6-1 Debugging variables (continued)

	Debugging Functions
	Retrieving and Displaying Objects
	Debug
	DV
	Print
	Display
	Write
	StrHexDump

	Using Break Loops
	BreakLoop
	ExitBreakLoop
	StackTrace
	GetLocalFromStack
	GetSelfFromStack

	Examining Memory Use
	Stats
	TrueSize
	GC

	Examining Drawing Efficiency
	ViewAutopsy

	Debugging Function Summary
	Retrieving and Displaying Objects
	Using Break Loops
	Examining Memory Use
	Examining Drawing Efficiency

	Newton Programming Problems and Tips
	Common Programming Problems
	Setting the Wrong Slot Value
	Failing to Set a Return Value
	Producing Memory Problems With Unused Frame Refere...
	Generating Unexpected Comparison Results With nil ...
	Using nil in Expressions
	Writing to a Read-Only Object
	Text Is Not Drawing
	Problems with Printing and Communications

	Programming Tips for Debugging
	Using Global Variables to Examine Exceptions
	Table�6-2 Exception handling global variables

	Maintaining View State
	Accessing the Parent of a View

	Extended Debugging Functions
	Compatibility
	Installing the Extended Debugging Functions
	Using the Extended Debugging Functions
	Break Loops and Break Points
	Enabling Break Points
	Creating, Removing, and Disabling Break Points
	Making Break Points Conditional
	Entering a Break Loop

	NewtonScript Stacks
	Paths to Slots
	NewtonScript Byte Code

	Extended Debugging Functions Reference
	Adjusting the Debugging Environment
	Manipulating Break Points
	InstallBreakPoint
	RemoveBreakPoint
	EnableBreakPoint
	RemoveAllBreakPoints
	GetAllBreakPoints
	GloballyEnableBreakPoints
	SetBreakPointLabel
	GetBreakPointLabel
	User-Defined Breakpoint Functions
	NSDBreakLoopEntry
	NSDBreakLoopExit

	Stepping
	Step
	StepIn
	StepOut
	RunUntil

	Accessing the Stack
	StackTrace
	GetCurrentFunction
	GetCurrentPC
	SetCurrentPC
	Where
	GetAllTempVars
	GetTempVar
	SetTempVar
	GetAllNamedVars
	GetNamedVar
	SetNamedVar
	GetCurrentReceiver
	GetCurrentImplementor

	Retrieving Paths
	GetPathToSlot
	GetPathWhereSet

	Disassembling
	Disasm
	DisasmRange

	Summary of Extended Debugging Functions
	Manipulating Break Points
	Stepping
	Accessing the Stack
	Retrieving Paths
	Disassembling

	Interpreter Instructions
	Stack Operations
	Pop
	PushSelf
	Push
	PushConstant
	FindVar
	GetVar
	MakeFrame
	MakeArray
	GetPath
	SetPath
	SetVar
	SetFindVar
	SetLexScope

	Program Flow
	While and Repeat/Until Loops
	Branch
	BranchT
	BranchF

	For Loops
	IncrVar
	BranchIfLoopNotDone

	Foreach Loops (Frame and Array Iterators)
	IterNext
	IterDone

	Exception Handling
	NewHandlers
	PopHandlers

	Calling and Returning Functions
	Call
	Invoke
	Send
	SendIfDefined
	Resend
	ResendIfDefined
	Return

	Primitive Functions
	Add
	Subtract
	Multiply
	Divide
	Div
	ARef
	SetARef
	NewIterator
	Length
	AddArraySlot
	Equals
	NotEquals
	LessThan
	GreaterThan
	GreaterOrEqual
	LessOrEqual
	Not
	BitAnd
	BitOr
	BitNot
	Clone
	SetClass
	Stringer
	HasPath
	ClassOf

	Tuning Performance
	Measuring Performance
	Marking Functions for Profiling
	Figure�7-1 A performance profile

	Configuring the Compiler for Profiling
	Figure�7-2 The Project Settings dialog box

	Configuring the Profiler on the Newton
	Figure�7-3 Profile Control on the Newton
	Figure�7-4 Profiler Info
	Figure�7-5 Profiler Settings on the Newton

	Collecting Statistics
	Interpreting a Profile
	Figure�7-6 A performance profile

	Compiling Functions for Speed
	Declaring and Typing Variables
	Stepping Through an Array
	Handling Exceptions
	Calling Other Functions
	Calling Options
	Global Function Call
	Table�7-1 Utility functions optimized for calling ...

	Call/With Syntax
	Message Send

	Timing Interactions
	Table�7-2 Function call operations

	An Optimization Example
	Profiling Native Functions
	Figure�7-7 A profile of a native function calling ...
	Figure�7-8 A profile of a native function calling ...

	NTK Commands
	File Menu
	New Layout (Command-N)
	New Proto Template (Command-T)
	New Text File
	Open (Command-O)
	Link Layout
	Close (Command-W)
	Save (Command-S)
	Save As
	Save a Copy In
	Save All (Command-M)
	Revert
	Page Setup
	Print One
	Print (Command-P)
	Quit (Command-Q)

	Edit Menu
	Undo (Command-Z)
	Cut (Command-X)
	Copy (Command-C)
	Paste (Command-V)
	Clear (Command-Delete)
	Duplicate (Command-D)
	Shift Left (Command-[)
	Shift Right (Command-])
	Select All (Command-A)
	Select Hierarchy
	Select in Layout
	Search (Command-R)
	Figure�8-1 The dialog for searching with Search

	Find (Command-F)
	Figure�8-2 The dialog for searching with Find

	Find Next (Command-G)
	Find Inherited
	Screen Shot
	Show Clipboard
	Toolkit Preferences
	Figure�8-3 The Toolkit Preferences dialog box

	Project Menu
	New Project
	Open Project
	Add This Window
	Add File
	Remove File
	Update Files
	Build Package (Command-1)
	Download Package (Command-2)
	Export Package to Text
	Install Toolkit App
	Mark as Main Layout
	Process Earlier (Option-Up Arrow)
	Process Later (Option-Down Arrow)
	Project Settings
	Figure�8-4 The Project Settings panel of the Proje...
	Figure�8-5 The Output Settings panel of the Projec...
	Figure�8-6 The Package Settings panel of the Proje...

	Layout Menu
	Layout Size
	Figure�8-7 The Layout Size dialog box

	Autogrid On
	Set Grid
	Figure�8-8 The Set Grid dialog box

	Move To Front
	Move Forward (Option-Down Arrow)
	Move To Back
	Move Backward (Option-Up Arrow)
	Alignment
	Figure�8-9 The Alignment dialog box
	Figure�8-10 The alignment buttons on the palette

	Align
	Preview (Command-Y)
	Layout Preferences
	Figure�8-11 The Layout Preferences dialog box

	Browser Menu
	Template Info (Command-I)
	Figure�8-12 The Template Info dialog box, for nami...

	New Slot (Command-=)
	Figure�8-13 The New Slot dialog box

	Rename Slot
	Figure�8-14 The Rename Slot dialog box

	Templates by Type
	Templates by Hierarchy
	Slots by Name
	Slots by Type
	Show Slot Values
	Apply (Command-E)
	Revert
	Use for Default Placement
	Browser Preferences
	Figure�8-15 The Browser Preferences dialog box

	Window Menu
	Open Inspector
	Connect Inspector (Command-K)
	New Browser (Command-B)
	Open Layout (Command-L)

	Keyboard Text-Editing Commands
	Setting the Insertion Point
	Table A-1 Moving the insertion point

	Selecting Text
	Table A-2 Selecting text with keyboard commands

	Manipulating Selected Text
	Table A-3 Manipulating selected text

	Deleting Text
	Table A-4 Deleting text with keyboard commands

	Changing the Meaning of the Next Keystroke
	Table A-5 Changing the interpretation of the next ...

	Keyboard Shortcuts
	Table B-1 Keyboard equivalents to menu items (cont...
	Table B-2 Keyboard commands that affect the hierar...
	Table B-3 Keyboard commands for searching��
	Table B-4 Keyboard commands for finding��

	Resources
	About Resources
	Resource Files
	Adding Resource Files to a Project
	Using Resources
	Opening and Closing Resource Files
	Manipulating Single Resource Files
	Manipulating Multiple Resource Files

	Extracting Resource Data
	Specialized Resource Extraction Functions
	Extracting Raw Binary Data

	Using the Resource-Handling Functions
	Using 'PICT' Resources
	Figure C-1 Adding a named 'PICT' resource to a pic...
	Making a Bitmap From a 'PICT' Resource

	Using External Sound Resources

	Resource Functions
	Opening and Closing Resource Files
	OpenResFile
	OpenResFileX
	CloseResFile
	CloseResFileX

	Retrieving Resources
	GetNamedResource
	GetResource
	GetPictAsBits
	GetSound
	GetSound11

	Summary of Resource-Manipulation Functions
	Opening and Closing Resource Files
	Getting Resource Data

	Specialized Slot Editors
	Script Slots
	View Attributes
	viewBounds
	Table D-1 Meaning of viewBounds fields for horizon...
	Table D-2 Meaning of viewBounds fields for vertica...

	viewFlags
	viewFormat
	viewJustify
	viewEffect
	viewTransferMode

	Specific Slots

	Newton Debugging Applications
	Installing the Debugging Packages
	HeapShow
	About HeapShow
	About Newton Memory Management
	Using HeapShow
	Figure D-1 The HeapShow icon
	Figure D-2 The default HeapShow display
	Statistics Display
	Figure D-3 Numerical data versus fragmentation gra...

	Preferences
	Figure D-4 HeapShow Preferences
	Figure D-5 Sizing the reserve pointers heap or a n...
	Figure D-6 Check Interval options

	HeapShow Controls
	Figure D-7 The HeapShow controls
	Figure D-8 Heap fragmentation graphics

	Glossary

