
Newton Toolkit 1.6.x File Formats

This document describes the file formats used by NTK 1.6.x, both for Windows and Macintosh. This information is
being provided to developers of utilities that need to access the information in these files, such as conversion
utilities. Apple Computer, Inc., reserves the right to change the information in this document in the future without
notice. While every effort has been made to make this document accurate, its accuracy is not guaranteed.

Please report any errors in this document to <mailto:ntkbugs@newton.apple.com>.

This document describes the formats of the following files:

• Project files
• Layout files
• Native code module files.

Preliminaries

All WinNTK files are stored in Newton Stream Object Format (NSOF). Such files can be read, for example, by
FD_Unflatten of the 2.0 FDIL, or FDHydrateObject of the 1.0 FDIL.

MacNTK project files store project item information in the project file data fork, and preference information in the
resource fork. Layout files contain layout information in NSOF in the data fork, and preference information in the
resource fork. Native code module files are the same as that under WinNTK: all information is stored in NSOF in the
data fork.

Binary objects containing embedded integers store them in Big Endian format. This is the same format as that used
by 680x0-based Macintosh computers, PowerPC (as used in Power Macintosh computers), and ARM (as used in
current eMate and MessagePad devices) processors. It is backwards from format the used by the Intel family of
processors.

The following types are used in the definitions of MacNTK file formats.

typedef unsigned char Str255[256], Str63[64], Str32[33];

typedef unsigned char Boolean;

typedef struct VPoint {
long y, x;

} VPoint;

typedef struct VRect {
long top, left, bottom, right;

} VRect;

typedef struct GridInfo {
long scope; // 4 bytes Unused
long snap; // 4 bytes True if gridding active
Boolean show; // 1 byte True if gridding shown
char padding; // 1 byte
long spacing; // 4 bytes Grid spacing

Preliminary documentation 1 Copyright © 1997, Apple Computer, Inc.
Subject to change All rights reserved

} GridInfo;

File Reference Frames

Project and layout files contain references to other files. Project files contain references to project items. Layout files
contain references to linked subview files, user protos, and picture/resource files. These references are stored as
frames, described here.

Windows

File references are stored in a frame containing information helpful in finding the file. In NTK 1.6 and 1.6.1, the
frame has the following slots:

class A symbol object identifying this frame as a ' fileReference.

deltaFromProject A string object containing the relative path from the project directory to the directory
containing the file. This slot can also contain a string object holding a full path to
the file.

projectPath An optional string object containing the path of the project to which the file
belongs. If present, this path would be used to find the file if there were no open
project.

There are problems with the above approach. For instance, ' deltaFromProject assumes that the path was
relative to a project, which wasn’t appropriate when one layout file contained a reference to another (in other words,
there was a layout file to layout file relationship, not a project file to layout file relationship).

In NTK 1.6.2, the 'deltaFromProject and 'projectPath slots are still supported, but are deprecated in
favor of the following additional slots added to the frame:

relativePath An optional string object containing the relative path from the file containing the
reference to the referenced file. This slot is not present if there is no relative path (for
instance, the two files are on different volumes).

fullPath A string object containing the full path to the referenced file. This string can be in
UNC (Universal Naming Convention) or DOS (Disk Operating System) format.

Macintosh

Files references are merely binary objects with the class 'fsspec and containing the contents of an alias handle. If
a project is open at the time the file reference is created, the alias is created relative to the project file. Otherwise, it
is not created relative to any file.

Older versions of NTK stored actual FSSpecs in the binary object instead of aliases. To distinguish between the two,
NTK checks the size of the binary object before examining its contents. If the size of the object is equal to the size
of an FSSpec, then the contents are treated as an FSSpec. Otherwise, they’re treated as an alias.

If the alias cannot be resolved into an FSSpec, and a project is open, NTK looks in the project for an item with the
same name as that stored in the alias. If one is found, that project item is assumed to be the one referred to by the

Preliminary documentation 2 Copyright © 1997, Apple Computer, Inc.
Subject to change All rights reserved

alias. If no project item is found with the same name, NTK creates an FSSpec for a file with the same name as the
one referred to in the alias, and that exists in the same directory as the project.

Picture Reference Frames

Windows

In NTK 1.6, pictures (bitmap files) are referenced via a frame with the following slots:

__ntExternalFile A file reference to a file containing an image to be converted into a 1-bit bitmap.

__ntMaskFile An optional file reference to a mask image. Unused.

__ntCreateMask An integer object indicating whether or not the generated Newton bitmap frame
contains a 'mask slot. If this slot exists, and it contains a non-zero value, then a
'mask slot will be generated, either from the “complementary image” (a file with
the same name as that referenced by '__ntExternalFile, suffixed with a “!”) or
by calculating a mask from the '__ntExternalFile image. If the slot does not
exist, or it doesn’t contain an integer object, or the integer object is zero, then no
mask is generated for the Newton bitmap frame.

With the addition of “picture families” (a collection of related bitmap files), the above slots are deprecated (but are
maintained for backward compatibility) in favor of the following slots:

imageInfo1 An optional file reference to a file containing an image to be converted into a 1-bit
bitmap.

imageInfo2 An optional file reference to a file containing an image to be converted into a 2-bit
bitmap.

imageInfo4 An optional file reference to a file containing an image to be converted into a 4-bit
bitmap.

imageInfo8 An optional file reference to a file containing an image to be converted into an 8-bit
bitmap.

maskInfo An optional file reference to a file containing an image to be converted into a 1-bit
masking bitmap. Must be present if 'maskOption is 1 or 2.

maskOption An integer object with one of the following values:

0 no mask
1 use specified image as mask
2 XOR specified image to produce mask
3 calculate a mask

Macintosh

Picture references created by NTK 1.6.3 and earlier are frames containing the following slots:

Preliminary documentation 3 Copyright © 1997, Apple Computer, Inc.
Subject to change All rights reserved

__ntExternalFile A file reference to a file containing a 'PICT' resource to be converted into a 1-bit
bitmap.

__ntResID An integer object with the resource ID of the 'PICT' resource.

__ntPictName An optional string object containing the name of the 'PICT' resource. This slot is
present only if the 'PICT' resource has a name. Yes, this information is redundant
with '__ntResID.

__ntCreateMask An integer object indicating whether or not the generated Newton bitmap frame
contains a 'mask slot. If this slot exists, and it contains a non-zero value, then a
'mask slot will be generated, either from the “complementary image” (a named
resource with the same name as that referenced by '__ntPictName, suffixed with
a “!”) or by calculating a mask directly from the 'PICT'. If the slot does not exist,
or it doesn’t contain an integer object, or the integer object is zero, then no mask is
generated for the Newton bitmap frame.

With the addition of “picture families” (a collection of related bitmap files), the above slots are deprecated, but are
maintained for backward compatibility. A new slot called 'vDesc has been added. This slot contains a frame with
the following slots:

class A symbol object containing 'picture.

images An array object with each element corresponding to one of the possible picture bit
depths. The first element corresponds to the the 1-bit image, the second element
corresponds to the 2-bit image, the third element corresponds to the 4-bit image, and
the fourth element corresponds to the 8-bit image. Each image specification is a
frame with the following slots:

resource An integer object containing the resource ID of the 'PICT'.
fileSpec A Macintosh file reference object of the resource file containing the

'PICT'.

mask A frame object containing 'resource and 'filespec slots for the mask to be
used for this picture family.

maskStrategy An integer object with one of the following values:

0 no mask
1 use specified image as mask
2 XOR specified image to produce mask
3 calculate a mask

Project File Format

Windows

Project files are stored in Newton Streamed Object Format (NSOF). Such files can be read, for example, by

Preliminary documentation 4 Copyright © 1997, Apple Computer, Inc.
Subject to change All rights reserved

FD_Unflatten of the 2.0 FDIL, or FDHydrateObject of the 1.0 FDIL.

The root level object is a frame containing the following slots:

ntkPlatform An integer object with one of the following values:

0 Macintosh platform
1 Windows platform

fileVersion An integer object indicating the file version number. The current version number is
2. This number is informational only; NTK currently doesn’t do anything based on
the version number.

projectItems A frame containing the project items. This frame is described in the section “Project
Items Frame”.

projectSettings A frame containing the following slots:

platform A string object containing the platform file for this project. The string
does not include the file extension or file path. It corresponds to the
“Platform” drop-down menu.

language A string object containing the specified language. It corresponds to the
“Language” edit text item of the Package panel of the Settings dialog.

debugBuild A boolean object indicating whether or not the package will be built with
debugging features. It corresponds to the “Compile for Debugging” check
box of the Package panel of the Settings dialog.

ignoreNative A boolean object indicating how the NewtonScript “native” keyword
should be handled. It corresponds to the “Ignore Native Keyword” check
box of the Package panel of the Settings dialog.

checkGlobalFunctions A boolean object specifying whether or not global functions should be
checked against a list of known global functions during compile time. It
corresponds to the “Check Global Function Calls” check box of the
Package panel of the Settings dialog.

oldBuildRules A boolean object specifying compatibility mode for projects created by
Macintosh NTK 1.0. It corresponds to the “NTK 1.0 Build Rules” check
box of the Package panel of the Settings dialog.

useStepChildren A boolean object specifying how child views should be handled. It
corresponds to the “Use stepChildren Slot” check box of the Package
panel of the Settings dialog.

suppressByteCodes A boolean object controlling code generation. It corresponds to the
“Suppress Byte Code” check box of the Package panel of the Settings
dialog.

Preliminary documentation 5 Copyright © 1997, Apple Computer, Inc.
Subject to change All rights reserved

fasterFunctions A boolean object controlling code generation. It corresponds to the “Faster
Functions (2.0 Only)” check box of the Package panel of the Settings
dialog.

outputSettings A frame containing the following slots:

applicationName A string object containing the name of the application in the built
package. It corresponds to the “Name” edit text item of the Application
panel of the Settings dialog.

applicationSymbol A string object containing the symbol of the application in the built
package. It corresponds to the “Symbol” edit text item of the Application
panel of the Settings dialog.

partType An integer object indicating the kind of package part this project is
creating. Corresponding to the radio buttons on the Output panel of the
Settings dialog, it can be one of the following values:

0 Application part
1 Book part
2 Auto part
3 Store part
4 Stream part
5 Custom part

iconFile A file reference containing the name of the project item holding the
application icon. In NTK 1.6.1, this slot is deprecated in favor of
' iconProNormal and ' iconProHighlighted.

iconProNormal A picture reference frame containing the application icons to be used at
different screen depths. This slot was added in NTK 1.6.1.

iconProHighlighted A picture reference frame containing the highlighted application icons to
be used at different screen depths. This slot was added in NTK 1.6.1.

topFrameExpression A string object containing the expression typed into the “Result” edit text
item of the Output panel of the Settings dialog.

autoClose A boolean object specifying whether or not the application should close
when another “auto close” application is launched. It corresponds to the
“Auto Close” check box of the Application panel of the Settings dialog.

customPartType A string object containing the text entered into the edit text item next to
the “Custom Part” radio button on the Output panel of the Settings
dialog. The string must be four characters long.

fasterSoups A boolean object controlling code generation. It corresponds to the “New-
Style Stores (Newton OS 2.0 Only)” check box of the Output panel of
the Settings dialog.

Preliminary documentation 6 Copyright © 1997, Apple Computer, Inc.
Subject to change All rights reserved

packageSettings A frame containing the following slots:

packageName A string object containing the package name. It corresponds to the
“Name” edit text item of the Package panel of the Settings dialog.

version A string object containing the version typed into the “Version” edit text
item of the Package panel of the Settings dialog. Note that while this is a
string object, the text it contains must be convertible to an integer
between 0 and 9999.

copyright A string object containing the version typed into the “Copyright” edit text
item of the Package panel of the Settings dialog.

optimizeSpeed A boolean object controlling code generation. It corresponds to the “Use
Compression” check box of the Package panel of the Settings dialog.
Note that the boolean value stored is the opposite of setting of the check
box.

copyProtected A boolean object controlling package generation. It corresponds to the
“Copy Protected” check box of the Package panel of the Settings dialog.

deleteOnDownload A boolean object controlling package downloading. It corresponds to the
“Delete Old Package on Download” check box of the Package panel of the
Settings dialog.

dispatchOnly A boolean object controlling package generation. It corresponds to the
“Auto Remove Package” check box of the Package panel of the Settings
dialog.

newton20only A boolean object controlling code generation. It corresponds to the
“Newton OS 2.0 Only” check box of the Project panel of the Settings
dialog.

fourByteAlignment A boolean object controlling package generation. It corresponds to the
“Tighter Object Packing” check box of the Project panel of the Settings
dialog.

zippyCompression A boolean object controlling package generation. It corresponds to the
“Faster Compression” check box of the Package panel of the Settings
dialog.

profilerSettings A frame containing the following slots:

memory An integer object controlling profiling. Currently hard-coded to 4K, it
can’t be changed by the user.

percent An integer object controlling profiling. Currently set to 4 (indicating
100%), but unused.

compileForProfiling A boolean object controlling code generation. It corresponds to the
“Compile for Profiling” check box of the Project panel of the Settings

Preliminary documentation 7 Copyright © 1997, Apple Computer, Inc.
Subject to change All rights reserved

dialog.

compileForSpeed A boolean object controlling code generation. It corresponds to the
“Profile Native Functions” check box of the Project panel of the Settings
dialog. Note that the boolean value stored is the opposite of setting of the
check box. Note also that WinNTK 1.6 and 1.6.1 don’t note the previous
note, and treat the value backwards.

detailedSystemCalls A boolean object controlling profiling. Currently hard-coded to FALSE,
and can’t be changed by the user.

detailedUserFunctions A boolean object controlling profiling. Currently hard-coded to TRUE,
and can’t be changed by the user.

windowRect A frame containing ' top, ' left, ' bottom, and ' right slots, each containing an
integer indicating the coordinates for the project. In NTK 1.6 and 1.6.1, the values
correspond to the outer boundaries of the window. In NTK 1.6.2 and later, the values
correspond to the inner boundaries of the window.

Project Items Frame

The ' projectItems frame contains the following slots:

sortOrder An integer object with one of the following values:

0 Sort by build/sequence order
1 Sort by file name
2 Sort by file type
3 Sort by file size
4 Sort by file modification date
5 Sort by full file path name

items An array object containing the actual project items. This array always contains the
items in build order. Each element of the array is a frame with the following format:

file A reference to the project item’s file.

type An integer object indicating the project item’s type. It can be one of the
following values:

0 Layout file (also used for user-proto and print layout files)
1 Bitmap file
2 Metafile file (unused)
3 Sound file
4 Book file (deprecated in favor of script items)
5 Script file (NewtonScript source file)
6 Package file
7 Stream file
8 Native C++ code module file

Preliminary documentation 8 Copyright © 1997, Apple Computer, Inc.
Subject to change All rights reserved

isMainLayout A Boolean object indicating if the given project item is considered the
main layout of an application project. This slot is optional; it is present
only if it would contain a non-NIL value. Only one project item should
be marked as the main layout.

Macintosh

On the Macintosh, the data fork contains the list of project items, while the resource fork contains various preference
settings.

The data fork contains the following:

4 bytes Format version number. Currently set to 103, which this document describes.

2 bytes File count. Number of project item aliases in this file.

4 bytes Sort criteria. An integer indicating the following:

1 Sort by build/sequence order
2 Sort by file name
3 Sort by file type
4 Sort by file size
5 Sort by file modification date
6 Sort by full file path name

If the project contains one or more project items, the following appear next in the project file:

n bytes A sequence of “File Count” project item references. Each reference begins with a 4-
byte integer containing the length of an alias, followed by the alias itself. The project
item references are stored in build order, not according to the user’s sort criteria.

2 bytes Main layout number. A 1-based index of the project item designated as the main
layout. This value will be zero if there is no main layout. Note that the index is valid
only when the list of project items is sorted according to the user’s sort criteria, not
according to the order in which the project item references are stored on disk (which is
always in build order).

The resource fork contains the following resources:

'PJPF'(9999) Project Preferences

Str32 33 bytes ApplicationName: A Pascal string containing the name of the application in the built
package. It corresponds to the “Name” edit text item of the Output Settings panel of
the Project Settings dialog.

 1 byte padding

Str32 33 bytes IconName: A Pascal string containing the name of the 'PICT' resource used for the
application’s icon.

Preliminary documentation 9 Copyright © 1997, Apple Computer, Inc.
Subject to change All rights reserved

 1 byte padding

Str32 33 bytes Platform: A Pascal string containing the platform name.

 1 byte padding

Str32 33 bytes PackageName: A Pascal string containing the name of the package. It corresponds to
the “Name” edit text item of the Package Settings panel of the Project Settings
dialog.

 1 byte padding

Str32 33 bytes ApplicationSymbol: A Pascal string containing the symbol of the application in the
built package. It corresponds to the “Symbol” edit text item of the Output Settings
panel of the Project Settings dialog.

 1 byte padding

Str32 33 bytes Version: A Pascal string containing the version typed into the “Version” edit text
item of the Package Settings panel of the Project Settings dialog. This string must
be convertible to an integer between 0 and 9999.

 1 byte padding

Str63 64 bytes Copyright: A Pascal string containing the version typed into the “Copyright” edit
text item of the Package Settings panel of the Project Settings dialog

Boolean 1 byte OptimizeSpeed: A boolean controlling code generation. It corresponds to the “Use
Compression” check box of the Package Settings panel of the Project Settings
dialog. Note that the boolean value stored is the opposite of setting of the check box.

Boolean 1 byte CopyProtected: A boolean controlling package generation. It corresponds to the
“Copy Protected” check box of the Package Settings panel of the Project Settings
dialog.

Boolean 1 byte DeleteOnDownload: A boolean controlling package downloading. It corresponds to
the “Delete Old Package on Download” check box of the Package Settings panel of
the Project Settings dialog.

Boolean 1 byte DebugBuild: A boolean indicating whether or not the package will be built with
debugging features. It corresponds to the “Compile for Debugging” check box of the
Project Settings panel of the Project Settings dialog.

Boolean 1 byte AutoClose: A boolean specifying whether or not the application should close when
another “auto close” application is launched. It corresponds to the “Auto Close”
check box of the Output Settings panel of the Project Settings dialog.

 1 byte padding

Str63 64 bytes IconFile: A Pascal string containing the name of the file containing the 'PICT'
resource used for the application’s icon.

Preliminary documentation 10 Copyright © 1997, Apple Computer, Inc.
Subject to change All rights reserved

Boolean 1 byte CustomPart: A boolean indicating that the “Custom Part” radio button of the Output
Settings panel of the Project Settings dialog is set.

 1 byte padding

OSType 4 bytes PartType: A value indicating the type of package built. It can be one of the following
values:

' form' Application
' book' Book
' auto' Auto Part
' soup' Store Part

It can also be whatever the user specified in the edit text item following the Custom
Part radio button of the Output Settings panel of the Project Settings dialog.

Str255 256 bytes TopFrameExpression: A Pascal string containing the expression typed into the
“Result” edit text item of the Output Settings panel of the Project Settings dialog.

Boolean 1 byte MakeStream: A boolean indicating that the “Stream File” radio button of the Output
Settings panel of the Project Settings dialog is set.

Boolean 1 byte DispatchOnly: A boolean controlling package generation. It corresponds to the “Auto
Remove Package” check box of the Package Settings panel of the Project Settings
dialog.

Boolean 1 byte Newton20Only: A boolean controlling code generation. It corresponds to the
“Newton 2.0 Platform Only” check box of the Project Settings panel of the Project
Settings dialog.

 1 byte padding

Boolean 1 byte CompileForProfiling: A boolean controlling code generation. It corresponds to the
“Compile for Profiling” check box of the Project Settings panel of the Project
Settings dialog.

Boolean 1 byte CompileForSpeed: A boolean controlling code generation. It corresponds to the
“Profile Native Functions” check box of the Project Settings panel of the Project
Settings dialog. Note that the boolean value stored is the opposite of setting of the
check box.

Boolean 1 byte DetailedSystemCalls: A boolean controlling profiling. Currently hard-coded to
FALSE, and can’t be changed by the user.

 1 byte padding

short 2 bytes Memory: An integer controlling profiling. Currently hard-coded to 4K, it can’t be
changed by the user.

Byte 1 byte Percent: An integer controlling profiling. Currently set to 4 (indicating 100%), but
unused.

Preliminary documentation 11 Copyright © 1997, Apple Computer, Inc.
Subject to change All rights reserved

Boolean 1 byte DetailedUserFunctions: A boolean controlling profiling. Currently hard-coded to
TRUE, and can’t be changed by the user.

Str63 64 bytes Language: A Pascal string containing the specified language. It corresponds to the
“Language” edit text item of the Project Settings panel of the Project Settings dialog.

Boolean 1 byte IgnoreNative: A boolean indicating how the NewtonScript “native” keyword
should be handled. It corresponds to the “Ignore Native Keyword” check box of the
Project Settings panel of the Project Settings dialog.

Boolean 1 byte CheckGlobalFunctions: A boolean specifying whether or not global functions should
be checked against a list of known global functions during compile time. It
corresponds to the “Check Global Function Calls” check box of the Project Settings
panel of the Project Settings dialog.

Boolean 1 byte OldBuildRules: A boolean specifying compatibility mode for projects created by
Macintosh NTK 1.0. It corresponds to the “NTK 1.0 Build Rules” check box of the
Project Settings panel of the Project Settings dialog.

Boolean 1 byte UseStepChildren: A boolean specifying how child views should be handled. It
corresponds to the “Use stepChildren Slot” check box of the Project Settings panel of
the Project Settings dialog.

Boolean 1 byte SuppressByteCodes: A boolean controlling code generation. It corresponds to the
“Suppress Byte Code” check box of the Project Settings panel of the Project Settings
dialog.

Boolean 1 byte FasterFunctions: A boolean controlling code generation. It corresponds to the “Faster
Functions (2.0 Only)” check box of the Project Settings panel of the Project Settings
dialog.

Boolean 1 byte FasterSoups: A boolean controlling code generation. It corresponds to the “New-
Style Stores (2.0 Only)” check box of the Output Settings panel of the Project
Settings dialog.

Boolean 1 byte FourByteAlignment: A boolean controlling package generation. It corresponds to the
“Tighter Object Packing (2.0 Only)” check box of the Project Settings panel of the
Project Settings dialog.

Boolean 1 byte ZippyCompression: A boolean controlling package generation. It corresponds to the
“Faster Compression (2.0 Only)” check box of the Package Settings panel of the
Project Settings dialog.

 1 byte padding

'PJPF'(10000) Newton Application Icon Preferences

In NTK 1.6.4, support for “picture families” was added, allowing developers to specify a set of related images to
appear as the application’s icon in the Extras drawer on the Newton OS device.

Preliminary documentation 12 Copyright © 1997, Apple Computer, Inc.
Subject to change All rights reserved

This resource contains a flattened NewtonScript array object in NSOF. The first element of the array contains a
picture reference frame for the normal icon images. The second element of the array contains a picture reference frame
for the highlighted icon images.

The IconName and IconFile fields of the 'PJPF'(9999) resource are maintained for backward compatibility.

'PJST'(9999) Window Settings

VRect 16 bytes Window location/size. Bounding box of content region in global coordinates.

Layout File Format

Windows

layoutSettings A frame containing the following slots:

ntkPlatform An integer object containing one of the following values:

0 Macintosh platform
1 Windows platform

fileVersion An integer object indicating the file version number. The current version
number is 2. This number is informational only; NTK currently doesn’t
do anything based on the version number.

windowRect A rectangle frame containing the coordinates of the layout window.

layoutName Name of the layout. Optional and unused.

layoutType An integer object containing one of the following values:

0 Normal layout
1 Print format
2 User proto

layoutSize A point frame containing the size of the layout.

gridSize A point frame containing the grid size of the layout window.

gridState A boolean object specifying whether or not gridding is shown.

gridSnap A boolean object specifying whether or not gridding is active

linkedTo An optional string or file reference object. Unused.

templateHierarchy The root template of all the templates in this layout file. Templates are frames, the
contents of which are described the section “View Template Format”.

Preliminary documentation 13 Copyright © 1997, Apple Computer, Inc.
Subject to change All rights reserved

Macintosh

The data fork contains the root template of all the templates in this layout file. Templates are frames, the contents of
which are described in the section “View Template Format”.

The resource fork contains the following resources:

'FMST'(9999) Project Preferences

VRect 16 bytes Layout window position. Bounding box of content region in global coordinates.

Str63 64 bytes Obsolete.

VPoint 8 bytes Layout size.

short 2 bytes File version (currently 7).

Boolean 1 byte A boolean indicating whether or not this layout is linked to a linkedSubview.

 1 byte padding.

Str255 256 bytes If this layout is linked to a linkedSubview, contains the name of the layout
containing the linkedSubview. Unused.

GridInfo[2] 28 bytes Two GridInfo structs containing information about the layout window. The first
GridInfo contains information pertaining to vertical attributes of the layout
window; the second GridInfo does likewise for the horizontal attributes. Note
that both show fields are always both TRUE or both FALSE.

View Template Format

The “view” objects that users create and manipulate in the NTK browser and layout window are actually called “view
templates”. They aren’t views themselves, but they play one on TV. That is, they tell the Newton OS how to create
the actual view at runtime.

The view template is what NTK produces when building a package. The information used to create a view template
is stored in the layout file as a “view template descriptor”. View template descriptors are frames containing the
following slots:

value A frame containing slots that will be added to the view after it is compiled. Each slot
contains a frame called a “slot descriptor”, described later.

__ntDeclare If the view is declared, this slot contains a reference to the view template descriptor to
which it is declared.

__ntExternFile If the view is a linked subview, this slot contains a file reference to the linked-to
layout.

__ntID A symbol indicating what type of view this is. The symbol stored here can be one of

Preliminary documentation 14 Copyright © 1997, Apple Computer, Inc.
Subject to change All rights reserved

the ones you see in the popup menu containing Newton OS proto names (e.g.,
'protoApp, 'clView), or the special symbols 'userProto or
'linkedSubview.

__ntName If the view has a name, this slot contains a string object holding the name.

__ntObjectPointer (Windows only) Pointer to C++ object. This slot is valid only during runtime; it has
no significance when the view is stored on disk.

__ntParent (Windows only) Reference to parent view template descriptor. This slot is valid only
during runtime; it has no significance when the view is stored on disk.

The 'value slot is a frame containing the slots that will populate the view after it is compiled. The name of each
slot is the name that will appear in the final view, but the content of the slot—rather than being the value specified
in NTK’s browser—is a frame called a “slot descriptor”. Each slot descriptor has the following slots:

value The real value, as specified by the user in NTK’s browser.

__ntDataType A binary object containing a 4-byte integer indicating the type of data stored in the
‘value slot. The 4-byte integer can be one of the following:

'EVAL' Evaluate slot
'NUMB' Number
'INTG' Integer (same as Number)
'REAL' Floating point number
'BOOL' Boolean
'RECT' Rectangle
'TEXT' Text/string slot
'FONT' Font (unused)
'SCPT' Script slot
'ARAY' Array (only used internally for

stepChildren slot)
'PICT' Picture

__ntFlags An integer object comprising a set of bit-flags describing slot access. The bits are
defined as follows:

2 If set, this slot needs to be overridden.
3 If set, this slot can’t be edited.
4 If set, this slot can’t be deleted.
5 If set, this slot is being edited.
6 If set, this slot doesn’t appear in the browser.

__ntEffect If the slot descriptor corresponds to the viewEffect slot, this slot contains an integer
object holding the menu item index of the view effect menu. This is different from
what’s store in the 'value slot, which contains the actual view effect bits used by
the Newton OS view system.

__ntStatusInfo (Windows only) Frame indicating slot status. This slot is valid only during runtime;

Preliminary documentation 15 Copyright © 1997, Apple Computer, Inc.
Subject to change All rights reserved

it has no significance when the view is stored on disk.

state (Windows only) Edit status. This slot is valid only during runtime; it has no
significance when the view is stored on disk.

by (Windows only) Object editing this slot. This slot is valid only during runtime; it
has no significance when the view is stored on disk.

The view template descriptor’s 'value slot not only contains the user-defined slots; it also contains the following
special slots:

stepChildren This slot is merely a slot descriptor for an array, where each element is the view
template descriptor for a child view template. Thus, stepChildren’s value slot is the
array of children, '__ntDataType is 'ARAY', and '__ntFlags is 64,
indicating that the slot should not be displayed.

__ntTemplate This slot descriptor corresponds to the '_proto or 'viewClass slot of the view
template. It determines if a '_proto or 'viewClass slot gets added to the view
template, and what the contents of the slot are. It contains the following slots:

value If this view template is based on a Newton OS proto (e.g.,
'protoApp), this slot contains an integer object representing the
proto’s magic pointer value. If this view is based on a primitive view
(e.g., 'clView), this slot contain an integer object representing to the
view’s class ID. If this view is based on a user proto, this slot contains a
reference to the corresponding file.

__ntDataType Classifies this view template into one of four types. This slot holds a
binary object containing one of the following 4-byte integers:

'PROT' View is based on Newton OS proto.
'CLAS' View is based on primitive view.
'USER' View is based on user proto.
'LINK' View is linked to another view.

__ntFlags An integer object comprising a set of bit-flags describing view access.
The bits are defined as follows:

1 If set, can’t add slots to this view.
3 If set, this view can’t be edited.

beforeScript If present, this is a slot descriptor for a script value containing a script to be run
before the view has been constructed. The final view template does not contain a
'beforeScript slot.

afterScript If present, this is a slot descriptor for a script value containing a script to be run after
the view has been constructed. The final view template does not contain an
'afterScript slot.

Preliminary documentation 16 Copyright © 1997, Apple Computer, Inc.
Subject to change All rights reserved

Native Code Module Format

Native code modules are files created by the Newton C++ Tools for inclusion in NTK projects. These files contain
data in NSOF, and are the same on both platforms. The object in the file is a frame with the following slots:

class A symbol object containing 'NativeModule.

version An integer object with the version of this frame. The initial value of 1 implies that
at a minimum, the slots listed in this frame will always be present in this and future
versions of the module frame.

CPUType A symbol object containing 'ARM610.

name A symbol object identifying the name of the module, as specified by the first entry in
the .exp file.

code A binary object of class 'code consisting of one or more Asm/C/C++ functions
linked together as a single Read-Only Code Area (as created by the ARM Ltd. C++
compiler). The code is linked with a base address zero. Describing the contents of this
binary object is currently beyond the scope of this document.

relocations A binary object of class 'relocs containing the relocation information. The first 4
bytes of the binary object contain the number of relocation entries in the rest of the
binary object. The rest of the binary object is composed of an array of 4 byte offsets
into the 'code block where relocation needs to occur. These offsets are always
sorted in ascending order.

debugFile A string object containing the name of the file containing the debugging
information.

entryPoints An array object containing entry point information. Each element in the array is a
frame containing the following slots:

name A symbol object containing the name of the entry point.

offset An integer object with the offset (in bytes) into the code block of the first
instruction of the entry point.

numArgs An integer object with the number of arguments the entry point takes.

Preliminary documentation 17 Copyright © 1997, Apple Computer, Inc.
Subject to change All rights reserved

