
NEWTON FONT SPECIFICATIONS
Document Version 0.01

© Copyright Apple Computer, Inc. 1994
All Rights Reserved

This document contains the structure of Newton fonts. This document assumes you are familiar with the
structures of TrueType fonts. This document is extremely sketchy - please let us know if you have any
corrections, requests, additions, concerns.

0. RELEASE NOTES

Date Version Changes
02-Feb-94 0.01 Initial Release

1. OVERVIEW

This is an attempt to quickly document the structure of Newton fonts. It does not attempt to document in
detail all aspects of a TrueType font; Rather it will contain many pointers to existing TrueType
documentation which should be used along with this document as a reference.

Based on TrueType
Newton fonts are based on the TrueType font technology. It is important to understand that TrueType is not
just outline fonts, but an entire scalable font architecture. It is possible to use many aspects of TrueType’s font
technology, without having to use actual outline fonts. Other aspects of this technology include the ability
to support non-ASCII character encodings (such as Unicode), and the ability to easily handle large
characters sets (such as Kanji).

Because the existing Newton software does not actually support outline fonts, we use a new extension to
TrueType known generally as “sbit”. This is a set of tables which have been defined as segments of a
TrueType font. These tables allow bitmap data to be included in a TrueType font.

The original design goal for “sbit” fonts was to allow small hand-tuned point sizes to be included along with
an outline font. For Newton, we have gone a step further and completely removed the outline data. Fonts
built for Newton contain ONLY bitmap data.

For more detailed information on TrueType, and the tables used by Newton, see The TrueType Book, chapter
6 and the appendices. For more detailed information on the sbit data structures, see the latest sbit ERS (1.0.6
as of this writing). The final arbiter of current structures, of course, remains the latest header files.

Types of Newton Fonts
There are actually two types of Newton fonts. Most commonly known are the embedded bitmap formats used
for screen and dot-matrix printing. Less known, but equally important, are “widths” fonts used for accurate
PostScript printing. These fonts are specially constructed to contain only high-accuracy font widths data,
and must match the metrics of the fonts in various PostScript printers.

2. REQUIRED TABLES IN NEWTON FONTS
The following lists describe the tables which must be present in each type of font. No attempt will be made
to describe each table, except where Newton-specific information is required - see the TrueType book for
exact information.

A Newton bitmap font will contain the following tables:

Font Directory
cmap Character Mapping
head Font Header
hhea Horizontal Metrics Header
hmtx Horizontal Metrics
maxp Maximum Profile
name Naming Table
bloc Bitmap Locations
bdat Bitmap Data

A Newton widths font will contain the following tables:

Font Directory
cmap Character Mapping
head Font Header
hhea Horizontal Metrics Header
hmtx Horizontal Metrics
maxp Maximum Profile
name Naming Table
hsty Horizontal Style Info

Please refer to the TrueType or sbit documents for basic definitions of the above tables; The following
descriptions contain only that information which is important for Newton fonts.

Font Directory
Used as described.

cmap Character Mapping
Newton only supports Unicode, so only formats 4 and 6 should be used. For all but the most specialized fonts,
format 4 (permitting discontiguous ranges) will be the one to use. Newton’s font system can use all
permutations of the delta, rangeOffset, and glyphIndex arrays, so it is recommended that font tools construct
the smallest possible cmap.

head Font Header
All fields are used as described. The standard value for unitsPerEm is 2048, but this may be altered as long as
all other dependent values are changed in accordance. Be sure to set macStyle if this is a styled font. The
smallest embedded bitmap size should be placed in lowestRecPPEM.

hhea Horizontal Metrics Header
Most of these fields are duplicated on a per-size basis in the bloc entries. The values here should be based on
the equivalent hi-precision information in the hmtx. If you are generating this data from a mac font, much of
this data will be in the FOND. These numbers must be very accurate if this is a widths font.

hmtx Horizontal Metrics
If no hires font metrics are available for a bitmap font, the font tool should generate this table by scaling the
highest point size of the bitmaps embedded. Otherwise, use the highest resolution font metrics available
(eg from the FOND).

maxp Maximum Profile
The only field which is important here is the numGlyphs field. However, if you are embedding outline
data, then the other fields must of course be accurate.

name Naming Table

All fields are used as described.

bloc Bitmap Locations
All fields are used as described. Currently, only pure black and white (bitDepth = 0, colorRef = 0) fonts are
used. Typically, index subtables will always be of type 3, but an extremely large font could use type 1.
However, a better way to do this would be to generate multiple subranges where the strike data for each
subrange is < 64k.

bdat Bitmap Data
As described in the documentation, the bdat area is very simple - it’s just a single version number, followed by
hundreds or thousands of individual bitmap records, each indexed by the various subtables in the bloc.
Currently, only formats 1 and 6 are supported, with format 1 preferred (because it’s smaller).

hsty Horizontal Style Info
This is an all-new table which is used by Newton width fonts. It is used to mimic the way in which
PostScript will modify fonts when the requested style is not directly available.

The format of an hsty table is as follows:

typedef struct {
 Fixed version; // 1.0
 short extraPlain;
 short extraBold;
 short extraItalic;
 short extraUnderline;
 short extraOutline;
 short extraShadow;
 short extraCondensed;
 short extraExtended;
 short extraUnused;
} sfnt_HorizontalStyleInfo;

The simplest way to generate this structure is to copy the values directly from the FOND, except that they
must be scaled along the way into the same units as used by the hmtx.

3. OTHER REQUIREMENTS
The following lists describe the tables which must be present in each type of font. It is strongly recommended
that the glyph mapping requirements described in the appendices be followed. The only exception to this is
the full list of glyph codes spelled out as being required for Mac Roman fonts - they don’t really matter
(although a mac-oriented font tool will probably do them that way as a matter of course). However, the low
numbered special glyphs should be as documented.

Summarizing the rules specified in each section:

Glyph Ordering

Glyph # Glyph Image
0 missing character glyph
1 null glyph
2 carriage return glyph
3 space

All other glyph codes may be unique to the font.

Character to Glyph Mapping

Char # Glyph #
0 0: missing character glyph
1 1: null glyph

1A 0: missing character glyph

All others are abitrary.
The requirement of all mac codes to be implemented is not necessary.
The tables of missing, null, and space glyphs are recommended but
not required.

Metrics
The requirements stated are required for Newton
The recommendations stated are recommended for Newton.

sbit Format
(sfnt bitmaps)
This chapter contains generic, platform independent TrueType font information.

bloc
The 'bloc' table starts out with a header; simply the version, numGlyphs, and numSizes. We refer to the
bitmaps for a face at a given point size to be a strike. The 'sfnt' will typically have various strikes
embedded in the 'bdat' table. For example, Hon Mincho may have 12 point, 18 point, and 24 point strikes
embedded in the sfnt. Each strike will have a bitmapSizeTable associated with it.

typedef struct {
Fixed version;
unsigned long numSizes;

/* bitmapSizeTable[numSizes] */
} blocHeader;
#define BITMAP_HEADER_VERSION 0x20000

The numSizes in the blocHeader tell us the number of bitmapSizeSubTables that follow. Most of the
information needed at transform time is in the sizeSubTable.

typedef struct {
unsigned long indexSubTableArrayOffset; /*offset to corresponding index

subtable array from beginning of bloc
table*/

unsigned long indexTablesSize; /* number bytes of corresponding index
subtables and array*/

unsigned long numberOfIndexSubTables; /* an index subtable for each range or
format change*/

unsigned long colorRef; /*Set to 0, ignore for now*/
sbitLineMetrics hori; /* line metrics*/
sbitLineMetrics vert; /*line metrics*/
unsigned short startGlyphIndex; /*lowest glyph index

for this size*/
unsigned short endGlyphIndex; /*highest glyph index

for this size*/
uChar ppemX; /* target horizontal ppem*/
uChar ppemY; /* target vertical ppem*/
uChar bitDepth; /* bit depth of the strike */
sChar flags; /* see bitmapFlags, first two bits are

for orientation, vertical or horizontal
*/

} bitmapSizeTable;

The indexSubTableArrayOffset is the offset from the beginning of the 'bloc' table to the
indexSubTableArray. Each strike has one of these arrays to support various formats and discontiguous ranges
of bitmaps. More on this array below.

The indexTablesSize is the total number of bytes in the indexSubTableArray and the associated index tables.

The numberOfIndexSubTables is a count of the index tables for this strike.

The colorRef is put in for future enhancements that are not currently supported by the TrueType scaler. The
bitDepth is what it says, the depth of this strike. This is useful for greyscale or color fonts. To maintain
compatibility with scalers that will read sbit data the following table shows how the colorRef and
bitDepth information will be assimilated.

bitDepth colorRef meaning
1 0 standard 1-bit font
n 0 multi-bit black-and-white

font
n x color, grayscale, anti-

aliased, etc.

The horizontal and vertical line metrics follow and as you will notice contain the ascender, descender,
linegap, and advance information from previous formats. Additionally the caret information for Layout is
included. The slope is to determine the angle at which the caret is to be drawn and the offset is how many
pixels (+ or -) to move the caret. This is a signed char and not a fixed since we are dealing with integer
metrics. The minOriginSB, minAdvanceSB , maxBeforeBL, and minAfterBL is described below. The main
need for these numbers is for scalers that may need to pre-allocate memory and/or need more metric
information to position glyphs. These numbers are not used by the sbit scaler on the macintosh, but may be
used on other platforms.

g maxBeforeBL

minAfterBL

minAdvanceSB

minOriginSB

Y axis

X axis

Horizontal Text

Â
 +

 +

 -

 -

minOriginSB = Minimum of
(horiBearingX)

minAdvanceSB = Minimum of
(hori.advance - (horiBearingX + width))

maxBeforeBL = Maximum of
(horiBearingY)

minAfterBL = Minimum of
(horiBearingY - height)

g
maxBeforeBL minAfterBL

minAdvanceSB

minOriginSB

Y axis

X axis

Vertical Text

Â
 +

 +

 -

 -

minOriginSB = Minimum of
(vertBearingY)

minAdvanceSB = Minimum of
(vert.advance - (vertBearingY + height))

maxBeforeBL = Maximum of
(vertBearingX)

minAfterBL = Minimum of
(vertBearingX - width)

All of the metrics are one byte in length. This should be long enough for our use of bitmaps.
The startGlyphIndex is the index of the first glyph included after the missing glyph. If you are only
embedding kanji glyphs, the first index may be 700.

The endGlyphIndex is the index of the last glyph for which a bitmap has been embedded. This is an outer
search range will be used by some scalers.

The ppem is the resolution information and for us will be the point size of the strike at 72 dpi. Basically the
size given in the 'fond' or 'NFNT'.

Sbit only fonts must have every glyph in every strike embedded. This is only required when no outlines are
present.

typedef struct {
sChar ascender;
sChar descender;
uChar widthMax;
sChar caretSlopeNumerator;
sChar caretSlopeDenominator;
sChar caretOffset;
sChar minOriginSB;
sChar minAdvanceSB;
sChar maxBeforeBL;
sChar minAfterBL;
sChar pad1;
sChar pad2;

} sbitLineMetrics;

typedef struct {
unsigned short firstGlyphIndex;
unsigned short lastGlyphIndex;
unsigned long additionalOffsetToIndexSubtable; /* add to

indexSubTableArrayOffset to get offset from
beginning of bloc*/

} indexSubTableArray;

This array contains the glyph ranges and offsets to indices within the 'bloc'. After determining the strike to
use the scaler goes to this array to search for the index that contains the glyph number. When the index is
found it will be an offset to an indexSubTable. The indexSubTableArray is located from
indexSubTableArrayOffset in the corresponding bitmapSizeSubTable. The first indexSubTableArray is
after the last bitmapSizeSubTable entry. Then the indexSubTables for the strike follow. The next
indexSubTableArray(if more than one strike) and its indexSubTables are next. The 'bloc' continues with this
array and indices for each strike (See the following diagram for clarification).

Finally we get to the indexSubTable. Currently there are two formats of indices, one for proportional data
and one for monospaced data. Whether the data is fixed size or variable size determines which index to use.
Note: the format of the 'bdat' data can be in any format. It is not determined by the index format. The index
tells us where the information for a particular glyph starts in the 'bdat' and how large the data is. The size
of the data for the glyph is the difference of offsetArray[glyphIndex+1] - offsetArray[glyphIndex].
The indexSubTable1 is the proportional format index. This will be used for most roman fonts and the first
500 or so of the CJK fonts. The imageFormat tells us what kind of data is in the 'bdat', more on this in the
'bdat' section.

typedef struct {
unsigned short indexFormat;
unsigned short imageFormat;
unsigned long imageDataOffset; /*offset to corresponding image data

from beginning of bdat table*/

} indexSubHeader;

/* format 1 has variable length images of the same format*/
typedef struct {

indexSubHeader header;
unsigned long offsetArray[anyNumber]; /*offsetArrary[glyphIndex] +

imageDataOffset = startOfBitDataForGlyph*/
/*sizeOfArray = lastGlyph - firstGlyph + 1*/

} indexSubTable1;

The indexSubTable3 is also a proportional format index. It is just like format1 except the offsets are shorts
instead of longs.
NOTE: THIS MUST BE PADDED TO A LONG BOUNDARY!

/* format 3 has variable length images of the same format with word
offsets*/

typedef struct {
indexSubHeader header;
unsigned short offsetArray[anyNumber]; /*offsetArrary[glyphIndex] +

imageDataOffset = startOfBitDataForGlyph*/
/*sizeOfArray = lastGlyph - firstGlyph + 1 +
padding if needed*/

} indexSubTable3;

For monospaced fonts the metrics are the same and only the bitmap changes. For those we use
indexSubTable2. The metrics are not in the 'bdat' but are here in the subTable. Only the data for the bitmap
is put in the 'bdat' for these glyphs. The data can be in various formats; byte aligned, bit aligned,
compressed, etc. The size of all the bitmap data needed to be read in from the 'bdat' is the imageSize. The
imageDataOffset is the offset into the 'bdat' for the first of this range of glyphs.

g
Y axis

X axis

 +

 +

 -

 -
height

Horizontal Text

width

horiAdvance

horiBearingX

horiBearingY

pen position

X axis + - g
Y axis

 +

 -

height

Vertical Text

width

vertAdvance

vertBearingX

vertBearingY pen position

/* format 2 all glyphs have images of the same length and of the same format*/
typedef struct {

uChar height;
uChar width;
sChar horiBearingX;
sChar horiBearingY;
uChar horiAdvance;
sChar vertBearingX;
sChar vertBearingY;
uChar vertAdvance;

} bigGlyphMetrics;

typedef struct {
uChar height;
uChar width;
sChar bearingX;
sChar bearingY;
uChar advance;

} smallGlyphMetrics;

typedef struct {
indexSubHeader header;
unsigned long imageSize; /* all the glyphs are of the same size. May

be compressed, bit-aligned, or byte-aligned*/
bigGlyphMetrics bigMetrics; /*all glyphs have the same metrics*/

} indexSubTable2;

The metric information for index type 2 glyphs is of type bigGlyphMetrics. The pictures above show the
meaning of the metrics. Possible values for the 'g' glyph above could be: horiBearingX = 2, horiBearingY =
11, horiAdvance = 12, vertBearingX = -3; vertBearingY = -2, vertAdvance = 20(Note: although the advance
is in the -y direction, it is still unsigned since it is a distance and not a direction, the direction of vertical text
is assumed top to bottom), height = 16, width = 9. Once again we are dealing with integer metrics. If you use
smallGlyphMetrics, you must set the bit in the bitmapSizeTable.flags to the inform the scaler as to the
orientation of the metrics(using bitmapFlags).

typedef enum {
flgHorizontal = 0x01,
flgVertical = 0x02

} bitmapFlags;

The scaler makes up fake metrics for the orientation that is not included.

'bdat'
The 'bdat' table is a very simple structure. A version followed by data. The data can be in various formats.
Some of the formats contain metric information and other formats contain only the image. Some of the data
may be compressed and other data may not. The 'bloc' contains the information to locate and understand how
to interpret the data contained in the 'bdat' table.
typedef enum {

ndxProportional = 1,
ndxMono,
ndxProportionalSmall

} bitmapIndexFormats;

typedef enum{
proportionalFormat1 = 1, /*small metrics and data, byte-aligned*/
proportionalFormat2, /*small metrics and data, bit-

aligned*/
proportionalCompressedFormat3,/*NOT USED*//*metric info followed by

compressed data*/
monoCompressedFormat4, /*just compressed data, metrics are in

bloc*/
monoFormat5 = 5, /*just bit aligned data, metrics are in

bloc*/
proportionalByteFormat6, /*metrics & byte-aligned image*/
proportionalBitFormat7 /*metrics & bit-aligned image*/

} bitmapDataFormats;

typedef struct {
smallGlyphMetrics smallMetrics;
/* bitmap image data */

} glyphBitmap_1, glyphBitmap_2;

Note that format 1 and 2 are the same except the bitmap data. Type 1 is byte aligns and type 2 is bit
aligned.
The data format similar to fbit7 that is used with monospaced glyphs is not included in the header. This is
a real simple format of bit-aligned bitmaps, padded to a byte boundary. All the metric information is in the
indexSubTable2.
Data format 4 is similar to the fbit3 compressed format. The format contains metric information and offsets
to the binary trees and glyph data.

/* for monospaced bitmaps the metric information is in the 'bloc' indexSubTable2*/
/* for monospaced bitmaps the metric information is in the 'bloc' indexSubTable2*/
typedef struct {

unsigned long whiteTreeOffset; /*offset from 'height'*/
unsigned long blackTreeOffset; /*offset from 'height'*/
unsigned long glyphDataOffset; /*offset from 'height'*/

} glyphBitmap_4;

Format 5 is similar to format 2 and 7 except that no metric information is included, just the bit-packed bits.
(There has been no request for a byte-aligned format of this type)

typedef struct {
bigGlyphMetrics bigMetrics;

/* bitmap image data */
} glyphBitmap_6, glyphBitmap_7;

Note that format 6 and 7 are the same except the bitmap data. Type 6 is byte aligned and type 7 is bit
aligned.

bloc header
version

numGlyphs
numSizes

bitmapSizeSubTable
ppemX
ppemY

hori
vert

widthMax
heightMax

indexSubTableArrayOffset
indexTableSize
startGlyphIndex
endGlyphIndex

numberOfIndexSubTables

bitmapSizeSubTable
bitmapSizeSubTable…
bitmapSizeSubTable

indexSubTableArray
firstGlyphIndex
lastGlyphIndex

additionalOffsetToIndexSubtable
…

firstGlyphIndex
lastGlyphIndex

additionalOffsetToIndexSubtable

indexSubTable1
indexFormat
imageFormat

imageDataOffset
offsetArray

indexSubTable2
indexFormat
imageFormat

imageDataOffset
imageSize

bigGlyphMetrics

indexSubTableArray
firstGlyphIndex
lastGlyphIndex

additionalOffsetToIndexSubtable
…

firstGlyphIndex
lastGlyphIndex

additionalOffsetToIndexSubtable

indexSubTable1
indexFormat
imageFormat

imageDataOffset
offsetArray

indexSubTable2
indexFormat
imageFormat

imageDataOffset
imageSize

bigGlyphMetrics

…

bdat header
version

glyphBitmap_2
 height
 width
 sideBearingX
 sideBearingY
 advance
/* bitmap image data */

glyphBitmap_3
 bigGlyphMetrics
 whiteTreeOffset
 blackTreeOffset
 glyphDataOffset

glyphBitmap_5
/* bitmap image data */

glyphBitmapMono_3
 whiteTreeOffset
 blackTreeOffset
 glyphDataOffset

/* short whiteTree[]
 short blackTree[]
 compacted glyph data */

This is a
sample of
the types of
data that can
be in the
'bdat' table.
For each one
listed there
is a variable
number of
them in the
table.
Disjoint
ranges of
glyphs for a
strike can
have their
bitmaps
stored in
various
formats.

The 'bloc'
table provides
information on
how to locate
the bitmaps
for a particular
glyph.
Discontiguous
ranges and
multiple
formats are
supported. The
numSizes field
in the header
is the number
of size
subtables in
the 'bloc'

glyphBitmap_7
 bigGlyphMetrics
/* bitmap image data */

glyphBitmap data
glyphBitmap data…
glyphBitmap data

glyphBitmap data
glyphBitmap data…
glyphBitmap data

This
struct has
changed
slightly
but the
offset
ideas are
still the
same.

