
Newton 1.0
Connection Protocol

The Connection protocol is used to communicate between the desktop and Newton.

This document should be read in conjunction with DockProtocol.h which defines the constants and
structures referenced here.

NOTE! This protocol has been superseded by the 2.0 Newton ROM: refer to the Dante
Connection Protocol document.

Protocol Overview
Newton communicates with the desktop by exchanging Newton event commands. The general
command structure looks like this:

ULong 'newt' // event header
ULong 'dock' // event header
ULong 'aaaa' // specific command
ULong length // the length in bytes of the following data
UChar data[] // data, if any

NOTE
• The length associated with each command is the actual length in bytes of the data following

the length field.
• Data is padded with nulls to a 4 byte boundary.
• Multi-byte values are in big-endian order.
• Strings are null-terminated 2-byte UniChar strings unless otherwise specified.
• NewtonScript objects are sent in Newton Streamed Object Format (NSOF) (see the Newton

Formats document, chapter 4).

Desktop Applications
Several desktop applications that provide connection services to Newton are available, some of them in
Apple’s archive. They all implement the protocol defined in this document.

Newton Connection Kit (NCK)! 1.0

Protocol: 1
Functions: backup, restore, install

Newton Package Installer (NPI)! 1.1! released June 20, 1994

Protocol: 1
Functions: install package only

Newton Connection for Mac OS X (NCX)! 2.0.2! released August 8, 2013

http://www.splorp.com/pdf/newtonformats.pdf
http://www.splorp.com/pdf/newtonformats.pdf
http://www.splorp.com/pdf/newtonformats.pdf
http://www.splorp.com/pdf/newtonformats.pdf
http://www.info.apple.com/support/oldersoftwarelist.html%23newton
http://www.info.apple.com/support/oldersoftwarelist.html%23newton

Protocol: 1 & 2! link
Functions: backup, restore, install, import, export, keyboard passthrough, screenshot

Connection Protocol
A Newton docking session performs one operation and then disconnects.

Every session starts like this:

Desktop	 	 Newton
 < kDRequestToDock
kDInitiateDocking >
 < kDNewtonName

At this point the desktop can specify a timeout — the time after which if there are no events the
connection should be deemed to be broken:

kDSetTimeout >
 < kDResult

or if no timeout is required, the desktop can simply send a kDResult.

kDResult >

A typical synchronize session might continue like this:

Desktop	 	 Newton
kDGetStoreNames >
 < kDStoreNames
kDLastSyncTime > this one’s fake (0) just to get the Newton time
 < kDCurrentTime
kDSetCurrentStore >
 < kDResult
kDLastSyncTIme >
 < kDCurrentTime
kDGetPatches >
 < kDPatches
kDGetPackageIDs >
 < kDPackageIDList
kDBackupPackages >
 < kDPackage
kDBackupPackages >
 < kDPackage
kDBackupPackages >
 < kDResult
kDGetSoupNames >
 < kDSoupNames
kDGetInheritance >
 < kDInheritance
kDSetCurrentSoup >
 < kDResult
kDGetSoupInfo >
 < kDSoupInfo
kDGetSoupIDs >
 < kDSoupIDs
kDGetChangedIDs >
 < kDChangedIDs
kDDeleteEntries >
 < kDResult

http://newtonresearch.org/connection/
http://newtonresearch.org/connection/

kDAddEntry >
 < kDAddedID
kDReturnEntry >
 < kDEntry
kDDisconnect >

A restore session would look like this:

Desktop	 	 Newton
kDGetStoreNames >
 < kDStoreNames
kDSetCurrentStore >
 < kDResult
kDDeleteAllPackages >
 < kDResult
kDGetSoupNames >
 < kDSoupNames
kDSetCurrentSoup >
 < kDResult
kDEmptySoup >
 < kDResult
kDAddEntry >
 < kDResult
kDDeletePkgDir >
 < kDResult
kDLoadPackage >
 < kDResult
kDDisconnect >

A load package session would look like this:

Desktop	 	 Newton
kDLoadPackage >
 < kDResult
kDDisconnect >

Command Summary
The following is a summary of all the commands that can be used and their four-letter definitions:

Newton > Desktop

kDRequestToDock 'rtdk'
kDNewtonName 'name' // + name of the Newton
kDCurrentTime 'time' // + current time on the Newton
kDInheritance 'dinh' // + array of class, superclass pairs
kDPatches 'patc' // + patch package

kDStoreNames 'stor' // + array of store names & signatures

kDSoupNames 'soup' // + array of soup names & signatures
kDIndexDescription 'indx' // + index description array

kDSoupIDs 'sids' // + array of ids for the soup
kDChangedIDs 'cids' // + array of ids
kDResult 'dres' // + error code
kDAddedID 'adid' // + the id of the added entry
kDEntry 'entr' // + entry being returned

kDPackageIDList 'pids' // + list of package ids
kDPackage 'apkg' // + package

Desktop > Newton

kDInitiateDocking 'dock' // + session type
kDSetTimeout 'stim' // + timeout in seconds
kDLastSyncTime 'stme' // + time of last sync
kDGetInheritance 'ginh'
kDGetPatches 'gpat'

kDGetStoreNames 'gsto'
kDSetCurrentStore 'ssto' // + store frame

kDGetSoupNames 'gets'
kDSetCurrentSoup 'ssou' // + soup name
kDCreateSoup 'csop' // + name + index description
kDEmptySoup 'esou'
kDDeleteSoup 'dsou'

kDGetSoupInfo 'gsin'
kDGetIndexDescription 'gind'
kDGetSoupIDs 'gids'
kdGetChangedIDs 'gcid'
kDDeleteEntries 'dele' // + list of IDs
kDAddEntry 'adde' // + soup entry
kDReturnEntry 'rete' // + ID to return
kDReturnChangedEntry 'rcen' // + ID to return

kDLoadPackage 'lpkg' // + package
kDGetPackageIDs 'gpid'
kDBackupPackages 'bpkg'
kDDeleteAllPackages 'dpkg'
kDDeletePkgDir 'dpkd'

kDDisconnect 'disc'

Desktop < > Newton

kDSoupInfo 'sinf' // + soup info frame
kDChangedEntry 'cent' // + soup entry

kDResult ‘dres’ // + error code
kDHello 'helo'
kDTest 'test' // + variable length data

Dock Commands
All commands begin with the 'newt', 'dock' event header as shown in the general form. For simplicity,
that's not shown in the descriptions that follow.

Session Initiation
kDRequestToDock

Desktop	 <	 Newton
ULong 'rtdk'
ULong length = 4
ULong protocol version

The Newton initiates a session by sending this command to the desktop, which is listening on the
network, serial, etc. The protocol version is the version of the messaging protocol that's being used by
the Newton ROM. The desktop sends a kDInitiateDocking command in response.

kDInitiateDocking

Desktop	 >	 Newton
ULong 'dock'
ULong length = 4
ULong session type

The session type can be one of {none, settingUp, synchronize, restore, loadPackage, testComm,
loadPatch, updatingStores}; see the Session type enum in DockProtocol.h The Newton responds with
information about itself.

kDNewtonName
Desktop	 <	 Newton

ULong 'name'
ULong length
struct NewtonInfo
UniChar name[]

The Newton's name can be used to locate the proper synchronize file. The version info includes things
like machine type (e.g. J1), ROM version, etc; see the NewtonInfo struct in DockProtocol.h

kDSetTimeout
Desktop	 >	 Newton
ULong 'stim'
ULong length = 4
ULong timeout in seconds

This command sets the timeout for the connection (the time the Newton will wait to receive data
before it disconnects). This time is usually set to 30 seconds.

System State Operations
kDGetPatches

Desktop	 >	 Newton
ULong 'gpat'
ULong length = 0

This command requests the system patches.

kDPatches

Desktop	 <	 Newton
ULong 'patc'
ULong length
?

Undocumented.

kDGetInheritance
Desktop	 >	 Newton

ULong 'ginh'
ULong length = 0

This command requests the inheritance frame.

kDInheritance

Desktop	 <	 Newton
ULong 'dinh'
ULong length
?

Undocumented.

Store Operations
kDGetStoreNames

Desktop	 >	 Newton
ULong 'gsto'
ULong length = 0

This command requests information (not just names!) about all the stores on the Newton.

kDStoreNames

Desktop	 <	 Newton
ULong 'stor'
ULong length
NSOF array of frames

This command is sent in response to a kDGetStoreNames command. It returns information about all
the stores on the Newton. Each array slot contains the following information about a store:

{ name: "",
 signature: 1234,
 totalSize: 1234,
 usedSize: 1234,
 kind: "",
 info: {store-info-frame},
 readOnly: true,
 defaultStore: true, // only for the default store
 storePassword: password // only if a store password has been set
}

kDLastSyncTime

Desktop	 >	 Newton
ULong 'gsto'
ULong length = 0

This command requests the time the current store was last backed up.

kDCurrentTime

Desktop	 <	 Newton
ULong 'time'
ULong length = 4
ULong time in minutes since 1 Jan 1904

kDSetCurrentStore

Desktop	 >	 Newton
ULong 'ssto'
ULong length
NSOF store frame

This command sets the current store on the Newton. A store frame is sent to uniquely identify the
store to be set:

{ name: "foo",
 kind: "bar",
 signature: 1234,
 info: {store-info-frame} // this one is optional
}

kDGetSoupNames
Desktop	 >	 Newton
ULong 'gets'
ULong length = 0

This command is sent when a list of soup names is needed. It expects to receive a kDSoupNames
command in response.

kDSoupNames
Desktop	 <	 Newton

ULong 'soup'
ULong length
NSOF array of name strings
NSOF array of soup signature integers

This command is sent in response to a kDGetSoupNames command. It returns the names and
signatures of all the soups in the current store.

Soup Operations
kDCreateSoup

Desktop	 >	 Newton
ULong 'csop'
ULong length of name
UniChar name[] // aligned on 4-byte boundary
NSOF soup indexes

This command is used to create a new soup. The soup name should be padded to an even multiple of 4
by adding zero bytes to the end of the name string.

kDEmptySoup

Desktop	 >	 Newton
ULong 'esou'
ULong length
UniChar name[]

This command is used by restore to remove all entries from a soup before the soup data is restored.

kDDeleteSoup

Desktop	 >	 Newton
ULong 'dsou'
ULong length
UniChar name[]

This command is used by restore to delete a soup if it exists on the Newton.

kDSetCurrentSoup
Desktop	 >	 Newton
ULong 'ssou'
ULong length
UniChar name[]

This command sets the current soup. Most of the other commands pertain to this soup so this
command must preceed any command that uses the current soup. If the soup doesn't exist a
kDSoupNotFound error is returned but the connection is left alive so the desktop can create the soup if
necessary. Soup names must be < 25 characters.

kDGetSoupInfo
Desktop	 >	 Newton
ULong 'gsin'
ULong length = 0

This command requests info for the current soup..

kDSoupInfo

Desktop	 <	 Newton
ULong 'sinf'
ULong length
NSOF soup info frame

This command is used to return a soup info frame from the Newton. When received the info for the
current soup is set to the specified frame.

kDSetSoupGetInfo

Desktop	 >	 Newton
ULong 'ssgi'
ULong length
UniChar name[]

This command is like a combination of kDSetCurrentSoup and kDGetChangedInfo. It sets the
current soup--see kDSetCurrentSoup for details. A kDSoupInfo or kDResult command is sent by the
Newton in response.

kDGetChangedInfo
Desktop	 >	 Newton
ULong 'cinf'
ULong length = 0

This command is like kDGetSoupInfo except that it only returns the soup info if it has been changed
since the time set by the kDLastSyncTime command. If the info hasn't changed a kDResult with 0 is
returned.

kDGetIndexDescription

Desktop	 >	 Newton
ULong 'gidx'
ULong length = 0

This command requests the definition of the indexes that should be created for the current soup.

kDIndexDescription
Desktop	 <	 Newton

ULong 'didx'
ULong length
NSOF indexes

This command specifies the indexes that should be created for the current soup.

kDGetChangedIndex
Desktop	 >	 Newton
ULong 'cidx'
ULong length = 0

This command is like kDGetIndexDescription except that it only returns the index description if it
has been changed since the time set by the kDLastSyncTime command. If the index hasn't changed a
kDResult with 0 is returned.

Entry Operations
kDGetSoupIDs

Desktop	 >	 Newton
ULong 'gids'
ULong length = 0

This command is sent to request a list of entry IDs for the current soup. It expects to receive a
kDSoupIDs command in response.

kDSoupIDs

Desktop	 <	 Newton
ULong 'sids'
ULong length
ULong count of elements in the ids array
ULong ids[]

This command is sent in response to a kDGetSoupIDs command. It returns all the entry IDs from the
current soup.

kDGetChangedIDs
Desktop	 >	 Newton
ULong 'gcid'
ULong length = 0

This command is sent to request a list of changed IDs for the current soup. It expects to receive a
kDChangedIDs command in response.

kDChangedIDs

Desktop	 <	 Newton
ULong 'cids'
ULong length
ULong count of elements in the ids array
ULong ids[]

This command is sent in response to a kDGetChangedIDs command. It returns all the ids with mod
time > the last sync time. If the last sync time is 0, no changed entries are returned (this would happen
on the first sync).

kDDeleteEntries
Desktop	 >	 Newton
ULong 'dele'
ULong length
ULong count of elements in the ids array
ULong ids[]

This command is sent to delete one or more entries from the current soup.

kDAddEntry
Desktop	 >	 Newton
ULong 'adde'
ULong length
NSOF entry

This command is sent when the PC wants to add an entry to the current soup.

kDAddedID

Desktop	 <	 Newton
ULong 'adid'
ULong length = 4
ULong id

This command is sent in response to a kDAddEntry command from the PC. It returns the ID that the
entry was given when it was added to the current soup.

kDReturnEntry

Desktop	 >	 Newton
ULong 'rete'
ULong length = 4
ULong id

This command is sent when the PC wants to retrieve an entry from the current soup.

kDEntry
Desktop	 <	 Newton

ULong 'entr'
ULong length
NSOF entry

This command is sent in response to a kDReturnEntry command. The entry in the current soup
specified by the ID in the kDReturnEntry command is returned.

kDReturnChangedEntry

Desktop	 >	 Newton
ULong 'rcen'
ULong length = 4
ULong id

This command is sent when the PC wants to retrieve a changed entry from the current soup.

kDChangedEntry

Desktop	 < >	 Newton
ULong 'cent'
ULong length
NSOF entry

This command is sent by the Newton in response to a kDReturnChangedEntry command from the
desktop. It can also be sent by the desktop.

Package Operations
kDGetPackageIDs

Desktop	 >	 Newton
ULong 'gpid'
ULong length = 0

This command is sent to request a list of package ids. This list is used to remove any packages from the
PC that have been deleted on the Newton.

kDPackageIDList
Desktop	 <	 Newton

ULong 'pids'
ULong length
ULong count
NSOF package id frames

This command sends a list of package frames to the desktop. For each package the information sent is
this:

ULong packageSize;
ULong packageId;
ULong packageVersion;
ULong format;
ULong deviceKind;
ULong deviceNumber;
ULong deviceId;
ULong modifyDate;
ULong isCopyProtected;
ULong length; // length in bytes of name
UniChar name[];

Note that this is not sent as an array! It's sent as binary data. Note that this finds packages only in the
current store.

SIMON’S NOTE! It is unclear from this description exactly what form the id list takes, and
I have not used this command so cannot comment.

kDBackupPackages

Desktop	 >	 Newton
ULong 'bpkg'
ULong length = 0

This command is sent to backup any packages that are installed on the Newton. It expects a
kDPackage command or a kDResult with an error of 0 (to indicate that there are no more packages)
in response.

kDPackage

Desktop	 <	 Newton
ULong 'apkg'
ULong length
ULong package ID
ULong length in bytes of following name
UniChar name[]
NSOF package frame

This command sends a package to the desktop. It's issued repeatedly in response to a
kDBackupPackages command.

kDLoadPackage
Desktop	 >	 Newton
ULong 'lpkg'
ULong length
UChar package data []

This command will load a package into the Newton's RAM. The package data should be padded to an
even multiple of 4 by adding zero bytes to the end of the package data.

kDDeleteAllPackages
Desktop	 >	 Newton
ULong 'dpkg'
ULong length = 0

This command is used by restore to delete all installed packages from the Newton. It expects a
kDResult with an error code in response.

kDDeletePkgDir

Desktop	 >	 Newton
ULong 'dpkd'
ULong length = 0

This command is used by restore to delete the directory of installed packages from the Newton. It
expects a kDResult with an error code in response.

General Operations

kDResult

Desktop	 < >	 Newton
ULong 'dres'
ULong length = 4
SLong error code

This command is sent by either Newton or PC in response to any of the commands that don't request
data. It lets the requester know that things are still proceeding OK.

kDHello
Desktop	 < >	 Newton

ULong 'helo'
ULong length = 0

This command is sent during long operations to let the Newton or desktop know that the connection
hasn't been dropped.

kDTest
Desktop	 < >	 Newton

ULong 'test'
ULong length
NSOF object

This command is first sent from the desktop to the Newton. The Newton immediately echos the
object back to the desktop. The object can be any NewtonScript object (anything that can be sent
through object read/write).

This command can also be sent with no ref attached. If the length is 0 the command is echoed back to
the desktop with no ref included.

Session Termination
kDDisconnect

Desktop	 >	 Newton
ULong 'disc'
ULong length = 0

This command is sent to the Newton when the docking operation is complete.

