

NS BASIC Handbook

July 30, 1997

..

ii

NS BASIC Handbook



NS BASIC Corporation, 1997.
77 Hill Crescent
Toronto, Canada M1M 1J3
(416) 264-5999

This manual and the software described in it are
copyrighted, with all rights reserved. Under the copyright
laws, this manual may not be copied, in whole or in part,
without the written consent of NS BASIC Corporation.
Under the law, copying includes translating into another
language or format.

Every effort has been made to ensure that the information
in this manual is accurate. NS BASIC Corporation is not
responsible for printing or clerical errors. Specifications
are subject to change without notice.

MessagePad, Newton and the Newton logo are trademarks
of Apple Computer, Inc., registered in the United States
and other countries.

Mention of third party products and their trademarks is for
informational purposes only and constitutes neither an
endorsement or recommendation. NS BASIC
Corporation assumes no responsibility with regard to the
performance or use of NS BASIC or these products.

Special thanks to the Peter Jensen for help in the testing and
development of NS BASIC and the preparation of this
manual.

Canadian Cataloguing In Publication Data

Henne, George W.P., 1954-

Schettino, John C. Jr., 1961-

Schettino, Elizabeth O., Ph.D., 1961-

NS BASIC Handbook

Includes index.

ISBN 0-9695844-1-5

1. BASIC (Computer program Language). 2. New-

ton (Computer) - Programming. I. Title.

QA76.8.N48H4 1994005.265C94-931542-7

..
NS BASIC Handbook

iii

L I C E N S E A G R E E M E N T

...

PLEASE READ THIS LICENSE CAREFULLY BEFORE USING THE SOFT-
WARE. BY USING THE SOFTWARE, YOU ARE AGREEING TO BE
BOUND BY THE TERMS OF THIS LICENSE. IF YOU DO NOT AGREE
TO THE TERMS OF THIS LICENSE, PROMPTLY RETURN THE PROD-
UCT TO THE PLACE WHERE YOU OBTAINED IT AND YOUR MONEY
WILL BE REFUNDED.

1. License. The application, demonstration, system, and other software ac-
companying this License, whether on disk, in read only memory, or on any
other media (the "Software"), the related documentation and fonts are li-
censed to you by NS BASIC Corporation ("NSBC"). You own the media on
which the Software and fonts are recorded but NSBC and or NSBC's Li-
censer(s) retain title to the Software, related documentation and fonts. This
License allows you to use the Software and fonts on a single Newton Prod-
uct (which, for purposes of this License, shall mean a product bearing Ap-
ple's Newton logo), and make one copy of the Software and fonts in
machine-readable form for backup purposes only. You must reproduce on
such copy the NSBC copyright notice and any other proprietary legends
that were on the original copy of the Software and fonts. You may also
transfer all your license rights in the Software and fonts, the backup copy of
the Software and fonts, the related documentation and a copy of this Li-
cense to another party, provided the other party reads and agrees to accept
the terms and conditions of this License.

2. Restrictions. The Software contains copyrighted material, trade secrets
and other proprietary material and in order to protect them you may not
decompile, reverse engineer, disassemble or otherwise reduce the Software
to a human-perceivable form. You may not modify, network, rent, lease,
load, distribute or create derivative works based upon the Software in
whole or in part. You may not electronically transmit the Software from
one device to another or over a network.

3. Termination. This License is effective until terminated. You may terminate
this License at any time by destroying the Software and related documenta-
tion and fonts. This License will terminate immediately without notice from
NSBC if you fail to comply with any provision of this License. Upon termi-
nation you must destroy the Software, related documentation and fonts.

4. Export Law Assurances. You agree and certify that neither the Software
nor any other technical data received from NSBC, nor the direct product
thereof, will be exported outside the United States except as authorized
and as permitted by the laws and regulations of the United States. If the Soft-
ware has been rightfully obtained by you outside of the United States, you
agree that you will not reexport the Software nor any other technical data
received from NSBC, nor the direct product thereof, except as permitted
by the laws and regulations of the United States and the laws and regulations
of the jurisdiction in which you obtained the Software.

5. Government End Users. If you are acquiring the Software and fonts on be-
half of any unit or agency of the United States Government, the following
provisions apply. The Government agrees: (i) if the Software and fonts are
supplied to the Department of Defense (DoD), the Software and fonts are
classified as "Commercial Computer Software" and the Government is ac-
quiring only "restricted rights" in the Software, its documentation and fonts
as that term is defined in Clause 252.227-7013(c)(1) of the DFARS; and (ii)
if the Software and fonts are supplied to any unit or agency of the United
States Government other than DoD, the Governments' rights in the Soft-
ware, its documentation and fonts will be as defined in Clause 52.227-

..

iv

NS BASIC Handbook

19(c)(2) of the FAR or, in the case of NASA, in Clause 18-52.227-86(d) of
the NASA supplement to the FAR.

6. NS BASIC will replace at no charge defective disks or manuals within 90
days of the date of purchase. NS BASIC warranties that the programs will
perform generally in compliance with the included documentation. NS BA-
SIC does not warrant that the programs and manuals are free from all bugs,
errors or omissions.

7. Disclaimer of Warranty on Software. You expressly acknowledge and
agree that use of the Software and fonts is at your sole risk. The Software,
related documentation and fonts are provided "AS IS" and without warranty
of any kind and NSBC and NSBC's Licenser(s) (for the purposes of provi-
sions 7 and 8, NSBC and NSBC's Licenser(s) shall be collectively referred
to as "NSBC") EXPRESSLY DISCLAIM ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. NSBC DOES NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS,
OR THAT THE OPERATION OF THE SOFTWARE WILL BE UNINTER-
RUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE SOFTWARE
AND THE FONTS WILL BE CORRECTED. FURTHERMORE, NSBC
DOES NOT WARRANT OR MAKE ANY REPRESENTATIONS REGARD-
ING THE USE OR THE RESULTS OF THE USE OF THE SOFTWARE AND
FONTS OR RELATED DOCUMENTATION IN TERMS OF THEIR COR-
RECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NO ORAL OR
WRITTEN INFORMATION OR ADVICE GIVEN BY NSBC OR A NSBC
AUTHORIZED REPRESENTATIVE SHALL CREATE A WARRANTY OR
IN ANY WAY INCREASE THE SCOPE OF THIS WARRANTY. SHOULD
THE SOFTWARE PROVE DEFECTIVE, YOU (AND NOT NSBC OR AN
NSBC AUTHORIZED REPRESENTATIVE) ASSUME THE ENTIRE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. SOME JU-
RISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WAR-
RANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.

8. Limitation of Liability. Because software is inherently complex and may not
be free from errors, you are advised to verify the work produced by the
Program. UNDER NO CIRCUMSTANCES INCLUDING NEGLIGENCE,
SHALL NSBC BE LIABLE FOR ANY INCIDENTAL, SPECIAL OR CONSE-
QUENTIAL DAMAGES THAT RESULT FROM THE USE OR INABILITY
TO USE THE SOFTWARE OR RELATED DOCUMENTATION, EVEN IF
NSBC OR A NSBC AUTHORIZED REPRESENTATIVE HAS BEEN AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME JURISDIC-
TIONS DO NOT ALLOW THE LIMITATION OR EXCLUSION OF
LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES SO
THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.
In no event shall NSBC's total liability to you for all damages, losses, and
causes of action (whether in contract, tort (including negligence) or other-
wise) exceed the amount paid by you for the Software and fonts.

9. Allocation of Risk: You acknowledge and agree that this Agreement allo-
cates risk between you and NSBC as authorized by the Uniform Commer-
cial Code and other applicable law and that the pricing of NSBC's products
reflects this allocation of risk and the limitations of liability contained in this
Agreement. If any remedy hereunder is determined to have failed of its es-
sential purpose, all limitations of liability and exclusions of damages as set
forth in this Agreement will remain in effect.

10. Support. NSBC may, at its option, provide support services at its standard
fees for such services. Such support services will be governed by the limita-

..
NS BASIC Handbook

v

tions of liability under this Agreement.

11. Additional Restrictions: Any upgrade or enhancement of the program
subsequently supplied by NSBC may only be used upon the destruction of
the prior version, and shall be governed by the terms of this Agreement.

12. Controlling Law and Severability. This License shall be governed by and
construed in accordance with the laws of the United States and the State of
Delaware, as applied to agreements entered into and to be performed en-
tirely within Delaware between Delaware residents. If for any reason a
court of competent jurisdiction finds any provision of this License, or por-
tion thereof, to be unenforceable, that provision of the License shall be en-
forced to the maximum extent permissible so as to effect the intent of the
parties, and the remainder of this License shall continue in full force and ef-
fect.

13. Complete Agreement. This License constitutes the entire agreement be-
tween the parties with respect to the use of the Software, related documen-
tation and fonts, and supersedes all prior or contemporaneous
understandings or agreements, written or oral, regarding such subject mat-
ter. No amendment to or modification of this License will be binding unless
in writing and signed by a duly authorized representative of NSBC.

..

vi

NS BASIC Handbook

..
NS BASIC Handbook

vii

C O N T E N T S

...

1. Introduction ...1
1.1 All About BASIC ..1

NS BASIC...2
NS BASIC and the Newton...2

1.2 System Requirements ...3
Newton System Compatibility ..3

1.3 Installation..3
Preparing to Install on the Newton.................................4
Preparing to Install on a Storage Card............................4
Installing The NS BASIC Package5
Installing Additional Packages ..6
Entering Your Registration Number6

2. Getting Started With NS BASIC...7
2.1 Conventions Used in this Handbook7
2.2 Interacting With NS BASIC...8

Using a Keyboard...9
On-Screen Keyboard ..9
External Newton Keyboard ... 10
Picking Items Out of a List.. 10
Using NS BASIC With a Computer or Terminal 10
Starting, Stopping, and Resetting 11

2.3 Programming in NS BASIC ... 12
The NS BASIC Programming Environment 12
The Elements of a NS BASIC Program........................ 25

2.4 Immediate Statement Execution.................................. 31
Simple Calculations... 31
Debugging ... 32

3. NS BASIC Reference... 33
4. Using The Visual Designer ... 217

4.1 The Newton Interface ... 217
4.2 Visual Terminology ... 217
4.3 WIDGETDEF and the Visual Designer 218

Visual Designer .. 219
WINDOW and WIDGETDEF..................................... 226

4.4 Widgets, WINDOW, and WAIT.............................. 229
4.5 A Visual Strategy ... 232

Use Labels Not Line Numbers 232
Name Your Widgets .. 232
Use the Order Element... 232

..

viii

NS BASIC Handbook

Think In Screens.. 233
Start Slowly... 233

5. Advanced Topics.. 235
5.1 Frames ... 235
5.2 Files... 237
5.3 Accessing and Using Other Files, Data, and

Applications.. 239
Dates.. 240
Note Pad ... 240
Names.. 240

5.4 Handling Errors ... 241
Defensive programming... 241
Using ON ERROR .. 241

5.5 Calling NS BASIC from other Applications 243
A. Error Messages .. 245

Compile and Run-Time .. 245
File ... 247

B. Keywords .. 251
C. Special Character Codes... 253
INDEX... 255
USER'S COMMENT FORM ... 261

..
NS BASIC Handbook

1

C H A P T E R

1

...

1. Introduction

Welcome to NS BASIC for the Newton. NS BASIC is
designed to meet the needs of Newton users. It is a simple
yet powerful language that can be used to write programs
for almost any application.

There is a text file named README.TXT on the supplied
disk that contains any late-breaking information about NS
BASIC, including updates to the Handbook. Please read it
before installing NS BASIC.

If you'd like to get started using NS BASIC right away, then
read the Installation section, and then turn to the Getting
Started With NS BASIC chapter.

Sample programs are provided with NS BASIC for you to
study and use. You can tailor these sample programs to your
particular needs. There is a text file named EXAMPLES.TXT
on the supplied disk that contains the programs used in this
Handbook.

You should be somewhat familiar with the basics of
operating a Newton before you start using this Handbook.
That is, you should know about opening applications in the
Extras Drawer, using the stylus and other Newton features.
If you are not comfortable with these terms, review the
Newton Handbook.

A basic understanding of operating a desktop computer
(Macintosh or IBM Compatible) is needed to install the NS
BASIC software.

1.1 All About BASIC

BASIC has been around for over 30 years. Over that period,
hundreds of interpreters and compilers for BASIC have
been developed, and a mountain of application code has
been written. Many books continue to be published about
the language. BASIC Special Interest Groups exist in a
number of forms.

..

2

NS BASIC Handbook

BASIC is somehow good for the soul. As new waves of
languages come and go, BASIC still runs almost everywhere:
without standards, it adapts to new environments easily and
keeps pace with the fancy new languages. The ones that
come and go.

Everyone, even Bill Gates, started with BASIC. Somehow,
we all keep coming home to it over and over again. It’s still
the best language for quick programs and simple
applications. BASIC interpreters, especially simple ones, can
have great charm.

The computer hardware that BASIC is programmed on has
turned full circle since the days it was developed. The
powerful language to which only the computer scientists and
mainframe programmers had access to can now be run on a
hand held device.

NS BASIC

NS BASIC for the Newton is a real programming language.
It implements all the commonly used BASIC Statements in a
straightforward manner, and has a number of powerful
extensions.

As your Statements are entered into NS BASIC, they are
compiled into an intermediate representation. When you
run a program, each Statement is executed in turn. This type
of system is both compiled and interpreted.

NS BASIC Corporation maintains a World Wide Web page
at

http://www.nsbasic.com

. If you have a Web
browser, check this site for important announcements,
technical information, and example NS BASIC programs.

NS BASIC and the Newton

When you bought your Newton, you probably thought that
you'd be able to replace many of your paper-and-pencil tasks
with it. You probably also hoped it would be able to function
as a small programmable computer. NS BASIC has been
designed for this purpose. Using it, you'll be able to create
the applications you need, in a language that is easy to use,
right on your Newton.

NS BASIC can provide access to all the information that is
in your built-in applications. Using it, you can write programs
that access your Names, Notes, and Dates information. You

..
NS BASIC Handbook

3

can write programs that find birthdays in the next week, by
accessing Names information. You can even write programs
that transfer Notes to your desktop computer.

NS BASIC can also be used for general purpose
programming. Any program that can be written in BASIC
can be written in NS BASIC. You can create customized
databases, perform complex calculations, or even write
games. What sets NS BASIC apart is its accessibility. You
don't need to learn a complex new language just to take
advantage of the powerful features built into your Newton.

1.2 System Requirements

In order to install NS BASIC you will need a Newton device,
a desktop computer (Macintosh or PC Compatible,) the
Newton Backup Utility or another package installer, and a
cable that can be used to connect the Newton to the
desktop computer.

NS BASIC can be used with the serial port of the Newton
in several ways. If you want to use NS BASIC's serial
connection between your desktop computer and your
Newton, you will need a serial cable and communications
software for your desktop computer. The cable that is
supplied with the Newton is suitable for use with NS BASIC.
If you do not have a suitable cable, one may be purchased at
your local computer store.

Newton System Compatibility

NS BASIC version 2.5x is compatible with pre-2.0 Newtons
(the MessagePad, MP100, MP110, and MP120 running
version 1.3 of the operating system) as well as MessagePads
running the 2.0 version of the operating system. NS BASIC
version 3.0x and later only work with Newton 2.0.

NS BASIC version 3.6 and later only work with Newton 2.0.
This includes the MessagePad 120, 130, 2000, and
eMate 300. Only the current version of NS BASIC is
described in this handbook.

1.3 Installation

NS BASIC is supplied on a software disk. You must install it
onto your Newton using a package installer. The example
shown here uses the Newton Backup Utility (NBU) to install

..

4

NS BASIC Handbook

the NS BASIC package. If you’re not using NBU then follow
the directions in your package installer software manual
when installing NS BASIC.

NS BASIC can be installed on your Newton or on a storage
card.

Preparing to Install on the Newton

Before you attempt to install the software on the internal
memory of your Newton, check the available memory in

your Newton. Open the Extras Drawer and tap . In the
list that is displayed, tap “Memory Info”. Verify that the free
memory displayed under the name “Internal” is at least
123k. If you have less than this amount, you should remove
some information from your Newton or consider installing
NS BASIC on a storage card. Refer to your Newton
Handbook's Managing Memory section for more
information on removing data and packages from your
Newton.

If you have a storage card installed in your Newton, open
the Extras Drawer and tap Card.

Verify that the checkbox “Save new info and packages on
this card” is not checked.

Preparing to Install on a Storage Card

Before you attempt to install the software, check the
available memory on your card. Open the Extras Drawer
and tap “Card”. Verify that the free memory displayed is at
least 123K. If you have less than this amount, you should
remove some information from your card or consider
installing NS BASIC on another storage card. Refer to your

..
NS BASIC Handbook

5

Newton Handbook's Managing Memory section for more
information on removing data and packages from your
storage card.

Verify that the checkbox “Save new info and packages on
this card” is checked.

Installing The NS BASIC Package

1

 Attach your Newton to your desktop computer with an
appropriate cable. Insert the NS BASIC disk into your disk
drive. Start the Newton Backup Utility software on your
desktop computer.

2

 The NBU indicates that it is ready for you to open a
connection from your Newton. Open the Extras Drawer (if
it is not already open.)

3

 Tap “Connection.”

4

 Choose the kind of connection you are using. If you are
using a “Macintosh LocalTalk” connection, select the
computer’s name from the list of choices.

5

 Tap “Connect.”

6

Choose “Install” From the NBU Window or the Newton
Menu.

The NBU software will open a window on your desktop
computer where you may select a package to install. Select
“NSBASIC.PKG” from the disk drive containing the NS
BASIC disk.

..

6

NS BASIC Handbook

7

After your connection kit indicates the installation was
successful, you’ll see the NS BASIC icon in the Extras
Drawer.

Installing Additional Packages

NS BASIC includes several other packages that provide
additional capabilities. These packages include:

•Visual Designer (VDESIGN.PKG needs 45K of storage)
adds support for the Visual Designer. See page 218.

•Make Package (MAKEPKG.PKG needs 134K of storage)
adds support for saving packages. See page 22.

•BIT(BIT.PKG needs 16K of storage) adds support for using
the Newton Internet Enabler. See the Technical Notes on
the disk.

You may install any of these packages on your Newton or a
Card., regardless of where you install the NS BASIC
package. Follow the same procedures as outlined above to
install each package in the desired location. These packages
are filed in the “Extensions” folder of the Extras Drawer
once they are installed.

Entering Your Registration Number

The first time you start NS BASIC on your Newton, you will
be asked to enter your Product Registration Number. This
number is printed on the outside of the back cover of this
Handbook or on the bottom of the box, as well as on the
Product Registration Form. This form is the last page of the
Handbook. Please tear this form out now, fill it in, and send
it to the address printed on the form.

Open the Extras Drawer and tap on the NS BASIC icon. The
initial registration screen is displayed, along with the on-
screen keyboard. Use the keyboard to tap in your Product

Registration Number. You may use the key to make

corrections. Once the number is correctly entered, tap the

return key. Your copy of NS BASIC is now installed

and ready to use.

..
NS BASIC Handbook

7

C H A P T E R

2

...

2. Getting Started With NS BASIC

2.1 Conventions Used in this Handbook

The following notation conventions are used in this
Handbook:

KEYWORDS Capital letters indicate NS BASIC
keywords, symbols, and other text that must be typed
exactly as shown. For the purposes of this manual,
uppercase text indicates a required part of the Statement
syntax. NS BASIC is case-insensitive: keywords are accepted
with either uppercase letters, lowercase letters, or any
mixture of the two. A keyword such as GOTO may be
entered into your programs as goto, Goto, or GOTO.

placeholders

Italic text indicates a placeholder for
types of information that you must supply. In the following
Statement,

lineNumber

 is italicized to show that the GOTO
Statement requires a line number:

GOTO

lineNumber

In an actual program Statement,

lineNumber

 must be
replaced with a specific line number, such as:

GOTO 40

Examples

This Monaco typeface indicates example
program code and information that is printed on your NS
BASIC screen. The following example shows a line from a
NS BASIC program:

10 PRINT "Hello World!"

User Input

A bold Monaco typeface is used to
indicate something entered by the user in response to a NS
BASIC prompt. It distinguishes between an on-screen

..

8

NS BASIC Handbook

prompt and user input when both appear in the same
example. For instance,

John

 is entered in response to the
"Enter Your Name:" prompt:

Enter Your Name:

?

John

[Optional] Brackets indicate that the enclosed
items are optional. In the following example, brackets are
used to show that entering a second item to display on the
screen is optional for the PRINT Statement:

PRINT

expression1

 [,

expression2

]

Both of these PRINT Statements are legal, since PRINT
accepts one or two expressions:

PRINT "Hello"
PRINT "Hello","World"

| The vertical bar indicates that the items
are mutually exclusive. In the following example the bar
indicates that the RUN command can either be used with a
file name or a line number:

RUN [

fileName

 |

lineNumber

]

Underlined Underlined text indicate that the items
are environment variables. In the following example,
underlining is used to indicate that PRINTDEPTH is an
environment variable:

PRINTDEPTH is used to control the amount of information
displayed using the PRINT Statement.

2.2 Interacting With NS BASIC

NS BASIC provides a powerful environment for
programming on the Newton.

You begin working with NS BASIC by opening the Extras
Drawer and tapping on the NS BASIC icon.

After briefly displaying an introduction screen, the NS
BASIC programming environment is shown:

..
NS BASIC Handbook

9

NS BASIC does not use handwriting recognition for
program entry. There are three ways to interact with the
NS BASIC environment:

Using a Keyboard

NS BASIC can be used with any Newton-compatible
keyboard. There are several keyboards available, including
the on-screen keyboard and external Newton keyboard.

On-Screen Keyboard

An on-screen keyboard is displayed when you start NS
BASIC. You use the keyboard to enter and edit programs,
enter commands that the NS BASIC environment
understands, and enter information into running programs
in response to input prompts.

..

10

NS BASIC Handbook

You can hide and show the keyboard by tapping the
keyboard button . When the keyboard is visible the

main window shrinks, showing less of your program listings
and printed output. When it is hidden the window expands.

External Newton Keyboard

If you turn off your Newton, attach the external Newton
keyboard, and then turn your Newton on again NS BASIC
will use it instead of the on-screen keyboard.

Picking Items Out of a List

Tapping out complex NS BASIC Statements and Commands
using the on-screen keyboard can be tedious. Several
common Commands and Statements can be quickly entered
by selecting them from pop-up lists. To quickly enter a
Command to the NS BASIC environment, tap the

 button. A list of Commands is displayed. Tap the

desired Command. It is entered as if you had typed it in. You

can enter several Statements by using the

button. It displays a list of the more common Statements.
You can enter one by selecting it from this list.

Tapping the Overview Button (also known as the belly
button) brings up a list of NS BASIC programs that are
currently saved on your Newton. Tapping on one of these
programs will LOAD and RUN it immediately.

Using NS BASIC With a Computer or Terminal

When you are using NS BASIC near a desktop computer,
you have a third option for interacting with the NS BASIC
environment. You may connect your Newton to your
desktop computer via a serial cable, and use your
computer's keyboard and screen in place of those in NS
BASIC. In order to take advantage of this capability, you'll
need a serial cable (such as the one supplied with the
Newton) and communications software for your desktop
computer.

1

 Connect your Newton to your desktop computer using
an appropriate serial cable.

..
NS BASIC Handbook

11

2

 Start the communications software on your desktop
computer. Examples of compatible communications
software include ZTERM for Macintosh, Kermit for
Macintosh and PC Compatibles, Procomm, MicroPhone
Pro, and HyperTerminal (the Terminal program supplied
with Windows 95.) Set your terminal emulator to use a
terminal font or fixed width font. Set the serial port to 9600
baud, 8 bits, no parity with software flow control (also
known as Xon/Xoff). Also, set it to echo characters locally
(also known as half duplex). If there is an option for
automatic newline or automatic line feed, enable it.

3

 Tap . Select "extr- External Serial" from the
menu that is displayed. When it is selected, you should see
the word "Connected" on your desktop computer’s screen.
On the next line you will see NS BASIC’s asterisk prompt
(

*

). This means the connection is working and NS BASIC is
ready for use.

While you are using NS BASIC in this way, it does not
duplicate the text display on the Newton. Newton-specific
Statements such as HWINPUT and WINDOW will still
display on the Newton.

All text input and output (such as the input to INPUT
Statements and the output from PRINT Statements) will
now be on your desktop computer.

You can use this connection to save your program text on
your desktop computer. If your communications software
supports capturing text, you can save a program by turning
on text capture, and then LISTing your program.

Text versions of NS BASIC programs may be created and
edited on your desktop computer. You can transfer these
programs to NS BASIC by typing NEW, and then pasting the
text of the program to your communications software.

Select "Screen" from the menu end using a serial terminal.

Starting, Stopping, and Resetting

NS BASIC stores each line of your program after you tap the
return key. You may close NS BASIC any time, and the next
time you start it your current program will still be in the

..

12

NS BASIC Handbook

environment. Remember to complete any program
Statement you have typed (by tapping the return key) before
you close NS BASIC.

When you are programming on a computer, even a
Newton, it is possible to get into a state where no input will
be accepted. This is called “frozen”. When this happens, you
can thaw your Newton by pressing the reset button. Please
refer to your Newton Handbook’s Tips and
Troubleshooting section.

2.3 Programming in NS BASIC

The NS BASIC Programming Environment

NS BASIC provides a full featured BASIC programming
environment for the Newton. In order to introduce you to
these features, an example program will be developed in NS
BASIC. Each step in the process will introduce features of
the environment. Start NS BASIC and follow along!

Creating a Program

When you start working on a new program, you should
always use the NEW Command. This clears any previous
program Statements from the environment. As stated
before, you may enter your program via the on-screen
keyboard, by picking from the Statement list, or by using an
attached desktop computer.

The example program is very simple. It computes the future
value of an investment based on the interest rate, amount,
compounding term, and number of years invested. We’re
going to create the program with one small error, so that
we can show some of the debugging features of the
environment.

Remember to start each new line with a line number. In NS
BASIC, line numbers are used to determine the order of
Statement execution. You can enter lines in any order, and
insert lines by assigning line numbers between existing lines.
It is usually a good idea to increment your line numbers by
10 or 20, so you have room to insert new lines later. Line
numbers start at 1 and end at 9999.

..
NS BASIC Handbook

13

Enter the program shown below:

10 REM Future Value of an Investment
20 PRINT "Enter starting principal"
30 INPUT principal
40 PRINT "Enter interest rate as % (i.e. 10)"
50 INPUT rate
60 PRINT "Enter term (i.e. 12 for monthly)"
70 INPUT term
80 PRINT "Enter number of years"
90 INPUT years
100 REM Compute final interest
110 rate = rate * 0.01 / term
120 balance = principal
130 FOR y = 1 TO years
140 FOR c = 1 TO term
150 interest = rate * principal
160 balance = balance + interest
170 NEXT c
180 NEXT y
185 PRINT "Using our calculations:"
190 PRINT "After ";years;" years the balance
is: ";balance
200 REM The easy and fast way
210 PRINT "Using the COMPOUND function:"
215 PRINT compound(rate, years*term) *
principal
220 END

Editing a Program

Changing Line Numbers

If you’ve run out of line numbers between Statements (or if
you’d just like an orderly program) the RENUM Command
will renumber your lines for you. Statements such as GOTO
that refer to line numbers will be updated to refer to the
new line number, so no additional editing is needed.

Use RENUM on the example program:

*

RENUM

From 0001 TO 9999 BY 0010 BASE 0010
*

Editing Lines

The traditional way to edit a line in BASIC is to enter a new
line with the same line number containing the corrected
text. This method works in NS BASIC as well. If you are
using a desktop computer, you can use cut and paste to edit

..

14

NS BASIC Handbook

the line you wish to change, or even the entire program. On
the Newton, there is another way to edit a program line.
Tap on the line when it is displayed in the program window
and an Edit Box is displayed.

You may use the on-screen keyboard to update the
Statement, as well as the standard Newton editing gestures
for inserting spaces, deleting words, and cut/paste. Tap

 to save your changes, to discard them. If you
know the line number of the line you want to edit, use the
EDIT

lineNo

 Command. This will load the specified line into
the Edit Box

If you wish to copy a line to another area of your program,
you can use the Edit Box. Just tap on the line, and then
change the line number shown in the Edit Box to the desired
value. When you tap enter, a copy of the line is created at
the new line number.

You may use the Edit Box on any line you entered into NS
BASIC, even those without line numbers. This is very handy
for re-executing Commands, or for entering a line number
if you forget to start a Statement with one.

Using the Newton Clipboard

You can write programs in the Notepad and copy them into
the Newton clipboard. If you run NS BASIC and paste them
to the main window, and then tap the return key, they will
be entered into the currently loaded program. You can also
select code in the NS BASIC window and drag it to the
lower right hand corner of the Newton. Exit NS BASIC (the
BYE command can be used if the close button is covered by
the program clipping on the clipboard) and paste the
program text into the Notepad.

..
NS BASIC Handbook

15

Deleting Lines

To delete a line from a program, simply enter that line
number again with no Statement. If you wanted to delete the
remark line at the start of our example (line 10) you would
enter 10 and tap return:

*

10

*

To delete a range of lines use the ERASE Statement with
beginning and ending line numbers. For example to delete
the second way that interest is calculated:

*

ERASE 200,215

*

Examining a Program

You can use the LIST Command to display your program in
the text window. If your program contains more lines then
can be displayed in the window, it is listed one window at a
time, followed by

--More--

You continue the listing by tapping the return key. You can
stop listing a program by entering any key and tapping
return. You can display specific ranges of line numbers after
a LIST Command to see just those lines. LIST the last 5 lines
to see the effect of the RENUM Command.

*

LIST 200,

0200 PRINT "After ";years;" years the balance
is: ";balance
0210 REM The easy and fast way
0220 PRINT "Using the COMPOUND function:"
0230 PRINT compound(rate, years*term) *
principal
0240 END
*

Executing a Program

You use the RUN Command to begin executing your
program at the first line number. Let's run our example
program:

*

RUN

Enter starting principal

..

16

NS BASIC Handbook

?

100

Enter interest rate as % (i.e. 10)
?

10

Enter term (i.e. 12 for monthly)
?

12

Enter number of years
?

2

Using our calculations:
After 2 years the balance is: 120
Using the COMPOUND function:
122.039096137556
*

Debugging a Program

The balance we computed should have been the same as the
one using the COMPOUND Function. It seems we’ve got a
bug in our program. There are three types of errors possible
in NS BASIC: compile-time errors, run-time errors, and
logic errors.

A compile-time error is made when you type in a Statement
incorrectly. NS BASIC signals this error immediately after
you tap the return key.

*

200 prant ÒhelloÓ
Error 2 -- Statement or syntax invalid

This error indicates that there is no PRANT Statement. We
misspelled PRINT and NS BASIC signaled the error.

A run-time error is caused when a situation arises that
cannot be known at compile-time. For example, you may
divide two variables (a/b). When NS BASIC compiles a
Statement such as

*

200 c = a/b

It does not know the values of a and b. When you run this
program, if b is a string, there is an error (dividing by a string
is undefined.) In this case, NS BASIC will stop executing
your program at line 200 and display this message:

0200 :Error 29- Expression

A logic error is caused when your program is incorrect. It
produces results that are wrong or unexpected. This type of
error is common and NS BASIC cannot detect it.

..
NS BASIC Handbook 17

Unfortunately, our error is a logic error. We did not receive
any error messages when we ran it, but the two values
displayed at the end should have been the same. We’ll have
to debug our program!

NS BASIC gives you a number of tools for debugging. You
can enable tracing of your program using the TRACE ON
Statement. Every Statement executed after TRACE ON will
have its line number printed into the display window. You
disable tracing using the TRACE OFF Statement. It may be
difficult to follow IF THEN ELSE, GOTO, and GOSUBs in
your code. You can use tracing to see where a program is
going.

The STOP Statement can be inserted into the area of the
program that is causing problems. STOP does just that: it
stops the program. You may print and change the values of
program variables, check the memory statistics, and once
you have a good idea of what is happening, you can continue
execution at the next line number using CON.

If you are having problems with one section of a program,
you can begin execution at that point by using RUN lineno.
You may also set any necessary variables to any value prior
to starting the execution. Use STOP and RUN lineno
together to debug small parts of complex programs.

We know that our program is computing the interest
incorrectly. Add a STOP Statement at line 95 and line 165:

*

95 STOP
*

165 STOP
*

This way we can check that our initial values are correct, and
then we can see how each loop changes these values. RUN
the program again, entering the values as shown:

*

RUN
Enter starting principal
?

100
Enter interest rate as % (i.e. 10)
?

10
Enter term (i.e. 12 for monthly)
?

12
Enter number of years
?

2
Stop at 0095

..
18 NS BASIC Handbook

*

When the program STOPs at line 95 your Newton will
beep. We can use the VARS Command to view the program
variables, and their values:

*

VARS
PRINCIPAL: 100
Rate: 10
TERM: 12
Years: 2
*

Continue the execution of the program using the CON
Command. The program will STOP again at line 165. Use
the VARS Command again:

*

CON
Stop at 0165
*

VARS
PRINCIPAL: 100
Rate: 0.00833333333333333
TERM: 12
Years: 2
BALANCE: 100.833333333333
y: 1
c: 1
INTEREST: 0.833333333333333
*

This looks fine. Continue the program using CON. It STOPs
at 165 again since we’re in a pair of loops. Use the VARS
Command again:

*

CON
Stop at 0165
*

VARS
PRINCIPAL: 100
Rate: 0.00833333333333333
TERM: 12
Years: 2
BALANCE: 101.666666666667
y: 1
c: 2
INTEREST: 0.833333333333333
*

..
NS BASIC Handbook 19

Well, here’s the problem. It seems the interest we compute
every period is the same! That’s not how compounding
interest is supposed to work – it's supposed to increase.
LIST the section of the program that computes interest:

*

LIST 100, 180
0100 REM Compute final interest
0110 LET rate = rate * 0.01 / term
0120 LET balance = principal
0130 FOR y = 1 TO years
0140 FOR c = 1 TO term
0150 LET interest = rate * principal
0160 LET balance = balance + interest
0165 STOP
0170 NEXT c
0180 NEXT y
*

Take a close look at this code, because we know the interest
is computed wrong. Notice line 150. It seems we’re always
computing the interest based on the original principal, not
the current balance! Edit line 150 so that it is:

*

150 interest = rate * balance
*
Also remove the two STOP Statements:

*

95
*

165

RUN the program again. Notice that the values are the
same. We’ve debugged it!

Enable Break Mode

NS BASIC normally executes your programs as quickly as
possible, without providing any means for you to interrupt
them as they run. This means that you may have to reset
your Newton if your program does not end properly. It also
means that you have no way to stop a program as it is
running to see why it is not performing correctly, unless you
put in STOP statements as we did above. When you are
creating a program it is often helpful to be able to stop a
running program in these situations. When you tap on

 it changes to . When break mode is
enabled the TRACE Statement will output each line number
as the Statement executes. When it is off TRACE

..
20 NS BASIC Handbook

Statements are ignored. When you tap the Stop button NS
BASIC stops the currently running program at the next
Statement, just as if you had placed a STOP Statement there.
You may examine and change variables and CONtinue the
program execution. If you tap the Stop button when a
program is not running, it disables break mode and the
button changes back to Enable Break. When you have
enabled break mode, your programs will execute slower.

Saving and Loading a Program

When you first create a new program (after a NEW
Command) all the Statements you type in are saved in a
temporary file. This is how NS BASIC saves your work - so
that you may quit any time you want, and then come back
later to continue where you left off. It also protects your
work for those rare occasions that you freeze your Newton
developing a program.

When you are ready to save your new program, you must
use the SAVE Command. We’ll save our example program
with the name Compound_Interest.

*

SAVE Compound_Interest
Compound_Interest saved
*
Notice that file names cannot have spaces, but may contain
both upper and lower case letters, as well as special
characters like underscore (_) and hyphen (-).

When you would like to edit a program you have already
saved, you use the LOAD Command. We’ll LOAD our just-
saved program back into NS BASIC.

*

LOAD Compound_Interest
*
Note: When you LOAD a program, NS BASIC performs a
“NEW” first. If you have not saved your current program,
any changes will be lost.

NS BASIC allows you to edit a copy of your saved program,
or edit the original program in place. This option is

controlled using the setting. If you choose to edit
a copy, then any changes you make will not be saved until
you use the REPLACE Command. This will update the saved
version of the currently LOADed program with any changes
you have made. If you decide you’d rather not save the
changes, you may just LOAD the program again or use the

..
NS BASIC Handbook 21

NEW Command to start working on a new program. The
advantage of this way of working is that your original file is
only updated when you want it to be. The disadvantage is
that you may accidentally discard changes you make, by
forgetting to use the REPLACE Command. Remember that
the NEW and LOAD Commands completely clear all
unsaved information from NS BASIC.

Let’s try some changes on a very small program, so you can
see how NS BASIC works in these two ways. Enter in the
following program:

*

NEW
*

10 a = 5
*

20 b = 10
*

30 c = a/b
*

40 PRINT c
*

SAVE Small_Example
Small_Example saved
*

Make sure is checked. Clear all the information
out of NS BASIC using NEW, and then LOAD
Small_Example:

*

NEW
*

LOAD Small_Example
*
Now change line 10 by entering a new line 10 as follows:

*

10 a = 100
*
LIST your program and confirm that the change is in the
program. Clear all the information again using NEW, and
then LOAD Small_Example again, and finally LIST it:

*

NEW
*

LOAD Small_Example
*

LIST
0010 LET a = 5
0020 LET b = 10
0030 LET c = a/b
0040 PRINT c
*
Notice that your change to line 10 was not saved. This is
because we did not use the REPLACE Command prior to
clearing all the information with the NEW Command. Try
making the change to line 10 again, but this time use the
REPLACE Command afterwards:

..
22 NS BASIC Handbook

*

10 a = 100
*

REPLACE
* Small_Example saved.
*
Clear all the information again using NEW, and then LOAD
Small_Example again, and finally LIST it. Notice that this
time, since we specifically saved the changes we made, the
new line 10 is in the saved version of the program. If you
perform the same actions with “Edit a copy” not checked,
you’ll find that your changes to line 10 are saved as soon as
you make them. There is no need to use the REPLACE
Command.

Saving Packages

Packages are programs that the Newton can execute
directly. You can create programs that other people can
run, even though they do not own NS BASIC. Additionally,
you may want to create package versions of programs they
you run frequently, so they will appear in your Extras
Drawer. You can also make a program into the Newton
backdrop application if it saved as a package.

The MAKEPACKAGE statement creates a stand-alone
package in the Extras drawer. The name in the Extras
drawer is the name the program was SAVEd as. All stand-
alone packages use a default icon in the extras drawer:

You can use the SETICON Statement to use a custom icon.
The complete name of the package is
programName.pkg:NSBASIC. The name displayed in the
Extras drawer is programName.

We'll create a small program, save it, and then use the
MAKEPACKAGE Command to create the stand-alone
package. Enter the following program and save it as INVEST:

10 REM MAKEPACKAGE Example
20 PRINT "Enter starting principal"
30 INPUT principal
40 PRINT "Enter interest rate as % (i.e. 10)"
50 INPUT rate
60 PRINT "Enter term (i.e. 12 for monthly)"
70 INPUT term
80 PRINT "Enter number of years"
90 INPUT years
100 REM Compute final interest

..
NS BASIC Handbook 23

110 rate = rate * 0.01 / term
120 PRINT "After ";years;" years the balance
is: "; compound(rate, years*term) * principal
130 END
* SAVE INVEST
INVEST saved.
* MAKEPACKAGE
*

While the package is being created NS BASIC displays a
progress window:

Depending on the size of your program it may take several
minutes to create the package. Once the progress window
closes the package is placed in the Extras drawer under
Unfiled Icons. If you forget to SAVE the program first NS
BASIC prints this error:

Error 32 - Program must be SAVEd

You can use a stand-alone program as the backdrop
application of your Newton, provided it is stored in the
internal memory of the Newton.

Fat Packages

You can create two kinds of packages with NS BASIC. Low
fat packages take up less storage space, but require a copy
of NS BASIC or RUNTIME.PGK to be installed so that they
can execute. Fat packages include everything they need to
execute within the package, but take up much more space.
The INVEST package is 5kb as a low fat package and 96kb as
a fat package.

You select the type of package to create by setting the
MAKEFATPACKAGE environment variable to TRUE or NIL
before you use the MAKEPACKAGE Command as follows:

* REM this makes a fat package
* ENVIRON MAKEFATPACKAGE=TRUE
* MAKEPACKAGE
* REM this makes a thin package
* ENVIRON MAKEFATPACKAGE=NIL
* MAKEPACKAGE

..
24 NS BASIC Handbook

Moving a Program

When you SAVE a program, NS BASIC saves the program
in one of two places: either in your Newton’s internal
memory or on the storage card currently installed in the
Newton. Please refer to the Memory and Storage section of
your Newton Handbook regarding controlling where new
information is stored.

If you have saved a program on a storage card, that program
will only be available when that storage card is inserted and
store new items on card is checked. If you would like to
move a program from one card to another, or from a card
to your Newton, or from your Newton to a card, you will
need to use the serial connection.

Copy a text version of your program by using the LIST
Command. Use copy and paste to save this text on your
desktop computer. Use the DELETE Statement to delete
the program on your Newton. Close NS BASIC, and use
Card in the Extras Drawer to select the desired location for
the program. Open NS BASIC and connect to the serial
terminal. Clear all memory using the NEW Command, and
then use cut and paste to enter the program into the
communications software on your desktop computer.
Finally, use the SAVE Command to save the program in the
new location.

Loading a Program Using Newton Press

Newton Press is used to create Newton Books (packages
that contain textual material intended to be read on a
Newton) on a Macintosh or Windows PC. Using it, you can
create a Newton Book that consists of NS BASIC
Commands and program listings. Once such a package is
installed on your Newton you can load the contents into NS
BASIC, where they will be executed as if entered by the
keyboard. This is an easy way to distribute source code for
your programs, or move programs from internal storage to
a card.

Consult the Newton Press documentation for details on
creating a package from a text file. Install the resulting
package onto your Newton and then launch NS BASIC. Use
the ENTER Command to enter the Commands and
Statements in the package into NS BASIC. If you create a

..
NS BASIC Handbook 25

Newton Press package named "MAKEPKG.pkg" that
contained the example above, you would enter it into NS
BASIC as follows:

* ENTER "MAKEPKG"

A progress window is displayed as the Commands and
Statements are entered. When the window closes the
package has been processed.

The Elements of a NS BASIC Program

A program in NS BASIC is a set of numbered Statements or
lines. Each NS BASIC program line may consist of the
following elements:

line-number label: STATEMENT arguments //
comment

A line number is any number from 1 to 9999.

A label is an optional sequence of alphabetic and numeric
characters followed by a colon. A label may be used in place
of the line number that contains it in Statements such as
GOSUB and GOTO. A label may be of any length, must
begin with a letter, and may not contain any spaces or special
characters.

A STATEMENT is an instruction for your program.
Examples are PRINT, INPUT and IF. The Statement and its
arguments determine what action (if any) will be taken by
NS BASIC when the line is executed.

Any text following // on a line is a comment, and is ignored
by NS BASIC.

Splitting Long Statements

Each NS BASIC Statement normally ends at the end of the
Statement line. If you have a very complex Statement the
line can be very long. This can make your programs difficult
to read. You may split long statements by using the line
continuation character (¬) at the end of the line. NS BASIC
combines the current line with the next line if the current
line ends in ¬. To enter ¬ in your program use Option-L on
the Newton keyboard or a Macintosh. Hold down the right
Alt key and type 0194 on the numeric keypad to enter it in
Windows. An example of line continuation is:

..
26 NS BASIC Handbook

10 frameVal := {field1: "String field",¬
number: 12, realnumber: 3.14}

Data Types, Literals, and Variables

The numbers, strings, and other data elements that your
program works with have an associated data type. A data
type is a way of describing a group of related items. For
example, the Integer data type describes all whole numbers.

Literals are just that, literal values you use in your programs.
You use them all the time: to set the initial value of a
variable, to establish the starting and ending values of a FOR
NEXT loop, and so on. You cannot change the value of a
literal.

Variables are the named holders of your data. A variable's
value may be changed as needed.

NS BASIC supports the following data types:

Numeric Data Types

There are a several types of Numeric data, but they all share
the same behavior. You can generally mix and match among
the types of numeric data without difficulty.

Boolean Data Types

Booleans consists of two values: TRUE and NIL (false). This
data type is used with the IF Statement. It tests the Boolean
value of an expression and selects the THEN Statement if it
is TRUE, or the ELSE Statement if it is NIL.

Type Size Range Literal

Integer 30 bits -536,870,912 to
536,870,911

100

Real 16 bits 1.5x10-45 to

3.4x1038

12.5

Double 32 bits 5.0x10-324 to

1.7x10308

1.0e100

Extended 64 bits 1.9x10-4951 to

1.1x104932

1.0e1000

..
NS BASIC Handbook 27

String Data Types

Strings consist of a series of characters. There are a number
of Functions that manipulate strings. The concatenation
operator (&) is used to join two strings together. The &&
operator joins two strings as well, but inserts a space
between them. A string literal is enclosed in quotation
marks:

"This is a string literal"

Array Data Types

Arrays are containers. They are lists of values stored with
the same name. Each element in the array is referred to by
including a number in square brackets after the variable
name. Arrays start with a zero element and can have many
elements. ARR[2] refers to the third element in the ARR
array. Each element in an array can be of any type. Array
literals are enclosed in square brackets, and each element is
separated by a comma. This is an array literal:

[1, 2, "Even Strings", 3.14]

Frames

Frames are also containers. They are a collection of zero or
more fields enclosed in curly brackets and separated by
commas. Each field consists of a field name, followed by a
colon and its value. As with arrays, each field can be of any
type, including an array or another frame. This is a frame
literal:

{field1: "String field", number: 12,
realnumber: 3.14}

Fields in a frame are referred to by the frame name followed
by a period and the field name in the frame.
myField.firstName refers to the value "John" in
this example:

10 myField = {firstName: "John", lastName:
"Doe"}
20 PRINT myField.firstName

You can add new fields to a frame at any time, simply by
assigning the new field a value using the same notation. To
add myNickName to myField , use:

..
28 NS BASIC Handbook

30 myField.myNickName = "Johnny"

Frames are used extensively for files. Each record in a file is
a frame. Refer to the Frames section in the Advanced Topics
chapter of this Handbook for more information.

Symbols

Symbols are internal forms of identifiers. You use symbols
to access frame elements, and to create values that are not
evaluated. You specify a symbol by preceding it with a '.
Symbols may be assigned to variables, used in expressions,
and PRINTed.

*

x=’symbolname
*

PRINT x
symbolname

Variable Names

A variable is a name that holds a value. The name consists of
a sequence of alphabetic and numeric characters. There is
no limit to the length of a variable name in NS BASIC, and
every character in the name is significant. We tell you this
because in some older BASICs you could only use short
names. Variable names are not case sensitive, and spaces and
other special characters may not be used. Variable names
must start with a letter.

NS BASIC keywords may not be used as variable names. For
a complete list of keywords, see Appendix B.

The following list shows some variable names that are
allowed by NS BASIC:

text
LLAMAS // same as llamas or Llamas
Lemons
W1Spec
world134

And some that are not allowed:

1table // starts with a number
X&Ycords // uses special character &
first counter // has a space
%correct // does not start with a letter
size // this is a NS BASIC keyword
Second_Win_Num // more special characters

..
NS BASIC Handbook 29

Un-Typed and Typed Variables

If you use a variable name that does not specify a type, then
NS BASIC automatically determines the proper type of
variable to be used based on the type of the value you assign
to it. What this means is that a single variable may hold a
string, then a numeric, then a frame, etc.

If you end a variable name with $, then that variable will
always (and only) contain a string value. Assigning a numeric
to one of these variables converts that numeric to a string
value first. Array variable names can not end in $.

Expressions and Operators

An expression is a literal, variable, formula or function call
that has a value. Here are some examples of expressions:

6/3 // result is 2
5+6/3 // result is 7
"This" && "that" // result is "This that"

A string expression can be a string literal, a string variable,
or it may combine string literals, string variables and
substrings to produce a single string value. Similarly, a
numeric expression can be a numeric constant, a numeric
variable, or a function/variable that produces a single
numeric value.

Arithmetic Operators

NS BASIC allows the following arithmetic operators in this
descending order of priority:

Parenthesis can be used to change the order of evaluation.

*

PRINT 2+3*4
14
*

PRINT (2+3)*4
20

NS BASIC supports floating point arithmetic. All numeric
operations are carried out to 32 bit precision and are
truncated to 16 digits at the conclusion of the operation.

* / Multiplication and Division

+ - Addition and Subtraction

..
30 NS BASIC Handbook

The REMAINDER Function may be used to find the
remainder of a division. The DIV Function is used for integer
(whole number) division.

Arithmetic operators can only be used with numeric
expressions. They may not be used with strings.

Relational Operators

Relational operators compare two values and return a
Boolean value of TRUE or NIL (false). This result can be
used to change the flow of a program. Relational operators
have a lower priority than arithmetic operators. The
relational operators are:

In the LET Statement the equal sign is used to assign a value
to a variable, not as a relational operator.

Boolean Operators

Boolean operators tie expressions together, returning a
TRUE or NIL answer. Arithmetic and relational operators
are evaluated before Boolean operators. Two of the
operators, AND and OR, require two expressions. The
NOT operator applies to one expression.

= Equal

<> Not Equal

< Less than

> Greater than

<= ≤ Less than or equal to

>= ≥ Greater than or equal to

..
NS BASIC Handbook 31

The Boolean operators are:

Examples of AND, OR, and NOT:

0010 INPUT a
0020 IF a >=1 AND a <=100 THEN PRINT
"Number Between 1 & 100."

0010 INPUT a
0020 INPUT b
0030 IF a = 10 OR b=10 THEN PRINT "One of the
numbers entered is 10"

0010 INPUT a
0020 INPUT b
0030 IF NOT a = 10 OR NOT b=10 THEN PRINT "One
of the numbers entered is NOT 10"

Boolean operators can be used with any expression that
returns a Boolean value. They may not be used in numeric
expressions.

2.4 Immediate Statement Execution

Commands (such as RUN and LOAD) are always executed
immediately as they are entered. Statements entered
without a line number are also executed immediately. The
results of assignment Statements are available for later use,
but the Statements themselves are not saved. There are two
uses for immediate Statement execution:

Simple Calculations

NS BASIC may be used as a full-featured calculator with a
very large memory. You may enter several calculations,
assigning the results to variables. The variables will hold
their values until a NEW Command is issued. For example:

AND Returns TRUE if the two expressions
are both TRUE.

OR Returns TRUE if either expression or
both of the expressions are TRUE.

NOT Returns TRUE if the expression is false
or returns NIL if it is TRUE.

..
32 NS BASIC Handbook

*

b=5*2
*

a=10*b
*

PRINT a
* 100
*

; a
* 100
*

Debugging

When you use the STOP or END Statement in your
program, you may PRINT the contents of individual
variables, use the VARS Command to see all current
variables, and even change the values in variables. An
example of debugging a program was given in section 2.2.

..
NS BASIC Handbook 33

C H A P T E R

3
...

3. NS BASIC Reference

The Reference chapter contains an entry for every
Command, Statement, and Function in NS BASIC, in
alphabetical order. The entries are listed in the index
grouped under Commands, Statements, or Functions. All
Widgets are described in the Visual Designer Reference
section beginning on page 217.

Each entry in the Reference chapter consists of the following
information:

Name Category

ITEM parameters

DESCRIPTION

This section describes the ITEM and its parameters. Details
concerning the uses of ITEM are given, as well as any
constraints on its use.

EXAMPLE

A small program that uses ITEM is listed here.

OUTPUT

This section shows the results of running the Example
program.

RELATED ITEMS

A list of zero or more NS BASIC Commands, Statements,
Functions, or Widgets that are related to ITEM. You may
often gain a better understanding of ITEM by reviewing the
related items.

..
34 NS BASIC Handbook

ABS Function

ABS(x)

FABS(x)

DESCRIPTION

ABS returns the absolute (positive) value of the integer
number x.

FABS returns the absolute (positive) value of the real
number x.

EXAMPLE

10 REM ABS Example
20 REM This program returns the positive value
of any number INPUT to it.
30 PRINT "Please enter any number:"
40 INPUT Number
50 PRINT "The absolute value of the number you
entered is = " ; ABS(Number)

OUTPUT

Please enter any number:

-20
The absolute value of the number you entered
is = 20
*

RELATED ITEMS

..
NS BASIC Handbook 35

ADDARRAYSLOT Function

ADDARRAYSLOT(array, item)

DESCRIPTION

ADDARRAYSLOT extends array by adding a new element
to the end. The value of that element is item.
ADDARRAYSLOT returns item.

EXAMPLE

10 REM ADDARRAYSLOT Example
20 a := [1,2,3]
30 PRINT "Please enter any number:"
40 INPUT Number
50 ADDARRAYSLOT(a, Number)
60 PRINT "The new array is = " ; a

OUTPUT

Please enter any number:

30
The new array is = [1, 2, 3, 30]
*

RELATED ITEMS

ARRAYREMOVECOUNT

..
36 NS BASIC Handbook

ANNUITY Function

ANNUITY (rate, periods)

DESCRIPTION

Calculates the present value factor of an annuity at a given
interest rate over the specified number of periods. The
interest rate is the rate per period. For example, 12% per
year would be expressed as a monthly rate of 0.01 (12%/12
months = .12/12 = 0.01).

EXAMPLE

10 REM ANNUITY Example
20 REM Compute annuity on monthly basis.
30 PRINT "Annual Interest Rate:"
40 INPUT Rate
50 PRINT "Number of months:"
60 INPUT NumMonths
70 PRINT "Cost of the item:"
80 INPUT Cost
90 PRINT "The cost for all payments is $";
ANNUITY((Rate * 0.01)/12, NumMonths) * Cost

OUTPUT

Annual Interest Rate:

12
Number of months:

50
Cost of the item:

1000
The cost for all payments is $39,196.117531105
*

RELATED ITEMS

COMPOUND

..
NS BASIC Handbook 37

APP Widget

WINDOW winNum, windowSpec, "APP"

DESCRIPTION

The APP widget displays the standard Newton application
background. This includes an optional i (info) button, routing
button, and close box. When the user taps the info button,
the program either GOSUBs or GOTOs the line specified
in the GOSUBinfo or GOTOinfo field of the windowSpec.
When the user taps the close box, the program branches to
the line specified in the GOTO field of the windowSpec. The
user may also Fax or Print the currently displayed windows
by using the routing button.

The widget is controlled using the windowSpec. These fields
are supported:

Title: the title to display for the application.

GOSUBinfo, GOTOinfo: the line to branch to if the user taps
the info button. If neither of these is specified then no info
button is displayed.

You may also use these fields in windowSpec: viewFlags,
viewFont, GOTO

EXAMPLE

10 REM APP Example
20 w1Spec := {Title: "App Example", ¬
 GOTO:'appDone, GOSUBinfo: 'showInfo}
30 WINDOW w1, w1Spec, "APP"
40 SHOW w1
50 WAIT -1
100 appDone: REM tapped close box
110 HIDE
120 PRINT "Closed."
130 END
200 showInfo: REM Info button tapped
210 popBounds := ¬
 U.w1Spec.base.appInfo:GLOBALBOX()
220 popBounds.left = popBounds.right+2
230 w2Spec = {GOSUB:'pickChosen, pickItems:¬
 ["About","Help","Prefs"], Bounds:popBounds}
240 WINDOW w2, w2Spec, "PICKER"
250 SHOW w2
260 RETURN

..
38 NS BASIC Handbook

300 pickChosen: REM Picked
310 PRINT "You picked item: ";¬
 w2Spec.viewValue
320 RETURN

OUTPUT

RELATED ITEMS

HIDE, PICKER, SHOW, WAIT, WINDOW

..
NS BASIC Handbook 39

ARRAYREMOVECOUNT Function

ARRAYREMOVECOUNT(Array, index, numToRemove)

DESCRIPTION

ARRAYREMOVECOUNT deletes elements from Array .
The first element to remove is given by index, and the
number of elements to remove is numToRemove.
ARRAYREMOVECOUNT returns NIL.

EXAMPLE

10 REM ARRAYREMOVECOUNT Example
20 a := [1,2,3,4,5,6,7]
30 ARRAYREMOVECOUNT(a, 2,3)
40 PRINT "The new array is = " ; a

OUTPUT

The new array is = [1, 2, 6, 7]
*

RELATED ITEMS

ADDARRAYSLOT

..
40 NS BASIC Handbook

ARRAYTOPOINTS Function

ARRAYTOPOINTS(shapeArray)

DESCRIPTION

ARRAYTOPOINTS creates a drawing using an array that
specifies the shape of the drawing and the X,Y points for it.
The resulting drawing can be displayed in a window using
WDRAW once it is converted into a shape with
MAKESHAPE().

The first element of shapeArray describes the overall shape
of the drawing:

The second element specifies the number of X,Y points in
the shape. The remaining elements are the X and Y values
of each point.

0 Circle

1 Ellipse

2 Small open curve

3 Closed polygon

5 Open polygon

6 Closed curve

7 Open curve

8 Line

9 Triangle

10 Square

11 Rectangle

..
NS BASIC Handbook 41

EXAMPLE

10 REM ARRAYTOPOINTS Example
20 shapeArray:=[9,4,25,10,10,40,40,40,25,10]
30 points := ARRAYTOPOINTS(shapeArray)
40 shape := MAKESHAPE(points)
50 wspec := {viewBounds: ¬
SETBOUNDS(10, 10, 200, 200)}
60 WINDOW w1, wspec
70 SHOW w1
80 WDRAW w1, shape

OUTPUT

RELATED ITEMS

MAKESHAPE, POINTSTOARRAY, WDRAW, WINDOW

..
42 NS BASIC Handbook

AZTABS Widget

WINDOW winNum, windowSpec, "AZTABS"

WINDOW winNum, windowSpec, "AZVERTTABS"

DESCRIPTION

The AZTABS and AZVERTTABS widgets display the
standard Newton selection tabs in the horizontal and
vertical orientations.

These widgets are controlled using the windowSpec. These
fields are supported:

GOTO: the line number to goto if tapped.

viewBounds: if not supplied, defaults to the top (AZTABS)
or left edge centered (AZVERTTABS). Note that if this is
specified, the height (bottom - top) must be at least 20
for AZTABS, and the width (right - left) must be at
least 30 for AZVERTTABS.

EXAMPLE

10 REM AZTABS Example
20 w1Spec := [{Title: "AZTABS Example", ¬
 GOTO:'appDone, widgetType:"APP"},¬
 {GOSUB: 'azDone, viewBounds: ¬
 SETBOUNDS(0,30,0,51), ¬
 widgetType:"AZTABS"}]
30 WINDOW w1, w1Spec
40 SHOW w1
50 DO
60 WAIT -1
70 LOOP
80 azDone: REM A selection was made
90 PRINT "Index: "; w1Spec[1].curIndex; ", ¬
 Text: ", w1Spec[1].text
100 RETURN
110 appDone: REM tapped close box
120 HIDE
130 PRINT "Closed."
140 END

..
NS BASIC Handbook 43

OUTPUT

RELATED ITEMS

SHOW, HIDE, WINDOW

..
44 NS BASIC Handbook

BEEP Statement

BEEP beepsound

DESCRIPTION

Causes the Newton to emit a single "beep" through the
Newton's speaker. The actual sound of the beep is selected
by beepsound as follows:

0 Alarm Wakeup
1 Boot Sound
2 Click
3 Crumple
4 Extras Drawer Closing
5 Extras Drawer Opening
6 Notepad Scroll Sound
7 Trill
8 Highlight Sound
9 Xylo
10 Bell
11 Wakeup
12 Plunk (Trash)
13 Poof!

EXAMPLE

5 REM BEEP Example
10 FOR i = 0 TO 13
20 BEEP i
30 WAIT 1
40 NEXT i

OUTPUT

(Your Newton makes each "beep" sound)
*

RELATED ITEMS

..
NS BASIC Handbook 45

BEGINSWITH Function

BEGINSWITH(String1, String2)

DESCRIPTION

BEGINSWITH returns TRUE if String1 begins with String2.
The comparison ignores the case of both strings.

EXAMPLE

5 REM BEGINSWITH Example
10 target := "YES or NO"
20 IF BEGINSWITH(target,"yes") THEN ¬
PRINT "It starts with yes"
30 IF BEGINSWITH(target,"YES OR") THEN ¬
PRINT "It starts with YES OR"
40 IF BEGINSWITH(target,"No OR") THEN ¬
PRINT "It starts with No OR"

OUTPUT

It starts with yes
It starts with YES OR
*

RELATED ITEMS

STRCOMPARE, STREQUAL

..
46 NS BASIC Handbook

BYE Statement

BYE [val]

DESCRIPTION

BYE ends the current program, and then quits NS BASIC. It
is valid within a program and as a Command entered using
the on-screen keyboard. If val is supplied, the value of the
expression is returned to the external caller of NS BASIC.
See the Advanced Topics section for more information on
calling NS BASIC from other Newton applications.

EXAMPLE

10 REM BYE Example
20 PRINT "Quitting NS BASIC"
30 BYE

OUTPUT

Quitting NS BASIC
*
The above appears momentarily. NS Basic then quits.

RELATED ITEMS

STOP, END

..
NS BASIC Handbook 47

CEILING Function

CEILING(x)

DESCRIPTION

Returns the next integer greater than or equal to the real
number x.

EXAMPLE

10 REM CEILING Example
20 PRINT "Please enter a number:"
30 INPUT Number
40 PRINT "Next largest integer is..." ; ¬
CEILING(Number)

OUTPUT

Please enter a number:

12.31
"Next largest integer is...13
*

RELATED ITEMS

FLOOR

..
48 NS BASIC Handbook

CHAIN Statement

CHAIN fileName[,lineNumber]

DESCRIPTION

CHAIN causes a NS BASIC program to LOAD a program
named by fileName from the default store and execute it.
fileName may be a string literal or a variable. Linenumber is
the line from which NS BASIC is to start execution in the
new program. You may use a label in place of the actual line
number. The current values of all variables are preserved.
You can use this form of CHAIN to break very large
programs into sections that are CHAINed in when needed.
If no lineNumber is given, a NEW is performed. Then NS
BASIC starts execution from the beginning of the program.
You can use this form of CHAIN to create menu-style
programs, where unrelated programs are executed by a
menu program using CHAIN.

EXAMPLE

10 REM Program1
20 PRINT "This is Program 1"
30 CHAIN "Program2"
40 PRINT "Return to Program1"
*

SAVE Program1
Program1 saved
*

NEW
10 REM Program2
20 PRINT "This is Program 2"
30 CHAIN "Program1",40
*

SAVE Program2
Program2 saved

OUTPUT

*

Load Program1
*

RUN
This is Program 1
This is Program 2
Return to Program1

RELATED ITEMS

RUN

..
NS BASIC Handbook 49

CHECKBOX Widget

WINDOW winNum, windowSpec, "CHECKBOX"

WINDOW winNum, windowSpec, "RCHECKBOX"

DESCRIPTION

The CHECKBOX and RCHECKBOX widgets display a small
square box that shows a check mark when selected. The
check box can be toggled by the user by tapping on it or the
label. CHECKBOX shows the check box followed by the
label, and RCHECKBOX displays the label followed by the
check box.

These widgets are controlled using the windowSpec. These
fields are supported:

viewValue: TRUE to display a checkmark.

text: The label text

Note: you can update the state of the CHECKBOX and

RCHECKBOX widgets using the following method:

U.windowSpec:TOGGLECHECK()

This expression causes the current setting of the checkbox
to toggle. For instance, a checked box becomes unchecked.

You may also use these fields in windowSpec: viewBounds,
viewFlags, viewFont, GOTO, GOSUB, viewFormat.

EXAMPLE

10 REM CHECKBOX Example
20 w1Spec := {}
30 WINDOW w1, w1Spec, "CHECKBOX"
40 w2Spec := {viewValue: true}
50 WINDOW w2, w2Spec, "RCHECKBOX"
60 SHOW w1, w2

OUTPUT

RELATED ITEMS

SHOW, HIDE, WINDOW

..
50 NS BASIC Handbook

CHR Function

CHR(i)

DESCRIPTION

CHR returns the ASCII character equivalent of i. You must
use an integer with CHR. Refer to Appendix C of this
Handbook for a list of useful character codes.

EXAMPLE

10 REM CHR Example
20 REM This demo asks the user for a number ¬
and then displays the ASCII character ¬
equivalent of it.
30 PRINT "Please enter a number between 1 and
256"
40 INPUT Number
50 PRINT "The Character Equivalent of " ; ¬
Number ; " is " ; CHR(Number)

OUTPUT

Please enter a number between 1 and 256

99
The Character Equivalent of 99 is c
*

RELATED ITEMS

ORD

..
NS BASIC Handbook 51

CLASSOF Function

CLASSOF(x)

DESCRIPTION

CLASSOF returns the class of the variable x as a symbol.
You can use CLASSOF to check the class of a variable that
is INPUT by a user.

The symbols returned for each data type are:

EXAMPLE

10 REM CLASSOF Example
20 a = 5
30 PRINT CLASSOF(a)
40 a = "Hello"
50 PRINT CLASSOF(a)

OUTPUT

Int
String
*

RELATED ITEMS

Integer 'int

Real 'real

Character 'char

Boolean 'boolean

String 'string

Array 'array

Frame 'frame

Function 'function

Symbol 'symbol

..
52 NS BASIC Handbook

CLOSE Statement

CLOSE[chan] | [chanlist]

DESCRIPTION

CLOSE releases the single file channel chan or the list of
channels chanlist returned from an OPEN or CREATE
statement. If chan is omitted, all open file channels are
released. You cannot use a channel in a GET, PUT, or DEL
statement after you CLOSE it.

EXAMPLE

10 REM CLOSE Example
20 CREATE chan, "EXAMPLEFile", keyname
30 CLOSE chan

OUTPUT

*

RELATED ITEMS

CREATE, OPEN

..
NS BASIC Handbook 53

CLOSEBOX Widget

WINDOW winNum, windowSpec, "CLOSEBOX"

WINDOW winNum, windowSpec, "LARGECLOSEBOX"

DESCRIPTION

The CLOSEBOX and LARGECLOSEBOX widgets display
the standard Newton close box (small and large sizes) in the
lower right hand corner of the Newton screen.

These widgets are controlled using the windowSpec. These
fields are supported:

GOTO: the line number to goto if tapped.

viewBounds: if not supplied, defaults to the lower right
hand corner of the screen. Note that if this is specified, it
the bounds are relative to the lower right hand corner, so
you'll have to use negative numbers for all values to place
it anywhere else on the screen.

EXAMPLE

10 REM CLOSEBOX Example
20 w1Spec := {GOTO: 'appDone}
30 WINDOW w1, w1Spec, "CLOSEBOX"
40 SHOW w1
50 WAIT -1
100 appDone: REM tapped close box
110 HIDE
120 PRINT "Tapped."

OUTPUT

RELATED ITEMS

SHOW, HIDE, WINDOW

..
54 NS BASIC Handbook

CLS Statement

CLS

DESCRIPTION

CLS causes the contents of the NS BASIC screen to be
erased. It will not clear any WINDOWs. You must use the
HIDE command to remove them from the Newton's display.

EXAMPLE

10 REM Clear Screen Example
20 CLS

OUTPUT

*
(The Screen is cleared)

RELATED ITEMS

HIDE

..
NS BASIC Handbook 55

COMPOUND Function

COMPOUND(rate, periods)

DESCRIPTION

COMPOUND calculates the compound interest for a given
rate over the specified number of periods.

EXAMPLE

10 REM COMPOUND Example. This example assumes
that interest is being calculated monthly.
20 PRINT "Please enter the Interest rate per
year:"
30 INPUT Rate
40 PRINT "Please enter the number of months
you wish interest to be calculated for:"
50 INPUT Period
60 PRINT "The percentage gain is " ;
COMPOUND((Rate*0.01/12), Period)* 100 ; "%"

OUTPUT

Please enter the Interest rate per year:

12
Please enter the number of months you wish
interest to be calculated for:

50
The percentage gain is 164.463182184388%
*

RELATED ITEMS

ANNUITY

..
56 NS BASIC Handbook

CON Command

CON

DESCRIPTION

CON continues the execution of a NS BASIC program that
was halted by a STOP or END Statement. Execution
resumes at the next Statement in the program.

If an error halted the program, the CON Statement will also
continue execution at the next Statement after the one that
caused the error.

EXAMPLE

10 REM CON Example
20 PRINT "Before Stop"
30 STOP
40 PRINT "After Stop"

OUTPUT

Before Stop
*

CON
After Stop
*

RELATED ITEMS

END, ON ERROR GOTO, RUN, STOP

..
NS BASIC Handbook 57

COS Function

COS(x)

COSH(x)

ACOS(x)

ACOSH(x)

DESCRIPTION

COS returns the cosine of the angle x.

COSH returns the hyperbolic cosine of the angle x.

ACOS returns the arc cosine of the angle x.

ACOSH returns the hyperbolic arc cosine of the angle x.

To convert to degrees, multiple x by Pi/180

EXAMPLE

10 REM COS Example
20 PRINT "Please enter an angle:"
30 INPUT Angle
40 PRINT "The Cosine of the angle is = ";¬
COS(Angle)

OUTPUT

Please enter an angle:

63.7
The Cosine of the angle is = 0.646241795698775
*

RELATED ITEMS

SIN, TAN

..
58 NS BASIC Handbook

CREATE Statement

CREATE chan, fileName, key

DESCRIPTION

CREATE makes a new file. Files are stored on the Newton
in a similar manner to other computers. The location of the
file will be both in your Newton’s internal memory and on
the storage card (if any) currently installed in the Newton.
Please refer to the Memory and Storage section of your
Newton Handbook regarding controlling where new
information is stored.

Files you create in NS BASIC remain on your Newton until
you delete them using the DELETE Statement. You use files
to store data that you would otherwise have to re-enter
every time you reset your Newton.

A file consists of zero or more frames. Each frame in a file
has a key field that is used for sorting and searching. This
means you must have an entry named key in every frame you
add to the file with the PUT Statement. The key value for
every entry must be a string, and must be unique.
Attempting to add a new record using a key value that
already exists will overwrite the existing record.

CREATE uses the string in fileName as the name of the file.
fileName may be a string literal or a variable holding a string.
It sets the variable chan to the number assigned to the file.
You use chan in subsequent GET, PUT and DEL statements
in your program, instead of the file name.

..
NS BASIC Handbook 59

CREATE uses a variable named FSTAT to indicate that the
file was either created or not created. FSTAT will be set to
one of two values:

Note: You should avoid using a variable named FSTAT for
your own purposes.

EXAMPLE

10 REM CREATE Example
20 REM Creates a file...prompts for some
information, stores then deletes it.
40 CREATE chan, "EXAMPLEFile", keyname
45 IF FSTAT=1 THEN STOP // CREATE error
50 PRINT "Please enter some key data..."
60 INPUT FileKey
70 fileRecord = {}
80 fileRecord.keyname = FileKey // key
90 PUT chan, fileRecord
100 IF FSTAT=1 THEN STOP // PUT error
110 PRINT "Data now in file is..."
120 GET chan,FetchedData,FileKey
130 IF FSTAT=1 THEN STOP // GET error
140 PRINT FetchedData
150 PRINT "Deleting Record From File"
160 DEL chan,FetchedData

OUTPUT

Please enter some data...
?

Lemons and Llamas
Data now in file is...
{KEYNAME:"Lemons and Llamas",_uniqueID:0}
Deleting Record From File
*

RELATED ITEMS

GET, OPEN, PUT, DEL, DELETE

0 File successfully created

1 File could not be created

..
60 NS BASIC Handbook

DATA Statement

DATA datalist

DESCRIPTION

DATA Statements define the information used by the READ
Statement. They are not executed by NS BASIC. You may
place them anywhere in your program.

You may use any number of DATA Statements in a program.
They are accessed in sequential order by the READ
Statement. The datalist is a comma separated list of literal
values. DATA Statements can contain only two types of
literals: strings and numerics. String literals must be enclosed
in quotation marks. Note that any special characters (\n,
etc.) in strings are not evaluated.

EXAMPLE

10 REM DATA Example
20 DIM a[10]
30 DATA 4,5,6.5, "This", "Is"
40 DATA "String", "Data", -0.01
50 DATA "1\n2"
60 FOR i = 0 TO 7
70 READ a[i]
80 PRINT a[i]
90 NEXT i
100 READ aString
110 PRINT "1\\n2 the same? "; ¬
STREQUAL(aString, "1\n2")

OUTPUT

4
5
6.5
This
Is
String
Data
-0.01
1\n2 the same? NIL
*

RELATED ITEMS

READ, RESTORE

..
NS BASIC Handbook 61

DATENTIME Function

DATENTIME(Time)

DESCRIPTION

DATENTIME returns a string containing the date and time
as MM/DD/YY HH:MM. A leading zero is not printed for
months, days, or hours. Time is the returned value from the
TIME Function. If time is NIL, then the current time is used.
The format of the date returned will depend on the locale
of the Newton being used. Please refer to the Setting
Preferences section of your Newton Handbook regarding
changing the locale.

EXAMPLE

10 REM DATENTIME Example
20 CurTime = TIME()
30 PRINT DATENTIME(CurTime)

OUTPUT

2/23/94 12:45 pm
*

RELATED ITEMS

HOURMINUTE, TIME

..
62 NS BASIC Handbook

DATEPICKER Widget

WINDOW winNum, windowSpec, "DATEPICKER"

DESCRIPTION

The DATEPICKER widget displays the standard Newton
date picker. The date or dates can be selected as in the
Dates application.

The widget is controlled using the windowSpec. These fields
are supported:

selectedDates: An array of integers (from the TIME()
function) representing the selected dates. The first date
determines which month is displayed. The default value is
the current date.

noSelection: TRUE if DATEPICKER is display-only

singleDay: TRUE if only a single day may be selected

You may also use these fields in windowSpec: viewBounds,
viewFlags, viewFont, GOTO, GOSUB, viewFormat.

NOTE: If you change the value of the selectedDates
array in your program you must use
U.windowSpec:REFRESH() to update the DATEPICKER
display.

..
NS BASIC Handbook 63

EXAMPLE

10 REM DATEPICKER Example
20 w1Spec = {GOTO: 'dateSelected}
30 WINDOW w1, w1Spec, "DATEPICKER"
40 SHOW w1
50 w1Spec.selectedDates := [4870000]
60 w1Spec:DIRTY()
70 WAIT -1
100 dateSelected: REM tapped a date
110 HIDE
120 PRINT DATENTIME(w1Spec.selectedDates[0])

OUTPUT

RELATED ITEMS

HIDE, SHOW, TIME, MONTH, WINDOW

..
64 NS BASIC Handbook

DEL Statement

DEL chan, recordFrame

DESCRIPTION

DEL deletes a record specified by recordFrame from file chan.
chan is the number of the file returned by the CREATE or
OPEN Statements. recordFrame is a frame containing at least
the key field. It may be a frame returned by the GET
Statement

DEL uses a variable named FSTAT to indicate that the
record was either deleted or not deleted. FSTAT will be set
to one of two values:

Note: You should avoid using a variable named FSTAT for
your own purposes.

0 Record successfully deleted

1 Record could not be deleted

..
NS BASIC Handbook 65

EXAMPLE

10 REM DEL Example
20 REM Creates a file...prompts for some
information, stores then deletes it.
40 CREATE chan, "EXAMPLEFile", keyname
45 IF FSTAT=1 THEN STOP // CREATE error
50 PRINT "Please enter some key data..."
60 INPUT FileKey
70 fileRecord = {}
80 fileRecord.keyname = FileKey
90 PUT chan, fileRecord
100 IF FSTAT=1 THEN STOP // PUT error
110 PRINT "Data now in file is..."
120 GET chan,FetchedData,FileKey
130 IF FSTAT=1 THEN STOP // GET error
140 PRINT FetchedData
150 PRINT "Deleting Record From File"
160 DEL chan,FetchedData

OUTPUT

Please enter some data...
?

Lemons and Llamas
Data now in file is...
{KEYNAME:"Lemons and Llamas",_uniqueID:0}
Deleting Record From File
*

RELATED ITEMS

CREATE, OPEN, PUT, GET, DELETE

..
66 NS BASIC Handbook

DELETE Statement

DELETE fileName

DESCRIPTION

DELETE removes the program or file named by the string
variable or string literal fileName from your Newton. The file
is removed from both the internal memory and storage
card. If fileName does not exist an I/O error will result.

To delete a NS BASIC program add the suffix ".bas" to the
program name. To delete a text file from the default store
use the suffix ".txt". To delete any files created using the
CREATE Statement, enter only the file name (no suffix.)

EXAMPLE

DELETE "Llamas.bas"
DELETE "Testfile.txt"
DELETE "MyProg.bas"
10 REM DELETE Example
20 CREATE chan, "Somefile", key
30 DELETE "Somefile"

OUTPUT

*

RELATED ITEMS

SAVE, REPLACE, DIR, LOAD, ENTER, LIST, CREATE, GET,
STORE, PUT, OPEN, DEL

..
NS BASIC Handbook 67

DIGITALCLOCK Widget

WINDOW winNum, windowSpec, "DIGITALCLOCK"

DESCRIPTION

The DIGITALCLOCK widget displays the standard Newton
time picker. The time can be selected as in the Dates
application.

The widget is controlled using the windowSpec. These fields
are supported:

time: An integer (from the TIME() function) representing
the selected time. The initial value of this field determines
the initial display.

You may also use these fields in windowSpec: viewBounds,
viewFlags, viewFont, GOTO, GOSUB.

EXAMPLE

10 REM DIGITALCLOCK Example
20 w1Spec = {GOTO:'timeChanged, ¬
time: STRINGTOTIME("3:10PM")}
30 WINDOW w1, w1Spec, "DIGITALCLOCK"
40 SHOW w1
100 timeChanged: REM Time changed
110 PRINT TIMESTR(w1Spec.time, 0)

OUTPUT

RELATED ITEMS

HIDE, SHOW, STRINGTOTIME, TIME, WINDOW

..
68 NS BASIC Handbook

DIM Statement

DIM variable [size]

DESCRIPTION

DIM sets the number of elements (size) for an array
(variable). All arrays start with the element zero and can
have an unlimited number of elements. You access the data
in an array element using the expression variable
[elementNumber]. Arrays can have elements of mixed type.

EXAMPLE

10 REM Array Example
20 DIM Names[3]
30 Names[0] = "Peter"
40 Names[1] = "Paul"
50 Names[2] = "Mary"
60 PRINT "Contents of the Names Array:"
70 FOR i = 0 TO 2
80 PRINT Names[i]
90 NEXT i

OUTPUT

Contents of the Names Array:
Peter
Paul
Mary
*

RELATED ITEMS

PRINT, LET

..
NS BASIC Handbook 69

DIR Command

DIR

DESCRIPTION

DIR outputs a sorted listing of the NS BASIC programs and
text files currently saved in your Newton’s internal memory
or on the storage card currently installed in the Newton.
Please refer to the Memory and Storage section of your
Newton Handbook regarding controlling where new
information is stored.

EXAMPLE

DIR

OUTPUT

Calculator BASIC program
Calculator2 BASIC program
HelloWorld Text File
LlamaCount BASIC program
*

RELATED ITEMS

SAVE, REPLACE, LOAD

..
70 NS BASIC Handbook

DIV Function

x DIV y

DESCRIPTION

DIV returns the maximum number of times the integer y can
divide into the integer x.

EXAMPLE

10 REM DIV Example
20 REM This program takes two numbers and
computes number of times the 2 numbers can be
divided.
30 PRINT "Please enter two numbers."
40 INPUT Number1,Number2
50 Result = Number1 DIV Number2
60 PRINT "The number of times " ; Number1 ; "
can be divided by " ; Number2; " is " ; Result

OUTPUT

Please enter two numbers.
?

7,5
The number of times 7 can be divided by 5 is 1.
*

RELATED ITEMS

REMAINDER, MOD

..
NS BASIC Handbook 71

DO Statement

DO [WHILE expression |UNTIL expression]

DESCRIPTION

The DO statement begins a loop. The loop ends with a
LOOP statement. You may test for the ending condition of
the loop in the DO statement by using the WHILE expression
or UNTIL expression.

DO WHILE expression will evaluate the Boolean expression
each time before executing the loop. If expression is TRUE,
then the loop is executed. If it is NIL, the statement
following the LOOP statement is executed.

DO UNTIL expression will evaluate the Boolean expression
each time before executing the loop. If expression is NIL,
then the loop is executed. If it is TRUE, the statement
following the LOOP statement is executed.

You can exit the loop by using the EXIT DO statement
within the loop.

EXAMPLE

10 REM DO Example
20 i = 0
30 DO WHILE i < 10
40 i = i + 1
50 IF i > 5 THEN EXIT DO
60 LOOP
70 PRINT i

OUTPUT

6
*

RELATED ITEMS

LOOP, FOR, EXIT DO

..
72 NS BASIC Handbook

DRAW Widget

WINDOW winNum, windowSpec, "DRAW"

DESCRIPTION

The DRAW widget provides a user entry area that accepts
ink drawing. The input may be recognized as shapes (this is
the default) by setting windowSpec.viewFlags to
vVisible + vClickable + vGesturesallowed +
vShapesallowed, or just plain ink, by setting
windowSpec.viewFlags to vVisible + vClickable +
vGesturesallowed + vStrokesallowed

The widget is controlled using the windowSpec. These fields
are supported:

viewChildren: an array of frames describing the drawing
viewChildren[n].viewBounds: the viewBounds of the

nth shape drawn
viewChildren[n].points: the points of the nth shape

drawn
You may also use these fields in windowSpec: viewBounds,
viewFlags, viewFormat.

EXAMPLE

10 REM DRAW Example
20 w1Spec = {viewBounds: ¬
 SETBOUNDS(20,20,200,200)}
30 WINDOW w1, w1Spec, "DRAW"
40 SHOW w1

OUTPUT

RELATED ITEMS

POINTSTOARRAY, SHOW, HIDE, WINDOW

See the POINTSTOARRAY Reference section entry for an
example of extracting the x,y coordinates of the shapes and
strokes drawn in a DRAW widget.

..
NS BASIC Handbook 73

DRAWINTOBITMAP Function

DRAWINTOBITMAP(shape, options, bitmap)

DESCRIPTION

This function is used to create icons for the
PICTUREBUTTON widget and the SETICON Statement.
DRAWINTOBITMAP transfers the drawing in shape into
bitmap. Use the MAKEBITMAP function to create bitmap.
Use one or more of the MAKE functions (MAKELINE,
MAKERECT, etc.) to create shape. The options parameter
should be NIL.

EXAMPLE

10 REM PICTUREBUTTON Example
20 shape=[MAKERECT(1,1,30,30), ¬
MAKETEXT("I", 12,10,21,21)]
30 myIcon:=MAKEBITMAP(32,32,NIL)
40 DRAWINTOBITMAP(shape, NIL, myIcon)
50 w1Spec = {icon: myIcon, GOTO: 'buttonTap,¬
viewBounds: SETBOUNDS(101, 101, 132, 132)}
60 WINDOW w1, w1Spec, "PICTUREBUTTON"
70 SHOW w1
80 WAIT -1
200 buttonTap: REM Button Tapped
210 HIDE
220 PRINT "Tapped."

OUTPUT

RELATED ITEMS

PICTUREBUTTON, MAKEBITMAP, SETICON, WINDOW

..
74 NS BASIC Handbook

EDIT Command

EDIT lineNo

DESCRIPTION

EDIT loads the program Statement line specified by lineNo
into the Edit Box. You may use a lable in place of the actual
line number. You may make any desired changes to the line
and then update the program by tapping Enter. Tap the close
box to discard the changes.

EXAMPLE

* EDIT 110

OUTPUT

RELATED ITEMS

..
NS BASIC Handbook 75

ELEMENTS Function

ELEMENTS(frame)

DESCRIPTION

ELEMENTS returns a sorted list of all element names in
frame. It is useful for getting the names of the elements
within a frame when they are not known.

The INTERN Function returns an internal reference that
may be used in an expression. It may be used along with
ELEMENTS to access the values stored in the elements
within a frame.

Line 50 of the example below demonstrates the use of
INTERN. This line shows that ELEMENTS returns an array
of strings representing the names of the elements in a frame,
while INTERN converts those strings into a form that is
used to access the values stored in the elements of the
frame.

EXAMPLE

10 REM Elements Example
20 X := {a: 1, d: 4, b: 2, c:3}
30 Y := ELEMENTS(X)
40 FOR i=0 TO LENGTH(Y)-1
50 PRINT Y[i]; x.(INTERN(Y[i]))
60 NEXT I

OUTPUT

a1
b2
c3
d4
*

RELATED ITEMS

HASSLOT, INTERN

..
76 NS BASIC Handbook

ELSE Statement

ELSE

DESCRIPTION

ELSE is used to separate statements to be executed when
the expression in an IF THEN statement is TRUE from those
to be executed when the expression is NIL.

EXAMPLE

10 REM Block IF Example
20 a = 5
30 b = 10
40 IF a=b THEN
50 PRINT a, b
60 PRINT "The numbers are equal."
70 ELSE
80 PRINT ABS(b-a)
90 PRINT "The numbers are this far apart"
100 END IF

OUTPUT

5
The numbers are this far apart
*

RELATED ITEMS

IF THEN ELSE, END IF

..
NS BASIC Handbook 77

END Statement

END [IF]

DESCRIPTION

END causes the program to stop executing without a beep.
The program can be continued from the Statement after the
END Statement by using the CON Command.

END IF marks the end of the current IF THEN block. END
IF is paired with the nearest IF THEN statement proceeding
it, when nested IF THEN blocks are used. There must be an
IF THEN statement at a lower line number than the END IF
statement. An ELSE statement may be used between an IF
THEN statement and an END IF statement. See the example
for the ELSE statement for an example of using IF THEN,
ELSE, and END IF statements in a program.

EXAMPLE

10 REM END Example
20 PRINT "Line Number 1"
30 END
40 PRINT "Line Number 2"

OUTPUT

Line Number 1
*

CON
Line Number 2
*

RELATED ITEMS

STOP, CON, BYE, IF, ELSE

..
78 NS BASIC Handbook

ENTER Statement

ENTER fileName [/programName]

DESCRIPTION

ENTER loads a text file named by the string variable or
string literal fileName from the default store, and attempts
to enter each line in the program in exactly the same way
lines are typed with the keyboard. In addition to text files,
Newton Books (created by Newton Press) containing
NS BASIC Statements and Commands may be loaded.Text
files may have been created by another application, sent
over in serial mode, or by use of the LIST Statement. If a line
number from the text file matches a line number of a
Statement already in memory, the line from the text file
overwrites the one in memory. To enter a program without
merging, type NEW before the ENTER Statement.

When you LOAD a program, NS BASIC does not re-
interpret the Statements. ENTER can be used to re-
interpret a program.

Previously saved NS BASIC programs have a ".bas" after
fileName. If the file was created by the LIST Command it has
a ".txt" after fileName. If it is a Newton Press package, it has
a ".pkg" after fileName. Use /programName to load a specific
program named programName when loading from a Newton
Press package containing multiple program listings.

EXAMPLE USING NEWTON BOOK OF SAMPLE PROGRAMS

*

ENTER examples/else
*

LIST

OUTPUT

10 REM Block IF Example
20 a = 5
30 b = 10
40 IF a=b THEN
50 PRINT a, b
60 PRINT "The numbers are equal."
70 ELSE
80 PRINT ABS(b-a)
90 PRINT "The numbers are this far apart"
100 END IF
*

..
NS BASIC Handbook 79

EXAMPLE USING SAVED BASIC PROGRAM

10 REM Simple Program
20 PRINT "Line 1"

SAVE "SimpleProgram"
NEW
10 REM Second Program
20 PRINT "Line 3"
30 PRINT "Line 4"

OUTPUT

*

ENTER SimpleProgram.bas
*

LIST
10 REM Simple Program
20 PRINT "Line 1"
30 PRINT "Line 4"
*

RELATED ITEMS

LIST, LOAD, SAVE

..
80 NS BASIC Handbook

ENVIRON Statement

ENVIRON variableName = value

ENV(variableName)

DESCRIPTION

The ENVIRON Statement allows you to create
environment variables that retain their value even after
closing NS BASIC or resetting your Newton.

ENV(variableName) returns the value currently stored in
environment variable variableName. The STATS Command
shows a complete list of all environment variables and their
current values. You may also view the environment variables
by tapping the i button in the NS BASIC environment and
selecting Prefs from the menu.

To remove an environment variable, set its value to NIL or
leave the right hand side of the Statement empty. It will be
removed the next time you close NS BASIC.

SPECIAL NS BASIC ENVIRONMENT VARIABLES

You can control just how much information is printed for
arrays and frames using the PRINTDEPTH environment
variable. The default is 1, and valid values are 0 (no
information is printed for arrays and frames) to any desired
depth. When a variable that is an array or frame is used in a
PRINT Statement the individual elements of the array or
items of the frame will or will not be printed based on
PRINTDEPTH.

You can select the type of package created by the
MAKEPACKAGE Command using the
MAKEFATPACKAGE environment variable. The default is
NIL (make low fat packages) and valid values are NIL and
TRUE to make a fat package. A fat package may be executed
on any Newton even if NS BASIC is not installed, a low fat
package will only run if RUNTIME.PKG or NS BASIC is
installed on the Newton.

When LISTing a program the environment variable
LISTWIDGETS controls the display of the contents of the
layouts defined in WIDGETDEF Statements. Setting it to

..
NS BASIC Handbook 81

TRUE shows the contents, setting it to NIL hides them. The
environment variable PRETTYPRINT controls indenting of
the WIDGETDEF contents. When set to TRUE the
contents will be indented such that they line up and are easy
to read. When listed this way a program cannot be
ENTERed or cut and paste into NS BASIC. When set to NIL
the contents are not indented, so the LISTing may be
ENTERed or cut and paste into NS BASIC.

The environment variable WIDGETDEFTYPE controls the
layout format used in WIDGETDEF Statements. Setting it to
'array forces the Visual Designer to return the layout as
an array of WindowSpecs. Setting it to 'frame forces the
Visual Designer to return the layout as a frame of
WindowSpecs. By default the Visual Designer returns the
same format as was initially used for a layout. New layouts
default to frame format unless WIDGETDEFTYPE is set to
'array.

You can read or write data via the screen, or any of the
other ports using NS BASIC. The location for input and
output is controlled using the environment variable IO. IO
may be set to any of the following values:

The setting of IO determines where INPUT is taken from
and PRINT is directed to. When you issue an INPUT
Statement, even when IO is not set to "Scre", the current
inputPrompt is sent out the port first. The input that is read
must be terminated by a CR character. PRINT Statements
are always terminated by a CR character. Control
characters can be sent as part of the output stream. For
example:

"Scre" Newton Screen

"extr" External serial port

"infr" Infrared port

"mmnp" Internal MNP modem

"slt1" Serial card in Card slot 1

"slt2" Serial card in Card slot 1

..
82 NS BASIC Handbook

PRINT CHR(27)

will send the ESC character.

Note: the Newton needs a moment to switch its output
from or to a new port. Your code must include a WAIT
Statement following the ENVIRON IO = "newPort"
Statement.

The environment variable inputPrompt contains the
character that is displayed by an INPUT Statement when it
is prompting for input. This is especially useful for
communications: setting inputPrompt to "" will make the
INPUT Statement display no character prompt at all. The
default value for inputPrompt is "? " and it is set to this when
starting NS BASIC.

You may reset inputPrompt to its default setting using the
following statement:

ENVIRON inputPrompt="? "

There are environment variables containing frames that are
used to control the characteristics of each port except for
"Scre". The name of the frame is the same as the name used
for IO (e.g.: EXTR, INFR, MMNP, SLT1, and SLT2). Any
changes you make to the frame stored in any of these
environment variables are used the next time
communications are established to that port using the IO
environment variable. Changes you make will not affect the
current connection. For example, you must set the EXTR
environment variable before you set IO to "extr". The
elements of theses frame are set to their default values each
time NS BASIC is started.

The Table below summarizes the elements of a frame used
to control communications:

..
NS BASIC Handbook 83

Port Control

CONNECT The message that is sent
when establishing a
connection.

"Connect."&
 CHR(10) &
"*"

INPUT.FORM The pre-processing style for
input. Set to 'raw to receive
data of class 'binary (such as
Unicode.) Set to 'string for
normal input.

'string

INPUT.¬
REQTIMEOUT

Length of time (in
milliseconds) before timing
out.

none

INPUT.¬
TERMINATION.¬
ENDSEQUENCE

The character, array of
characters, or string that is
used to terminate an input
field.
Note: You may use special
characters by using the
CHR Function.

CHR(13)

INPUT.¬
TERMINATION.¬
BYTECOUNT

The number of characters
to accept before
automatically terminating.

NIL

DATA[0] The transmission speed
(bps). Allowed values are
300, 600, 1200, 2400, 4800,
7200, 9600, 12000, 14400,
19200, 38400, 57600,
115200, 230400

9600

DATA[1] The number of data bits.
Allowed values are 5, 6, 7, 8.

8

DATA[2] The number of stop bits.
Allowed values are 0, 1, 2.

1

DATA[3] The parity. Allowed values
are "NO", "EVEN", "ODD"

"NO"

..
84 NS BASIC Handbook

In addition to the elements above, the MMNP environment
variable contains these additional elements:

Additional MMNP Settings

EXAMPLE: USING YOUR OWN ENVIRONMENT VARIABLES

* ENVIRON pie=3.1415926
* PRINT ENV("pie")
* ENVIRON pie=
* STATS

OUTPUT

3.1415926
(STATS shows that there is currently a pie
environment variable with the value NIL)

Refer to the Technical Notes supplied on the NS BASIC disk
for examples of using the ports for communication.

RELATED ITEMS

IOCONNECT

HWFLOW Enable hardware flow
control. TRUE or NIL.

NIL

SWFLOW Enable software (XON/
XOFF) flow control. TRUE
or NIL.

NIL

PHONE Phone number to dial NIL

..
NS BASIC Handbook 85

ERASE Statement

ERASE from,to

DESCRIPTION

Deletes lines of the currently loaded program starting at
from and ending at to. ERASE can not erase itself.

EXAMPLE

10 REM ERASE Example
20 ERASE 30, 40
30 PRINT "Line 30"
40 PRINT "Line 40"
50 PRINT "Line 50"

OUTPUT

Line 50
*

RELATED ITEMS

..
86 NS BASIC Handbook

EXIT Statement

EXIT DO

EXIT FOR

DESCRIPTION

EXIT leaves a loop at any point. If you have a specific
condition that ends loop processing, you use EXIT to
terminate the loop and begin execution at the statement
following the loop. You can use EXIT instead of a GOTO
statement in this case.

EXIT DO causes the statement following the LOOP
statement for the DO loop to be executed next, ending the
DO loop.

EXIT FOR causes the statement following the NEXT
statement for the FOR/NEXT loop to be executed next,
ending the FOR/NEXT loop.

EXAMPLE

10 i=0
20 DO
30 i=i+1
40 IF i>5 THEN EXIT DO
50 LOOP UNTIL i=10
60 PRINT i

OUTPUT

6
*

EXAMPLE

10 FOR i = 1 TO 10
20 IF i>5 THEN EXIT FOR
30 NEXT i
40 PRINT i

OUTPUT

6
*

RELATED ITEMS

FOR, NEXT, DO, LOOP, GOTO

..
NS BASIC Handbook 87

EXP Function

EXP(x)

EXPM1(x)

DESCRIPTION

EXP returns the natural (base -e) exponential for the real
number or integer x.

EXPM1 returns EXP(x)-1.

EXAMPLE

10 REM EXP Example
20 PRINT "Please enter a number"
30 INPUT Number
40 PRINT "The Natural exponential is " ;
EXP(Number)

OUTPUT

Please enter a number
?

 7
The Natural exponential is 1,096.63315842846
*

RELATED ITEMS

..
88 NS BASIC Handbook

FLOOR Function

FLOOR(x)

DESCRIPTION

FLOOR returns the integer less than or equal to the real
number x.

EXAMPLE

10 REM FLOOR Example
20 PRINT "Please enter a number"
30 INPUT Number
40 PRINT "Next Smallest integer is..." ;
FLOOR(Number)

OUTPUT

Please enter a number
?

12.31
"Next Smallest integer is...12
*

RELATED ITEMS

CEILING

..
NS BASIC Handbook 89

FOR Statement

FOR variable =expression1 TO expression2 [STEP
expression3]

DESCRIPTION

The FOR statement first sets variable to expression1. It starts
counting up to expression2 by adding expression3 to the
variable at the end of every cycle. If expression3 is a negative
number the counter will count down from expression1 to
expression2 in expression3 increments. If expression3 is
omitted NS BASIC assumes the default value of 1.
Expression3 cannot be zero.

A FOR Statement must have a corresponding NEXT
Statement somewhere after it in the program in order to
make the loop complete. FOR loops may be "nested" or
placed within one another. Any number of FOR loops may
be nested within each other.

The final value of variable is equal to the first number the
loop reaches beyond expression2.

You can exit the loop by using the EXIT LOOP statement
within the loop.

EXAMPLE

10 REM FOR Loop Example
20 FOR i = 1 TO 10 STEP 3
30 FOR j = 1 to 2
40 PRINT i,j
50 NEXT j
60 NEXT i

OUTPUT

1 1
1 2
4 1
4 2
7 1
7 2
10 1
10 2
*

RELATED ITEMS

DO, NEXT, EXIT FOR

..
90 NS BASIC Handbook

FUNCTION Statement

FUNCTION functionName(args) expression

DEF FN functionName(args) = expression

DESCRIPTION

FUNCTION and DEF FN define a user function.
FunctionName is a valid NS BASIC variable name and
expression is a valid NS BASIC expression or NewtonScript
code. args are parameter variables that are used in
expression. User functions retain their values in the same
manner as any other variable. Use of functions can greatly
speed up your code.

Note: To use NewtonScript in expression, you'll need a
NewtonScript Manual. Programming for the Newton, by
McKeehan and Rhodes and published by AP Professional is
a good source of NewtonScript documentation.

Variables within your NS BASIC program are available
within expression, even if they aren't passed in via args:
preface them with "U.".

To call a user function, use:

U:functionName(args)

..
NS BASIC Handbook 91

EXAMPLE

10 REM FUNCTION Example
20 DEF FNS(starttime)=(TICKS()-starttime)/60
30 FUNCTION tot(b) BEGIN LOCAL x:=0; FOR i:=0
TO LENGTH(b)-1 DO x:=x+b[i]; x END
40 iterations=1000
50 a=ARRAY(iterations, 25)
60 GOSUB 90 //sum using NS BASIC loop
70 GOSUB 170 //sum using function
80 STOP
90 REM sum using NS BASIC loop
100 tm=TICKS()
110 x=0
120 FOR i=0 TO LENGTH(a)-1
130 x=x+a[i]
140 NEXT i
150 PRINT "Method 1:", U:fns(tm)
160 RETURN
170 REM sum using function
180 tm=TICKS()
190 x=U:tot(a)
200 PRINT "Method 2:", U:fns(tm)
210 RETURN

OUTPUT

Method 1: 15
Method 2: 0.1
Stop at 0080
*

RELATED ITEMS

..
92 NS BASIC Handbook

GAUGE Widget

WINDOW winNum, windowSpec, "GAUGE"

DESCRIPTION

The GAUGE widget provides a display of a relative value
(i.e., the battery gauge). You can set the initial value of the
GAUGE, and update the value within a program.

The widget is controlled using the windowSpec. These fields
are supported:

viewValue: The current setting (0-100% filled)

You may also use these fields in windowSpec: viewBounds,
viewFlags, viewFormat.

Whenever you change the viewValue of a GAUGE, you
must use

WPRINT winNum, ""

to update the display of the GAUGE.

EXAMPLE

10 REM GAUGE Example
20 w1Spec = {viewValue:0}
30 WINDOW w1, w1Spec, "GAUGE"
40 SHOW w1
50 FOR i = 1 TO 100
60 w1Spec.viewValue = i
70 WPRINT w1, ""
80 NEXT i

OUTPUT

(at the half-way point)

RELATED ITEMS

SHOW, HIDE, PROGRESS, SLIDER, WINDOW, WPRINT

..
NS BASIC Handbook 93

GET Statement

GET chan, variable[, key]

DESCRIPTION

GET retrieves information from file chan. Chan is a number
returned from the OPEN or CREATE Statement. Variable is
the variable in which the data retrieved from the file is
placed. If a record is saved with a key, specifying key will get
only that record. If key is not specified the next record will
be retrieved. To use a key with the GET Statement a key
must have been specified when OPEN was used for the chan
as well.

GET uses a variable named FSTAT to indicate that the
record was either read or not read. FSTAT will be set to
one of three values:

Note: You should avoid using a variable named FSTAT for
your own purposes.

0 Record successfully read, variable set to read
record

1 End of file reached, variable is set to NIL

2 key not found, variable is set to next closest
record

..
94 NS BASIC Handbook

EXAMPLE

10 REM GET Example
20 PRINT "The first 5 first names of the names
file will be displayed."
30 OPEN CH,"Names"
40 IF FSTAT <> 0 THEN STOP
50 FOR i = 1 TO 5
60 GET CH, NameData
70 IF FSTAT = 1 THEN STOP
80 PRINT NameData.Name.first
90 NEXT i

OUTPUT

RUN
The first 5 first names of the names file will
be displayed.

John
Jane
Bob
Chris
Karen
*
(The names above will be the first 5 names of
the "Names" file on your Newton.)

RELATED ITEMS

CREATE, OPEN, PUT, DEL

..
NS BASIC Handbook 95

GETGLOBALS Function

GETGLOBALS().element

DESCRIPTION

GETGLOBALS retrieves element from your Newton's global
information area. The most common information that you
will want to retrieve is in the element named
userConfiguration. However, other data is also
available. A list of some common fields is provided in the
Accessing and Using Other Files, Data, and Applications
section of this Handbook, and in the Technical Notes on the
NS BASIC disk. There are many other fields available for
advanced users. Values can also be assigned to
GETGLOBALS().element.

Note: Changing system values can have unexpected and
undesirable consequences. Use great caution when changing
system values.

Warning: Caution should be used when accessing and
changing the userConfiguration element. The
elements may vary for different Newton devices.

EXAMPLE

10 REM GETGLOBALS Example. Show User's name
and address
20 PRINT
GETGLOBALS().userConfiguration.company
30 PRINT
GETGLOBALS().userConfiguration.address
40 PRINT
GETGLOBALS().userConfiguration.cityzip

OUTPUT

NS BASIC Corporation
77 Hill Crescent
Toronto M1M 1J3

RELATED ITEMS

..
96 NS BASIC Handbook

GLANCE Widget

WINDOW winNum, windowSpec, "GLANCE"

DESCRIPTION

The GLANCE widget provides a display of a text message in
a window for three seconds. This window is displayed when
the SHOW Statement is executed for the widget. Once the
window has shown and hidden itself, you must re-create it
with another WINDOW Statement. In other words, you
can never SHOW a GLANCE widget more than once.

The widget is controlled using the windowSpec. These fields
are supported:

text: The message text

You may also use these fields in windowSpec: viewBounds,
viewFlags, viewFont, viewFormat.

EXAMPLE

10 REM GLANCE Example
20 w1Spec = {text:"Read me quickly"}
30 WINDOW w1, w1Spec, "GLANCE"
40 SHOW w1

OUTPUT

(a window displaying Read me quickly is displayed and
hidden)

RELATED ITEMS

SHOW, WINDOW

..
NS BASIC Handbook 97

GOSUB Statement

GOSUB lineNumber

DESCRIPTION

GOSUB causes execution to branch to the line of code
specified by lineNumber. You may use a label in place of the
actual line number. A GOSUB must be paired with a
RETURN Statement. When a RETURN Statement is found,
execution continues from the line after the GOSUB. As with
the GOTO Statement, if the lineNumber specified in the
GOSUB Statement refers to a REM Statement, NS BASIC
will also display that comment at the end of the GOSUB
Statement as a line comment when the program is listed.
The example shows this automatic commenting behavior of
GOSUB.

EXAMPLE

10 REM GOSUB Example
20 PRINT "GOSUB Routines-"
30 GOSUB 70 //Routine #2
40 GOSUB routine3
50 PRINT "Routine #1"
60 END
70 REM Routine #2
80 PRINT "Routine #2"
90 RETURN
110 routine3: REM
120 PRINT "Routine #3"
130 RETURN

OUTPUT

GOSUB Routines-
Routine #2
Routine #3
Routine #1
*

RELATED ITEMS

REM, GOTO, LIST, RETURN

..
98 NS BASIC Handbook

GOTO Statement

GOTO lineNumber

DESCRIPTION

GOTO causes execution to branch to the line of code
specified by lineNumber. You may use a label in place of the
actual line number.

As with the GOSUB Statement, if the lineNumber specified
in the GOTO Statement refers to a REM Statement, NS
BASIC will also display that comment at the end of the
GOTO Statement as a line comment when the program is
listed. The example shows this automatic commenting
behavior of GOTO.

EXAMPLE

10 REM GOTO Example
20 PRINT "Please enter a number..."
30 REM input a number
40 INPUT x
50 IF x >100 THEN GOTO bigger
60 PRINT "The number is too small"
70 PRINT "Please Re-enter..."
80 GOTO 0030 //input a number
90 bigger: END

OUTPUT

Please enter a number...
?

13
The number is too small
Please Re-enter...
?

137
*

RELATED ITEMS

REM, GOSUB, LIST

..
NS BASIC Handbook 99

HASSLOT Function

HASSLOT(frame, slotName)

DESCRIPTION

HASSLOT returns TRUE if the symbol in slotName is the
name of a field in frame. Returns NIL otherwise.

EXAMPLE

10 REM HASSLOT Example
20 testFrame := {name: "Fred", fridge: TRUE}
30 IF hasslot(testFrame, 'name) THEN ¬
PRINT "It has a name"
40 IF HASSLOT(testFrame, 'size) THEN ¬
PRINT "It has a size"
50 IF HASSLOT(testFrame, 'fridge) THEN ¬
PRINT "It has a fridge"

OUTPUT

It has a name
It has a fridge
*

RELATED ITEMS

ELEMENTS, REMOVESLOT

..
100 NS BASIC Handbook

HEXDUMP Function

HEXDUMP(object, start, end)

DESCRIPTION

HEXDUMP returns a string containing a hex dump of the
string or binary object. The entire dump is created and
placed in the return string, so you may run out of memory
if you try and dump very large objects. You may use the
SUBSTR() Function to dump only a portion of a string, or
you may specify the start and end bytes to dump. If start and
end are NIL the entire object is dumped.

HEXDUMP is useful for Serial and IR programming.

EXAMPLE

10 REM HEXDUMP Example
20 dumpString = "This is a String"
30 PRINT HEXDUMP(dumpString,0,20)

OUTPUT

0000: 00540068 00690073 00200069 00730020
.T.h.i.s. .i.s.
0016: 00610020 .a.
*

RELATED ITEMS

SUBSTR

..
NS BASIC Handbook 101

HIDE Statement

HIDE winNum | winNumlist

DESCRIPTION

HIDE removes the single window winNum, or the list of
windows winNumlist from the screen. winNum and
winNumlist are the numbers created by the WINDOW
Statement. winNum may be an array of window numbers,
and winNumlist may contain one or more arrays of window
numbers. If HIDE is used with no arguments, all currently
displayed windows are removed. Note that using HIDE
without arguments means that you must re-create windows
with the WINDOW Statement before showing them again.

EXAMPLE

10 REM HIDE Example
20 W1Spec := {ViewBounds: ¬
SETBOUNDS(10, 50, 100, 100)}
30 W2Spec := {ViewBounds: ¬
SETBOUNDS(20, 70, 100, 100)}
40 WINDOW Win1, W1Spec
50 WINDOW Win2, W2Spec
60 WPRINT Win1, "Window 1"
70 WPRINT Win2, "Window 2"
80 SHOW [Win1, Win2]
90 WAIT
100 HIDE Win2
110 SHOW Win2
120 HIDE

OUTPUT

(Two windows are created and then removed from
the screen.)
*

RELATED ITEMS

SHOW, WINDOW, WIDGETDEF, WPRINT, CLS

..
102 NS BASIC Handbook

HITSHAPE Function

HITSHAPE(shape, X, Y)

DESCRIPTION

HITSHAPE returns TRUE if the point described by X, Y falls
within the supplied shape. Returns NIL if the point is outside
the shape. You create shape using MAKELINE, MAKEOVAL,
etc.

EXAMPLE

10 REM HITSHAPE Example
15 button = MAKEOVAL(10,10,40,40)
20 ws := {GOTO: 'ovalHit, DRAWING: button}
30 WINDOW w1,ws
50 SHOW w1
60 WAIT -1
100 ovalHit: REM process user tap
110 IF HITSHAPE(button, ws.firstX, ws.firstY)
THEN PRINT "You tapped in the button!" ELSE
PRINT "You missed the button!"
120 HIDE

OUTPUT

(A window with an oval is displayed. Tap
inside the oval.)
You tapped in the button!
*

RELATED ITEMS

SHOW, WINDOW, MAKELINE, MAKEOVAL, etc.

..
NS BASIC Handbook 103

HOURMINUTE Function

HOURMINUTE(Time)

DESCRIPTION

HOURMINUTE returns a string giving the time as HH:MM.
Time is the returned value from the TIME Function. To get
the number of seconds, you must use the TICKS Function.

EXAMPLE

10 REM HOURMINUTE Example
20 CurTime = TIME()
30 PRINT HOURMINUTE(CurTime)

OUTPUT

12:45 pm
*

RELATED ITEMS

TIME, TICKS

..
104 NS BASIC Handbook

HWINPUT Statement

HWINPUT variable [,prompt [, popUpList]]

DESCRIPTION

HWINPUT opens a box for hand written input. It places the
result into variable. As with the INPUT Statement, if variable
ends in a "$", the result is made into a string.

Prompt is an optional argument. The value of prompt is
displayed in the user box. If prompt is not supplied, a simple
box where the user may enter hand written input is
displayed.

PopUpList is also an optional argument. It is only available if
prompt is supplied. HWINPUT creates a pop-up list similar
to the ones used in other applications on your Newton. The
user may display the popUpList by tapping on prompt in the
displayed box. PopUpList must be an array of strings. i.e.
["George", "Liz", "John"].

EXAMPLE

10 REM HWINPUT Example
15 PopUp = ["Ford", "Arthur", "Trillian",
"Zaphod"]
20 HWINPUT Name,"Please enter your
Name...",PopUp
30 PRINT "Hello " ; Name

OUTPUT

RELATED ITEMS

INPUT, WINDOW, SHOW, HIDE, WPRINT

..
NS BASIC Handbook 105

IF THEN ELSE Statement

IF expression THEN [statement1 [ELSE statement2]]

DESCRIPTION

The IF THEN ELSE Statement allows conditional execution
of program code based on the evaluation of an expression.
If the result of expression is TRUE then statement1 is
processed, otherwise statement2 is executed.

When ELSE statement2 is not supplied, the next statement
in the program is executed if expression is NIL.

When no statements follow the THEN, this begins a block
IF THEN ELSE END IF. You may place as many statements
as you need between the IF THEN statement, and an
optional ELSE statement. After the ELSE statement you may
place multiple statements, followed by the END IF
statement. Use this form if you need to execute more than
one statement if expression is TRUE or NIL.

EXAMPLE

10 REM IF THEN ELSE Example
20 PRINT "Please Enter a Number."
30 INPUT Number
40 IF Number>=100 THEN PRINT "Number is
greater than or equal to 100" ELSE PRINT
"Number is less than 100"
50 IF Number=0 THEN PRINT "Number is equal to
zero"

OUTPUT

Please Enter a Number.
?

30
Number is less than 100.
*

RUN
Please Enter a Number Between 1 & 100.
?

157
Number is greater than or equal to 100
*

RELATED ITEMS

ELSE, END IF

..
106 NS BASIC Handbook

INPUT Statement

INPUT variable1 [,variable2] ... [,variableN]

DESCRIPTION

INPUT prompts the user for information. A question mark
followed by a blinking insertion point is displayed. The
information the user enters at the INPUT prompt is placed
into variable. Multiple inputs to different variables may be
assigned using a single INPUT Statement. The variable type
is automatically assigned by NS BASIC to match the data
entered by the user. If any of the variable names ends in a
"$" then the type for that variable is string, and any data
entered by the user will be converted to a string prior to
storing it in the variable.
When the INPUT statement specifies a single string variable,
then the user may enter commas, or an empty string (i.e.,
just press return) at the input prompt.

EXAMPLE

10 REM INPUT Example
20 PRINT "Please enter two things."
30 INPUT a,b
40 PRINT "Please enter one more thing."
50 INPUT c$
60 PRINT "You typed in...", a; " & "; b; " &
"; c$

OUTPUT

Please enter two things.
?

5 , Llamas
Please enter one more thing.
?

12.8, see the comma!
You typed in... 5 & Llamas & 12.8, see the
comma!

RELATED ITEMS

PRINT, LET

..
NS BASIC Handbook 107

INTERN Function

INTERN(string)

DESCRIPTION

INTERN returns an internal reference to string. It is most
commonly used to access elements within a frame through
a variable. INTERN returns a symbol.

Note: The result must be placed within parenthesis when
used in an expression that accesses a frame element.

EXAMPLE

10 REM INTERN Example
20 frame:={a: 1, b:2, c:3}
30 frame_ele=INTERN("b")
40 PRINT frame.(frame_ele)
50 frame_names=ELEMENTS(frame)
60 FOR i=0 TO LENGTH(frame_names)-1
70 PRINT frame_names[i],
frame.(INTERN(frame_names[i]))
80 NEXT i
90 PRINT frame

OUTPUT

2
a 1
b 2
c 3

RELATED ITEMS

ELEMENTS

..
108 NS BASIC Handbook

IOCONNECT Function

IOCONNECT(service, optionsFrame)

IODISCONNECT(endpointFrame)

IOPRINT(endpointFrame, text)

DESCRIPTION

These three functions implement an alternative means of
accessing the communications facilities of the Newton. The
complete details of Newton communications is provided in
the Apple document "Newton Programmer’s Guide:
Communications". This document is available on the World-
Wide-Web.

IOCONNECT opens up communications to a device, and
returns a frame (called an endPoint) with information about
the connection. Select the desired port using service. This
should be one of the strings used in IO environment
variable. The optionsFrame is a frame with the same elements
as in the EXTR environment variable.

IODISCONNECT closes the connection to an open device.
The endpointFrame is the value returned from
IOCONNECT.

IOPRINT sends the string in text out via the device
represented by endpointFrame.

Incoming data is still read using the INPUT Statement.

RELATED ITEMS

ENVIRON, INPUT, PRINT

..
NS BASIC Handbook 109

LABELINPUT Widget

WINDOW winNum, windowSpec, "LABELINPUT"

DESCRIPTION

The LABELINPUT widget provides a label with a text entry
line. The widget may also contain a pick-list. If it does, then
a small diamond is displayed in front of the label. Tapping the
label displays the pick-list. Tapping an item in the list enters
it into the text entry line.

The widget is controlled using the windowSpec. These fields
are supported:

entryFlags: recognition flags for the entry field, as used in
viewFlags.

label: The label text
labelFont: The label font
text: The initial entry field value
entryLine.text: The user entered or updated entry field

value
labelCommands: The optional pick list (an array of strings)
curLabelCommand: The initial selection from the optional

pick list
viewValue: The current selection from the optional pick

list

Note: you can update the text displayed by the
LABELINPUT widget using the following method:

SETVALUE(windowSpec.entryLine, 'text, "New
Value")

This function changes the text displayed to New Value, and
re-draws the widget. You can retrieve the value entered by
the user using the following expression:

fieldText = windowSpec.entryLine.text

You may also use these fields in windowSpec: viewBounds,
viewFlags, viewFont, viewFormat.

..
110 NS BASIC Handbook

EXAMPLE

10 REM LABELINPUT Example
20 w1Spec = {viewBounds:SETBOUNDS(20,20,200¬
 ,45),labelCommands:["one", "2", "three"]}
30 WINDOW w1, w1Spec, "LABELINPUT"
40 SHOW w1

OUTPUT

RELATED ITEMS

HIDE, SHOW, SETVALUE, WINDOW

..
NS BASIC Handbook 111

LABELPICKER Widget

WINDOW winNum, windowSpec, "LABELPICKER"

DESCRIPTION

The LABELPICKER widget provides a label with a text
display line. The widget also contains a pick-list. A small
diamond is displayed in front of the label. Tapping the label
displays the pick-list. Tapping an item in the list displays it
next to the label.

The widget is controlled using the windowSpec. These fields
are supported:

text: The label text

labelCommands: The pick list (an array of strings)

viewValue: The current selection from the pick list

You may also use these fields in windowSpec: viewBounds,
viewFlags, viewFont, GOTO, GOSUB, viewFormat.

EXAMPLE

10 REM LABELPICKER Example
20 w1Spec = {labelCommands:¬
 ["one", "two", "three"]}
30 WINDOW w1, w1Spec, "LABELPICKER"
40 SHOW w1

OUTPUT

RELATED ITEMS

HIDE, SHOW, WINDOW

..
112 NS BASIC Handbook

LENGTH Function

LENGTH(x)

DESCRIPTION

Length returns the number of elements in array x.

Note: use STRLEN for strings.

EXAMPLE

10 REM LENGTH Example
20 a := [1,2,"Three", 4]
30 PRINT "a has "; LENGTH(a); " elements."

OUTPUT

a has 4 elements.
*

RELATED ITEMS

STRLEN

..
NS BASIC Handbook 113

LET Statement

[LET] variable = expression (Normal form)

[LET] variable := expression (Special use only)

DESCRIPTION

The LET statement evaluates expression and assigns it to
variable. NS BASIC automatically adds the word "LET" in a
program listing if you do not enter it.

The variable type (e.g., integer, real, string, etc.) is
determined automatically by NS BASIC depending on the
contents of expression. If variable has a "$" after it the type
will always be a string.

The second form, using := as the assignment operator,
assigns a reference to the right hand side instead of the
value. This is useful for saving memory when accessing large
objects, such as getGlobals().

EXAMPLE

10 REM LET Example
20 PRINT "What is your Name?"
30 INPUT Name$
40 PRINT "What is your age?"
50 INPUT age
60 LET age = age + 10
70 PRINT Name$; "...";"In 10 years your age
will be...";age

OUTPUT

What is your Name?
?

John
What is your age?
?

21
John...In 10 years your age will be...31

RELATED ITEMS

..
114 NS BASIC Handbook

LIST Command

LIST [startline [,endline[,fileName]]]

DESCRIPTION

The LIST Command displays the currently LOADed
program’s source code. The user may specify startline and
endline together or separately. If a single number follows
LIST, only that one line will be displayed. If no starting or
ending line is given the LIST Command displays the entire
program. Only a single screen of code will be displayed by
NS BASIC at a time. If there is more than one screen to be
listed then

--More--

will be displayed at the end of each screen. Tap the return
key to continue.

To save the listing to a file, place a comma and fileName after
the first two parameters. The resulting file can either be
used by other programs or can be exported to a desktop
computer. NS BASIC adds ".txt" to the end of fileName. The
file is created on the default store. These saved files can be
utilized in other programs by using the ENTER Statement.

When LISTing a program the environment variable
LISTWIDGETS controls the display of the contents of the
layouts defined in WIDGETDEF Statements. Setting it to
TRUE shows the contents, setting it to NIL hides them.

EXAMPLE

*

LIST

OUTPUT

0010 REM Counting Program
0020 FOR i = 1 TO 10
0030 PRINT i
0040 NEXT i
0050 PRINT "All Done"
*

EXAMPLE

*

LIST 20

..
NS BASIC Handbook 115

OUTPUT

0020 FOR i = 1 TO 10
*

EXAMPLE

*

LIST 30,

OUTPUT

0030 PRINT i
0040 NEXT i
0050 PRINT "All Done"
*

EXAMPLE

*

LIST 20,30

OUTPUT

0020 FOR i = 1 TO 10
0030 PRINT i
*

EXAMPLE

*

LIST ,30

OUTPUT

0010 REM Counting Program
0020 FOR i = 1 TO 10
0030 PRINT i
*

EXAMPLE

*

LIST 10,50,"LISTProgram"

OUTPUT

*

RELATED ITEMS

ENTER

..
116 NS BASIC Handbook

LOAD Command

LOAD fileName

DESCRIPTION

LOAD recalls a SAVEd program named fileName to the
active memory. If file fileName does not exist an I/O error
will result.

EXAMPLE

LOAD "Llamas"

OUTPUT

*

RELATED ITEMS

DIR, SAVE

..
NS BASIC Handbook 117

LOG Function

LOG(x)

LOGB(x)

LOGIP(x)

LOG10(x)

LGAMMA(x)

DESCRIPTION

LOG returns the Natural (base -e) logarithm of x.

LOGB returns the binary exponent of x.

LOG1P returns LOG(1+x).

LOG10 returns the base 10 log of x.

LGAMMA returns the base e log of the absolute value of the
gamma of x.

EXAMPLE

10 REM LOG Example
20 PRINT "Please enter a number"
30 INPUT Number
40 PRINT "The LOG of the number entered is ";
LOG(Number)

OUTPUT

Please enter a number

100
The LOG of the number entered is
4.60517018598809
*

RELATED ITEMS

..
118 NS BASIC Handbook

LOOP Statement

LOOP [WHILE expression |UNTIL expression]

DESCRIPTION

The LOOP statement ends a loop. The loop begins with a
DO statement. You may test for the ending condition of the
loop in the LOOP statement by using the WHILE expression
or UNTIL expression. You can only use WHILE or UNTIL in
either the DO or the LOOP statement for a loop, but not
both. When you use WHILE or UNTIL in the LOOP
statement, the loop will always be executed at least once.

LOOP WHILE expression will evaluate the Boolean
expression each time after executing the loop. If expression is
TRUE, then the loop is executed again. If it is NIL, the
statement following the LOOP statement is executed.

LOOP UNTIL expression will evaluate the Boolean expression
each time after executing the loop. If expression is NIL, then
the loop is executed again. If it is TRUE, the statement
following the LOOP statement is executed.

You can exit the loop by using the EXIT DO statement
within the loop. You can create an infinite loop by omitting
WHILE and UNTIL in both the DO and LOOP statements
of a loop. If you do, then you must use EXIT DO or a
GOTO within the loop to exit it.

EXAMPLE

10 REM LOOP Example
20 i = 0
30 DO
40 i = i + 1
50 IF i > 5 THEN EXIT DO
60 LOOP WHILE i < 10
70 PRINT i

OUTPUT

6
*

RELATED ITEMS

DO, NEXT, EXIT DO

..
NS BASIC Handbook 119

MAKELINE Function

MAKEBITMAP(width, height, options)

MAKELINE(x1, y1, x2, y2)

MAKEOVAL(left, top, right, bottom)

MAKEPOLYGON(arrayOfPoints)

MAKERECT(left, top, right, bottom)

MAKEROUNDRECT(left, top, right, bottom, diameter)

MAKESHAPE(points)

MAKETEXT(string, left, top, right, bottom)

MAKEWEDGE(left, top, right, bottom, startAngle, arcAngle)

DESCRIPTION

The MAKE Functions create shapes that can be displayed in
windows with the WDRAW Statement. They each use
parameters to describe the desired shape. For
MAKEBITMAP, the width and height in pixels of the blank
bitmap are given. The options parameter should be NIL. For
MAKELINE, the starting and ending X, Y coordinates are
given. For MAKEOVAL and MAKERECT the coordinates of
a bounding box are given. For MAKEROUNDRECT, an
additional parameter describes the diameter of the circle to
use for the corners. MAKETEXT uses a bounding box and a
string to specify the text. MAKEWEDGE uses a bounding
box, the wedge angle and arc angle. MAKESHAPE is used
with ARRAYTOPOINTS to create custom shapes.

..
120 NS BASIC Handbook

EXAMPLE

10 REM WDRAW Example
20 W1Spec={viewBounds: SETBOUNDS(10, 10, 150,
75)}
30 WINDOW WinNum, W1Spec
40 SHOW WinNum
50 WDRAW WinNum, [MAKELINE(55,15,75,45),
MAKEOVAL(10,10,40,40)], {penSize:2,
penPattern:vfGray, fillPattern:vfBlack}

OUTPUT

RELATED ITEMS

ARRAYTOPOINTS, DRAWINTOBITMAP, SETICON,
WDRAW, WINDOW

..
NS BASIC Handbook 121

MAKEPACKAGE Command

MAKEPACKAGE programName

DESCRIPTION

MAKEPACKAGE creates a stand-alone package in the
Extras drawer. The name in the Extras drawer is the name
programName was SAVEd as. All stand-alone packages use a
default icon in the extras drawer.

You can use the SETICON Statement to use a custom icon
for a stand-alone package. Set the icon to the desired bitmap
before you create the stand-alone package. The complete
name of the package is programName.pkg:NSBASIC. The
name displayed in the Extras drawer is programName.

EXAMPLE

10 REM MAKEPACKAGE Example
20 PRINT "Enter starting principal"
30 INPUT principal
40 PRINT "Enter interest rate as % (i.e. 10)"
50 INPUT rate
60 PRINT "Enter term (i.e. 12 for monthly)"
70 INPUT term
80 PRINT "Enter number of years"
90 INPUT years
100 REM Compute final interest
110 rate = rate * 0.01 / term
120 PRINT "After ";years;" years the balance
is: "; compound(rate, years*term) * principal
130 END
*

SAVE INVEST
INVEST saved.
*

MAKEPACKAGE INVEST
Error 32 - Program must be SAVEd

OUTPUT

*

RELATED ITEMS

SETICON

..
122 NS BASIC Handbook

MAX Function

MAX(x, y)

FMAX(x, y)

DESCRIPTION

MAX returns the maximum value of the two integers x and
y.

FMAX returns the maximum value of the two real numbers
x and y.

EXAMPLE

10 REM MAX Example
20 PRINT "Please enter a number"
30 INPUT Number1
40 PRINT "Please enter a second number"
50 INPUT Number2
60 PRINT "The largest number entered was " ;
MAX(Number1,Number2)

OUTPUT

Please enter a number
?

12
Please enter a second number
?

108.727
The largest number entered was 108.727
*

RELATED ITEMS

MIN

..
NS BASIC Handbook 123

MIN Function

MIN(x, y)

FMIN(x, y)

DESCRIPTION

MIN returns the minimum value of the two integers x and y.

FMIN returns the minimum of the two real numbers x and y.

EXAMPLE

10 REM MIN Example
20 PRINT "Please enter a number"
30 INPUT Number1
40 PRINT "Please enter a second number"
50 INPUT Number2
60 PRINT "The smallest number entered was " ;
MIN(Number1,Number2)

OUTPUT

Please enter a number
?

72.820
Please enter a second number
?

102
The smallest number entered was 72.820
*

RELATED ITEMS

MAX

..
124 NS BASIC Handbook

MOD Function

x MOD y

FMOD(x, y)

DESCRIPTION

MOD returns the modulus of the integers x and y.

FMOD returns the modulus of the reals x and y.

Note: MOD is not the same as REMAINDER.

EXAMPLE

10 REM MOD Example
20 REM This program takes two numbers and
computes their modulus.
30 PRINT "Please enter two numbers."
40 INPUT Number1,Number2
50 Result = Number1 MOD Number2
60 PRINT "The modulus of " ; Number1 ; " and
" ; Number2; " is " ; Result

OUTPUT

Please enter two numbers.
?

7,5
The modulus of 7 and 5 is 2.
*

RELATED ITEMS

REMAINDER, DIV

..
NS BASIC Handbook 125

MONTH Widget

WINDOW winNum, windowSpec, "MONTH"

DESCRIPTION

The MONTH widget provides a display of a single month.
The days of the month can be selected as in the Dates
application.

The widget is controlled using the windowSpec. These fields
are supported:

selectedDates: An array of integers (from the TIME()
function) representing the selected dates. The first date
determines which month is displayed. If no value is
supplied, the current month is displayed

noSelection: TRUE if MONTH is display-only

singleDay: TRUE if only a single day may be selected

You may also use these fields in windowSpec: viewBounds,
viewFlags, viewFont, GOTO, GOSUB, viewFormat.

EXAMPLE

10 REM MONTH Example
20 w1Spec:={viewBounds:SETBOUNDS(10,¬
 10,115,80)}
30 WINDOW w1, w1Spec, "MONTH"
40 SHOW w1

OUTPUT

RELATED ITEMS

HIDE, SHOW, TIME, DATEPICKER, WINDOW

..
126 NS BASIC Handbook

NEW Command

NEW

DESCRIPTION

NEW clears the active memory of all program and variable
information. This allows you to create a new NS BASIC
program.

EXAMPLE

10 REM NEW Example
20 PRINT "Hello World!"
*

NEW
*

LIST

OUTPUT

*

RELATED ITEMS

..
NS BASIC Handbook 127

NEWPROGRAM Command

NEWPROGRAM

DESCRIPTION

NEWPROGRAM clears the active memory of all program
and variable information and then creates a template for a
new program. It then opens the Visual Designer so you may
create the first screen layout. This allows you to quickly
create a new NS BASIC program.

EXAMPLE

*

NEWPROGRAM
* * * * * * * * * * * * *
(The Visual Designer opens)
*

LIST

OUTPUT

0010 REM program template
0020 LET appSpec={goto:'endProgram,title:
"Demo"}
0030 window app,appSpec,"APP"
0040 show app
0050 widgetdef Layout_0
0060 window wlist,Layout_0
0070 show wlist
0100 wait -1 // indefinitely
9000 endProgram: rem
9010 hide
9020 stop
*

RELATED ITEMS

..
128 NS BASIC Handbook

NEWSETCLOCK Widget

WINDOW winNum, windowSpec, "NEWSETCLOCK"

DESCRIPTION

The NEWSETCLOCK widget provides the standard
Newton clock face for time display and entry. The clock face
is drawn scaled to the supplied viewBounds. Whenever
either clock hand is changed by the user, your GOTO or
GOSUB routine will be called. You access the user's
selection using:

hours = windowSpec.hours
minutes = windowSpec.minutes

The widget is controlled using the windowSpec. These fields
are supported:

hours: current setting of the hour hand (or the current
hour if not supplied)

minutes: current setting of the minute hand (or the current
minute if not supplied)

You may also use these fields in windowSpec: viewBounds,
viewFlags, GOTO, GOSUB, viewFormat.

EXAMPLE

10 REM NEWSETCLOCK Example
20 w1Spec := {GOTO: 'clockSel, viewBounds:¬
 SETBOUNDS(20,20,80,80)}
30 WINDOW w1, w1Spec, "NEWSETCLOCK"
40 SHOW w1
50 END
100 clockSel: REM A selection was made
110 PRINT "Hours: "; w1Spec.hours; ",¬
 Minutes: "; w1Spec.minutes

OUTPUT

RELATED ITEMS

HIDE, SHOW, SETCLOCK, WINDOW

..
NS BASIC Handbook 129

NEXT Statement

NEXT variable

DESCRIPTION

NEXT causes another iteration of the nearest preceding
FOR Statement. The variable must match the variable used
in the corresponding FOR Statement.

EXAMPLE

10 REM FOR/NEXT Example
20 FOR i = 1 TO 5
30 PRINT i
40 NEXT i

OUTPUT

1
2
3
4
5
*

RELATED ITEMS

FOR

..
130 NS BASIC Handbook

NOTIFY Function

NOTIFY(header, message)

DESCRIPTION

NOTIFY displays a standard Newton notification box
containing the header and message specified. Program
execution continues after the notice is displayed. The
function returns a frame. If the user closes the notification
display, the seenByUser field of the frame is set to TRUE.

EXAMPLE

10 REM NOTIFY Example
20 NOTIFY("Demo Program","There has been an
unexpected error")
30 END

OUTPUT

RELATED ITEMS

..
NS BASIC Handbook 131

NUMBERPICKER Widget

WINDOW winNum, windowSpec, "NUMBERPICKER"

DESCRIPTION

The NUMBERPICKER widget displays the standard Newton
number picker. A number can be entered by tapping on the
number display.

The widget is controlled using the windowSpec. These fields
are supported:

value: An integer representing the selected number. The
initial value of this field determines the initial display.

minValue: The minimum allowed value.

maxValue: The maximum allowed value. This number is
used to determine how many digits to display. Seven digits
are shown if maxValue is not specified.

showLeadingZeros: TRUE to display them, NIL to hide
them.

viewBounds: The width is calculated automatically based
on maxValue. The left value is then calculated from the
supplied right value. The height (bottom - top) should
be 32.

You may also use these fields in windowSpec: viewFlags,
GOTO, GOSUB.

EXAMPLE

10 REM NUMBERPICKER Example
20 w1Spec = {GOTO: 'numberChanged, value: 0}
30 WINDOW w1, w1Spec, "NUMBERPICKER"
40 SHOW w1
50 END
100 numberChanged: REM value changed
110 PRINT "Value is: "; w1Spec.value

OUTPUT

RELATED ITEMS

HIDE, SHOW, WINDOW

..
132 NS BASIC Handbook

NUMBERSTR Function

NUMBERSTR(number)

DESCRIPTION

NUMBERSTR returns a string representation of number.
number may be of any numerical type. You may manipulate
the resulting string using the other string functions.
Numbers in string format cannot be used in calculations or
numeric expressions.

EXAMPLE

10 REM NUMBERSTR Example
20 Number = 127.924
30 PRINT "Number is " ; Number
40 PRINT "String representation is ";
NUMBERSTR(Number)

OUTPUT

Number is 127.924
String representation is 127.924

RELATED ITEMS

STRINGTONUMBER

..
NS BASIC Handbook 133

ON ERROR GOTO Statement

ON ERROR GOTO lineNumber

DESCRIPTION

ON ERROR GOTO enables program error handling. Once
error handling has been enabled, all errors detected cause
NS BASIC to immediately GOTO lineNumber. You may use
a label in place of the actual line number. If lineNumber does
not exist execution stops and an error message is displayed.
Program error handling may be disabled using

ON ERROR GOTO 0

This tells NS BASIC to perform standard error processing
from now on. Execution stops and the error number is
printed when there is an error.

Note: Division by Zero does not cause an error.

EXAMPLE

10 REM Error Checking Example
20 ON ERROR GOTO 60
30 x = 1+"2"
40 ON ERROR GOTO 0
50 END
60 PRINT "Error Routine"

OUTPUT

Error Routine
*

RELATED ITEMS

..
134 NS BASIC Handbook

ON GOTO/GOSUB Statement

ON expression GOTO lineList

ON expression GOSUB lineList

DESCRIPTION

ON GOTO performs a GOTO to one of the lines in lineList,
depending on the value returned when expression is
evaluated.

ON GOSUB performs a GOSUB in the same manner as ON
GOTO.

You may use a label in place of one or more of the actual
line numbers. Expression can be any numeric expression. It is
evaluated and rounded to an integer, and is then used to
select one line from lineList. lineList consists of a list of
program line numbers separated by commas. The value of
expression determines which of these lines the program will
branch to. The value of expression is used as an index into
lineList. The index of the first line number in lineList is one. If
expression evaluates to more than the number of arguments
in lineList, the line following the ON GOTO/GOSUB
Statement is executed.

..
NS BASIC Handbook 135

EXAMPLE

10 REM ON GOSUB/GOTO Example
20 PRINT "Please enter a value for
expression..."
30 INPUT Expression
40 ON Expression GOTO 50, middle, 90
50 PRINT "Routine #1"
60 END
70 middle: PRINT "Routine #2"
80 END
90 PRINT "Routine #3"

OUTPUT

Please enter a value for expression...
?

2
Routine #2
*

RUN
Please enter a value for expression...
?

1.4
Routine #1
*

RUN
Please enter a value for expression...
?

0
Routine #1
*

RELATED ITEMS

GOSUB, RETURN, GOTO

..
136 NS BASIC Handbook

OPEN Statement

OPEN chan, fileName [,key]

DESCRIPTION

OPEN prepares file fileName for data storage, retrieval, and
deletion. The channel number for the open file is assigned to
chan. You must use chan to refer to the open file in GET,
PUT, and DEL Statements.

fileName is a quoted string literal or string variable
containing the name of the file to be opened either in your
Newton’s internal memory or on the storage card currently
installed in the Newton. Please refer to the Memory and
Storage section of your Newton Handbook regarding
controlling where new information is stored.

key is the name of the field used for ordering and fast access.
The file must have been created with the same key used by
the CREATE Statement.

OPEN uses a variable named FSTAT to indicate that the file
was either opened or not opened. FSTAT will be set to one
of three values:

Note: You should avoid using a variable named FSTAT for
your own purposes.

0 fileName opened successfully

1 fileName not found

2 fileName found, but key not valid

..
NS BASIC Handbook 137

EXAMPLE

10 REM OPEN file Example
20 OPEN CH,"Names"
30 IF FSTAT <> 0 THEN STOP
40 GET CH,NAMEDATA
50 PRINT NAMEDATA.Name.last

OUTPUT

RUN
John
*
(The name above will be the first surname of
your "Names" record on your Newton)

RELATED ITEMS

CREATE, GET, PUT, DEL

..
138 NS BASIC Handbook

ORD Function

ORD(x)

DESCRIPTION

ORD returns the numeric representation of character x.
You must supply a character for x.

EXAMPLE

10 REM ORD Example
20 PRINT "Please enter a string"
30 INPUT X
60 PRINT "The ORD of the first character of X
is ";ORD(X[0])

OUTPUT

Please enter a string
?

ABC
The ORD of the first character of X is 65
*

RELATED ITEMS

CHR

..
NS BASIC Handbook 139

PARAGRAPH Widget

WINDOW winNum, windowSpec, "PARAGRAPH"

DESCRIPTION

The PARAGRAPH widget provides a text display area that
does not scroll. It is very similar to a WINDOW.

The widget is controlled using the windowSpec. These fields
are supported:

text: The text displayed

You may also use these fields in windowSpec: viewBounds,
viewFlags, viewFont, viewFormat.

EXAMPLE

10 REM PARAGRAPH Example
20 w1Spec = {viewBounds:SETBOUNDS(20,20,¬
 200,200)}
30 WINDOW w1, w1Spec, "PARAGRAPH"
40 SHOW w1

OUTPUT

RELATED ITEMS

HIDE, SCROLLER, SHOW, TEXT, WINDOW

..
140 NS BASIC Handbook

PICKER Widget

WINDOW winNum, windowSpec, "PICKER"

DESCRIPTION

The PICKER widget provides a pop-up list of choices the
user may select from. Once a selection is made, the widget
is hidden. For this reason this widget works best if it is
created each time it is used. It also means that you cannot
create this widget in the Visual Designer.

The widget is controlled using the windowSpec. These fields
are supported:

pickItems: The pick list, an array of strings, the symbol
'PICKSEPARATOR to draw a dotted line, the symbol
'PICKSOLIDSEPARATOR to draw a solid line, and frames.
Frames are in the form:

item: "item to display",

pickable: TRUE, // or NIL if not pickable

mark: CHR(8730) // the checkmark to display

viewValue: The current selection (as a number from 0 to
LENGTH(pickItems-1) from the pick list

You may also use these fields in windowSpec: Bounds (used
like viewBounds), viewFlags, viewFont, GOTO,
GOSUB, viewFormat.

Note: Bounds is a frame that contains the same four fields
as viewBounds. The Newton may actually move your
picker to a different location on the screen if it would not fit
in the location specified by Bounds.

A picker usually appears as a result of tapping a button or
window. In these cases you can used the viewBounds slot
in the windowSpec of the tapped window as the value for the
Bounds slot.

The pickItems array can contain up to 22 items for a
MessagePad sized screen. More than this will not fit.

..
NS BASIC Handbook 141

EXAMPLE

10 REM PICKER Example
20 w1Spec = {GOTO: 'pickChosen, pickItems:
["a","b","c"]}
30 WINDOW w1, w1Spec, "PICKER"
40 SHOW w1
50 WAIT // with 5 second timeout
60 END
200 pickChosen: REM Picked
210 PRINT "You picked item: ";
w1Spec.viewValue

OUTPUT

You picked item: 2

RELATED ITEMS

HIDE, SHOW, WINDOW

..
142 NS BASIC Handbook

PICTUREBUTTON Widget

WINDOW winNum, windowSpec, "PICTUREBUTTON"

DESCRIPTION

The PICTUREBUTTON widget displays a standard Newton
button with an icon.The button hilites correctly when
tapped.

The widget is controlled using the windowSpec. These fields
are supported:

icon : the icon to display.

You may also use these fields in windowSpec:
viewBounds , viewFlags , GOTO , GOSUB .

EXAMPLE

10 REM PICTUREBUTTON Example
20 shape := [MAKERECT(1,1,30,30),¬
 MAKETEXT("I",12,10,21,21)]
30 myIcon:=MAKEBITMAP(32,32,NIL)
40 DRAWINTOBITMAP(shape, NIL, myIcon)
50 w1Spec = {icon: myIcon, GOTO: 'buttonTap,¬
 viewBounds: SETBOUNDS(101, 101, 132, 132)}
60 WINDOW w1, w1Spec, "PICTUREBUTTON"
70 SHOW w1
80 WAIT -1
200 buttonTap: REM tapped button
210 HIDE
220 PRINT "Tapped."

OUTPUT

RELATED ITEMS

HIDE, SHOW, MAKEBITMAP, DRAWINTOBITMAP,
TEXTBUTTON, WINDOW

..
NS BASIC Handbook 143

POINTSTOARRAY Function

POINTSTOARRAY(points)

DESCRIPTION

POINTSTOARRAY returns a shapeArray. The format of
points is described in the reference page for the DRAW
widget, and shapeArray is described in the
ARRAYTOPOINTS Function.

EXAMPLE

10 REM POINTSTOARRAY Example
20 dSpec := {viewBounds: SETBOUNDS(1, 1, 200,¬
200), viewFlags: VSHAPESALLOWED + VCLICKABLE¬
+ VGESTURESALLOWED}
30 WINDOW drawWin, dSpec, "DRAW"
40 spec := {GOTO: 'closeApp}
50 WINDOW quitWin, spec, "LARGECLOSEBOX"
60 SHOW drawWin, quitWin
70 WAIT -1
90 closeApp: REM User Tapped Close Box
100 IF LENGTH(dSpec.windowSpec.viewChildren)¬
< 1 THEN GOTO noKids
110 PRINT "First Drawing: "; POINTSTOARRAY¬
(dSpec.windowSpec.viewChildren[0].points)
120 noKids: HIDE
130 END

OUTPUT

*

run
(Draw a square and tap the Close box)
First Drawing: [11,5,0,0,0,45,60,45,60,0,0,0]
RELATED ITEMS

ARRAYTOPOINTS, DRAW, WINDOWS

..
144 NS BASIC Handbook

POW Function

POW(x,y)

DESCRIPTION

POW returns the value of x raised to the power of y. x and
y may be integer or real numbers.

EXAMPLE

10 REM POW Example
20 PRINT "Please enter a number"
30 INPUT X
40 PRINT "Please enter power to raise to"
50 INPUT Y
60 PRINT "X to the power Y is ";POW(X,Y)

OUTPUT

Please enter a number
?

16
Please enter power to raise to
?

2
X to the power Y is 256
*

RELATED ITEMS

SQRT

..
NS BASIC Handbook 145

PROGRESS Function

PROGRESS(title1,title2,percentComplete)

DESCRIPTION

PROGRESS displays a standard floating Newton progress
bar. The string in title1 is displayed above the bar, the string
in title2 is displayed below the bar, and the bar is filled in an
amount corresponding to the integer value (between 0 and
100) in percentComplete.You close the progress floater by
passing in NIL for percentComplete. Use PROGRESS to give
visual feedback during lengthy operations.

EXAMPLE

10 REM PROGRESS Example
20 upperMessage := " Progress example"
30 FOR i= 1 TO 100 STEP 10
40 IF i < 10 THEN ¬
 lowerMessage := "Warming Up…"
50 IF i > 10 AND i <= 50 THEN ¬
 lowerMessage := "Running…"
60 IF i >= 50 and i < 80 THEN ¬
 lowerMessage := "Finishing Up…"
70 IF i >= 80 THEN ¬
 lowerMessage := "Shutting Down…"
80 PROGRESS(upperMessage, lowerMessage, i)
90 WAIT 250
100 NEXT i
110 PROGRESS(NIL,NIL,NIL)

OUTPUT

RELATED ITEMS

NOTIFY

..
146 NS BASIC Handbook

PRINT Statement

PRINT [expression1 [,expression2]]

; [expression1 [,expression2]]

DESCRIPTION

PRINT evaluates each expression and outputs it to the
screen. Variables, strings, and numerical expressions can all
be output by NS BASIC using the PRINT Statement. If the
PRINT Statement is used on its own, a blank line is output.
PRINT is automatically substituted by NS BASIC when a
semicolon is used as the first character in a line. A comma
between arguments moves the output to the next tab. Tabs
are 10 spaces apart. A semicolon between the expressions
leaves no spaces.

When a comma or a semicolon is placed at the end of a
PRINT Statement, the output from the next PRINT
Statement will continue on the same line.

If the printed expression is longer than the screen width, it
will wrap around to the next line.

EXAMPLE

10 REM PRINT Example
20 PRINT "The PRINT Command"
30 PRINT
40 ; "Can be used to separate", "text"
50 ; "Or Join Numbers and Text"
60 PRINT 10*10; " Llamas"

OUTPUT

The PRINT Command

Can be used to separate text
Or Join Numbers and Text
100 Llamas

RELATED ITEMS

..
NS BASIC Handbook 147

PUT Statement

PUT chan, variable

DESCRIPTION

PUT writes data to a file. The file is specified by chan. chan is
the number returned from the OPEN or CREATE
Statements. Variable is a frame to be written.

If you wish to update a record in a file, use GET to retrieve
the frame. Update the elements as needed, but do not
change the key element. Use PUT to replace the updated
frame.

If GET was not used to retrieve the frame, or if you change
the key element of the frame, a new record is created.

The key specified on OPEN must be an element in variable.
The key must be a string.

PUT uses a variable named FSTAT to indicate that the
record was either written or not written. FSTAT will be set
to one of two values:

Note: You should avoid using a variable named FSTAT for
your own purposes.

0 variable written successfully

1 variable not written

..
148 NS BASIC Handbook

EXAMPLE(S):

10 REM PUT Example
20 REM Creates a file...prompts for some
information, stores then deletes it.
40 CREATE chan, "EXAMPLEFile", keyname
45 IF FSTAT=1 THEN STOP // CREATE error
50 PRINT "Please enter some key data..."
60 INPUT FileKey
70 fileRecord = {}
80 fileRecord.keyname = FileKey
90 PUT chan, fileRecord
100 IF FSTAT=1 THEN STOP // PUT error
110 PRINT "Data now in file is..."
120 GET chan,FetchedData,FileKey
130 IF FSTAT=1 THEN STOP // GET error
140 PRINT FetchedData
150 PRINT "Deleting Record From File"
160 DEL chan,FetchedData

OUTPUT

Please enter some data...
?

Lemons and Llamas
Data now in file is...
{KEYNAME:"Lemons and Llamas",_uniqueID:0}
Deleting Record From File
*

RELATED ITEMS

CREATE, OPEN, GET, DEL

..
NS BASIC Handbook 149

RANDOM Function

RANDOM (low, high)

DESCRIPTION

RANDOM returns a random number between low and high.

EXAMPLE

10 REM RANDOM Example
20 REM Displays 10 random numbers between 5
and 15
30 FOR i = 1 to 10
40 PRINT RANDOM(5,15)
50 NEXT i

OUTPUT

6
8
13
7
9
9
8
12
14
6
*

RELATED ITEMS

RANDOMIZE

..
150 NS BASIC Handbook

RANDOMIZE Statement

RANDOMIZE [seed]

DESCRIPTION

RANDOMIZE seeds the random number generator with
seed. When seeded with the same number, the RANDOM
function will return the same sequence of numbers. Since
there is only one random number generator on the
Newton, your seed might be interfered with by another
task. To generate virtually random numbers do not enter
seed. The default setting for seed is the number of ticks since
system startup.

EXAMPLE

10 REM RANDOMIZE Example
20 RANDOMIZE 34
30 FOR i = 1 to 10
40 PRINT RANDOM(1,10)
50 NEXT i

OUTPUT

9
9
8
8
5
10
10
2
2

RELATED ITEMS

RANDOM

..
NS BASIC Handbook 151

READ Statement

READ variable1 [,variable2]...[,variableN]

DESCRIPTION

READ reads the next value or values from the DATA
Statement.

A READ Statement must always be used together with one
or more DATA Statements. READ assigns DATA Statement
values to variables.

A single READ Statement may access one or more DATA
Statements, or several READ Statements may access the
same DATA Statement.

If the number of variables in the variable list (variable1 ...
variableN) exceed the number of elements in the DATA
Statements an "End of Data" error results. If the number of
variables specified is fewer than the number of elements in
the DATA Statement(s), the next READ Statement will
begin reading data at the next unread element. If there are
no following READ statements, the extra data is ignored. To
reset the list of DATA items, use the RESTORE Statement.

..
152 NS BASIC Handbook

EXAMPLE

10 REM READ Example
20 DATA 0.76,3.55,7.80,2.65,9.52
25 DATA 9.96,6.32,8.15,6.61,9.73
30 FOR i = 1 TO 10
40 READ a
50 PRINT a
60 NEXT i

OUTPUT

0.76
3.55
7.80
2.65
9.52
9.96
6.32
8.15
6.61
9.73
*

RELATED ITEMS

DATA, RESTORE

..
NS BASIC Handbook 153

REM Statement

REM remark

DESCRIPTION

REM Statements are used to insert comments into a
program. They are not processed when a program is
executed. If a REM Statement is encountered while a
program is running NS BASIC skips the line and continues
with the execution of the program.

Comments may also be added to the end of any Statement
(except GOTO and GOSUB) by preceding them with the
characters "//".

When a REM Statement is the target line for a GOSUB or
GOTO Statement, NS BASIC places the remark after a
double backslash at the end of the GOSUB or GOTO
Statement.

EXAMPLE

10 REM REM Example 1
15 A=1 // Set A to 1
20 PRINT "This line is printed"
30 REM But this line is not printed
40 REM Neither is this one

OUTPUT

This line is printed
*

..
154 NS BASIC Handbook

EXAMPLE

10 REM REM Example 2
20 REM It shows how the REM Statement is used
with
30 REM GOSUB and GOTO Routines.
40 GOSUB 70
50 PRINT "Return from GOSUB"
60 END
70 REM Notice the Backslashes
80 PRINT "Here I Am!"
90 RETURN

OUTPUT

*

LIST
0010 REM REM Example 3
0020 REM It shows how the REM Statement is used
with
0030 REM GOSUB and GOTO Routines.
0040 GOSUB 0070 //Notice the Backslashes
0050 PRINT "Return from GOSUB"
0060 END
0070 REM Notice the Backslashes
0080 PRINT "Here I Am!"
0090 RETURN
*

RELATED ITEMS

GOSUB, GOTO

..
NS BASIC Handbook 155

REMAINDER Function

REMAINDER(x,y)

DESCRIPTION

REMAINDER returns the remainder of x divided by y.

The result my be surprising: REMAINDER(12,7) is -2 (12 is
2 short of 14, a number that is evenly divisible by 7.) The
MOD function will return the modulo of two numbers.
MOD(12,7) is 5.

EXAMPLE

10 REM REMAINDER Example
20 REM This program takes two numbers and
computes the remainders of their division.
30 PRINT "Please enter two numbers."
40 INPUT Number1,Number2
50 PRINT "The Remainder of " ; Number1 ; "
divided by " ; Number2; " is " ;
REMAINDER(Number1, Number2)

OUTPUT

Please enter two numbers.
?

7,5
The Remainder of 7 divided by 5 is 2.
*

RELATED ITEMS

MOD, FMOD, DIV

..
156 NS BASIC Handbook

REMOVESLOT Function

REMOVESLOT(frame, slotName)

DESCRIPTION

REMOVESLOT deletes the field specified by the symbol in
slotName. Returns NIL.

EXAMPLE

10 REM REMOVESLOT Example
20 aFrame = {name: "Fred", fridge: NIL}
30 REMOVEslot(aFrame, 'fridge)
40 PRINT aFrame

OUTPUT

{name: "Fred"}
*

RELATED ITEMS

ELEMENTS, HASSLOT

..
NS BASIC Handbook 157

RENUM Command

RENUM [startline [,endline [,increment [,base]]]]

DESCRIPTION

RENUM renumbers the lines of the currently LOADed
program. startline and endline mark the range of line numbers
in the program to be renumbered. increment is the
numbering difference to use between each line. base is the
first line number to use.

If a line already exists where a renumbered line is supposed
to be placed, error 8 – Renum overlap is signaled and the
program is left unchanged.

If base is not specified NS BASIC starts numbering from line
10. RENUM will also correct references in GOTO and
GOSUB Statements which change as a result of the
RENUMbering.

EXAMPLE

10 REM RENUM Program
20 PRINT "This is line 0020"
30 PRINT "This is line 0030"
40 PRINT "This is line 0040"
50 PRINT "This is line 0050"

OUTPUT

*

RENUM 20,40,20,60
0010 REM RENUM Program
0050 PRINT "This is line 0050"
0060 PRINT "This is line 0020"
0080 PRINT "This is line 0030"
0100 PRINT "This is line 0040"
*

RELATED ITEMS

..
158 NS BASIC Handbook

REPLACE Command

REPLACE fileName

DESCRIPTION

REPLACE overwrites a previously SAVEd program.
Quotation marks are required for fileName. If there is no file
named fileName, REPLACE simply creates a new file. If there
is a file named fileName REPLACE overwrites the file with
the program in active memory.

REPLACE with no fileName is not valid if the current
program has not been SAVEd yet.

EXAMPLE

*

REPLACE "Llamas"

OUTPUT

Llamas saved
*

RELATED ITEMS

SAVE, LOAD, DELETE, DIR

..
NS BASIC Handbook 159

RESTORE Statement

RESTORE [lineNumber]

DESCRIPTION

RESTORE allows DATA Statements to be re-read from line
lineNumber.
When a RESTORE Statement is executed with lineNumber,
the next READ Statement will access the first element in the
specified DATA Statement. You may use a label in place of
the actual line number. When lineNumber is not given, the
next READ Statement will access the first element of the
first DATA Statement.

EXAMPLE

10 REM RESTORE Example
20 DATA 0.76,3.55,7.80,2.65,9.52
25 DATA 9.96,6.32,8.15,6.61,9.73
30 FOR i = 1 TO 4
40 READ a
50 PRINT a
60 NEXT i
70 RESTORE 20
80 FOR j = 1 TO 4
90 READ b
100 PRINT b
110 NEXT j

OUTPUT

0.76
3.55
7.80
2.65
0.76
3.55
7.80
2.65

RELATED ITEMS

DATA, READ

..
160 NS BASIC Handbook

RETURN Statement

RETURN

DESCRIPTION

RETURN causes NS BASIC to return from a previous
GOSUB Statement.

A GOSUB causes NS BASIC to branch to a subroutine.
RETURN makes NS BASIC return from a GOSUB. Program
execution begins again at the line following the original
GOSUB.

EXAMPLE

10 REM RETURN Example
20 PRINT "Beginning of Program"
30 GOSUB 0060 // Subroutine # 1
40 PRINT "End of Program"
50 END
60 REM Subroutine #1
70 PRINT "Here I am!"
80 RETURN

OUTPUT

Beginning of Program
Here I am!
End of Program
*

RELATED ITEMS

GOSUB, REM

..
NS BASIC Handbook 161

REVUP Command

REVUP

DESCRIPTION

REVUP converts all the programs on the default store of
your Newton to the current revision of NS BASIC. Enter
REVUP by itself after you install a new version of NS BASIC.
This command can take a while to complete, depending on
how many and how long your programs are. You can use
REVUP in version 2.04 or later of NS BASIC, so if you'd like
to install one of the older versions just enter REVUP again
after installing the application.

EXAMPLE

*

REVUP

OUTPUT

*

RELATED ITEMS

..
162 NS BASIC Handbook

ROUND Function

ROUND(x)

DESCRIPTION

ROUND returns a real number that contains the rounded
integral value. X is rounded upwards if it is greater or equal
to 0.5, otherwise it is rounded downward.

EXAMPLE

10 REM ROUND Example
20 REM ROUNDS three numbers and adds them
together.
30 PRINT "Please enter three numbers"
40 INPUT Number1,Number2,Number3
50 Total = ROUND(Number1) + ROUND(Number2) +
ROUND(Number3)
60 PRINT "The Total is = " ; Total

OUTPUT

Please enter three numbers
?

12,17.32,1.997
The Total is = 31
*

RELATED ITEMS

..
NS BASIC Handbook 163

RUN Command

RUN ["fileName" | lineNumber]

DESCRIPTION

RUN begins execution of a program.

If RUN is entered without arguments, NS BASIC executes
the entire program in active memory. If you provide
fileName, a NEW is performed and fileName is then
LOADed and executed. You must enclose fileName in
quotes.

If you provide lineNumber, NS BASIC starts execution of the
current program at lineNumber. Variables are not reset in
programs that are executed from a line. You may use a label
in place of the actual line number.

EXAMPLE

10 REM Run Example
20 INPUT a
30 atEnd: PRINT a
*

RUN

OUTPUT

?

Llamas
Llamas
*

RUN atEnd
Llamas
*

RELATED ITEMS

CON

..
164 NS BASIC Handbook

SAVE Command

SAVE fileName

DESCRIPTION

Save writes the active program to the internal memory or
storage card. You may include quotation marks around
fileName. NS BASIC automatically adds ".bas" to the end of
fileName. If fileName already exists an I/O error will result.
To replace an existing program, use the REPLACE
Command.

EXAMPLE

*

SAVE "Llamas"

OUTPUT

Llamas saved
*

RELATED ITEMS

DIR, ENTER, LOAD, REPLACE

..
NS BASIC Handbook 165

SCROLLER Widget

WINDOW winNum, windowSpec, "SCROLLER"

DESCRIPTION

The SCROLLER widget provides a text entry area that
scrolls. When the user wishes to enter new text, they tap
on the mountain icon. The widget will expand to fill the
entire Newton screen, and the user can enter text. Tapping
the mountain icon again shrinks the widget back to its
original size. The scroll arrows scroll the widget in either
view. You extract the text entered by the user with this
expression:

enteredText = windowSpec.notes.text

The widget is controlled using the windowSpec. These fields
are supported:

text: The initial value

notes.text: The user entered or updated value

boxTitle: The title on the edit box

editOK: TRUE if the user can edit the text

You may also use these fields in windowSpec: viewBounds,
viewFlags.

EXAMPLE

10 REM SCROLLER Example
20 w1Spec = {text: "You can..."}
30 WINDOW w1, w1Spec, "SCROLLER"
40 SHOW w1

..
166 NS BASIC Handbook

OUTPUT

RELATED ITEMS

HIDE, PARAGRAPH, SHOW, WINDOW

..
NS BASIC Handbook 167

SENDIRREMOTE Function

SENDIRREMOTE(irCode, count)

DESCRIPTION

SENDIRREMOTE uses the infrared port to transmit remote
control codes. A single remote control code is encoded in
the array irCode. This command will be transmitted count
times, where count is at least one.

The format of the contents of irCode is shown below. Each
element is an integer.

irCode[0]you may place any value here
irCode[1]# of microseconds in each time unit
irCode[2]# of time units to pause before sending
irCode[3]# of time units to pause before repeating
irCode[4]# of time units to pause after sending
irCode[5]must be zero
irCode[6..N]sequence of numbers representing the number

of time units to remain in each state, starting
with OFF

Refer to the Technical Notes file on the NS BASIC Web site
at http://www.nsbasic.com for a detailed description of
infrared remote control programming.

..
168 NS BASIC Handbook

EXAMPLE

10 REM SENDIRREMOTE Example
20 t="01000101101110101110100000010111"
30 trans=[0,500,14,50,14,0,8]
35 zero="0"[0] // char 0 (not string 0)
40 FOR i=0 TO strLen(t)-1
50 ADDARRAYSLOT(trans,1)
60 IF t[i]=zero THEN ADDARRAYSLOT(trans,1)
ELSE ADDARRAYSLOT(trans,3)
70 NEXT i
80 ADDARRAYSLOT(trans,1)
90 ADDARRAYSLOT(trans,1)
100 SENDIRREMOTE(trans,1)

OUTPUT

(If you have a Pioneer CD, running this while
pointing the Newton at the CD Player will
cause it to start playing the disk)

RELATED ITEMS

..
NS BASIC Handbook 169

SETBOUNDS Function

SETBOUNDS(left, top, right, bottom)

DESCRIPTION

SETBOUNDS returns a viewBounds frame for use in a
windowSpec. When you use SETBOUNDS, you reduce the
amount of memory needed to store viewBounds frames. If
you create a large number of windows and widgets, the
memory savings can be significant.

EXAMPLE

10 REM SETBOUNDS Example
20 W1Spec={viewBounds: SETBOUNDS(10, 50, 200,
80)}
30 WINDOW Win1, W1Spec
40 SHOW Win1

OUTPUT

(a window with viewBounds: {left:10, top:50,
right:200, bottom:80} is displayed)
*

RELATED ITEMS

WINDOW

..
170 NS BASIC Handbook

SETCLOCK Widget

WINDOW winNum, windowSpec, "SETCLOCK"

DESCRIPTION

The SETCLOCK widget provides a clock face for time
display and entry. The clock face is always drawn such that
it uses a 64x64 pixel area. You must be sure that your
supplied viewBounds provides an area of this size.
Whenever either clock hand is changed by the user, your
GOTO or GOSUB routine will be called. You access the
user's selection using:

hours = windowSpec.hours
minutes = windowSpec.minutes

The widget is controlled using the windowSpec. These fields
are supported:

hours: current setting of the hour hand (or the current
hour if not supplied)

minutes: current setting of the minute hand (or the current
minute if not supplied)

You may also use these fields in windowSpec: viewBounds,
viewFlags, viewFont, GOTO, GOSUB, viewFormat.

EXAMPLE

10 REM SETCLOCK Example
20 w1Spec := {viewBounds:SETBOUNDS(20,20,83,¬
 83)}
30 WINDOW w1, w1Spec, "SETCLOCK"
40 SHOW w1

OUTPUT

RELATED ITEMS

HIDE, SHOW, NEWSETCLOCK, WINDOW

..
NS BASIC Handbook 171

SETICON Statement

SETICON program, icon

DESCRIPTION

SETICON sets the icon that is displayed in the Extras
drawer for a program. Use this statement to supply a
custom icon when creating a stand-alone package with the
MAKEPACKAGE statement. The program parameter is a
string value specifying the name of a previously SAVEd
program. The icon parameter is a value returned from the
MAKEBITMAP function.

EXAMPLE

10 REM SETICON Example
20 shape := [MAKERECT(5,5,30,30),
MAKETEXT("$",10,13,25,23)]
30 icon:=MAKEBITMAP(32,32,NIL)
40 DRAWINTOBITMAP(shape,NIL,icon)
50 SETICON "INVEST",icon

OUTPUT

(An icon of $ is used by the INVEST program,
when a stand-alone package is created from it)
*

RELATED ITEMS

DRAWINTOBITMAP, MAKEBITMAP, MAKEPACKAGE,
WINDOW

..
172 NS BASIC Handbook

SETVALUE Function

SETVALUE(windowSpec, fieldName, CLONE(value))

DESCRIPTION

SETVALUE updates a value of a field in a windowSpec for a
widget. The widget is re-displayed to reflect the new value.
NIL is always returned. If you just change the field value in
windowSpec without using SETVALUE, the Newton display is
not updated.

Use the CLONE function to supply a copy of value to the
SETVALUE function. Failure to use CLONE will lead to
unexpected results.

EXAMPLE

10 REM SETVALUE Example
20 W1Spec={viewBounds:¬
 SETBOUNDS(10,50,200,80)}
30 WINDOW Win1, W1Spec, "LabelInput"
40 SHOW Win1
50 FOR i = 1 TO 10
60 SETVALUE(W1Spec.entryline, 'text,¬
 CLONE("Number: " &i))
70 WAIT 100
80 NEXT i
90 HIDE Win1

OUTPUT

(A label input widget is displayed and the
value in the entry line counts up from
Number:1 to Number:10.)
*

RELATED ITEMS

WINDOW

..
NS BASIC Handbook 173

SHOW Statement

SHOW winNum | winNumlist

DESCRIPTION

SHOW displays the previously declared window winNum or
list of windows winNumlist on the screen. winNum and
winNumlist use the number returned by the WINDOW
Statement. To hide windows use the HIDE Statement.
winNum may be an array of window numbers, and
winNumList may contain one or more arrays of window
numbers.

EXAMPLE

10 REM SHOW Example
20 W1Spec := {ViewBounds: ¬
SETBOUNDS(10, 50, 100, 100)}
30 W2Spec := {ViewBounds: ¬
SETBOUNDS(20, 70, 100, 100)}
40 WINDOW Win1, W1Spec
50 WINDOW Win2, W2Spec
60 WPRINT Win1, "Window 1"
70 WPRINT Win2, "Window 2"
80 SHOW [Win1, Win2]
90 WAIT
100 HIDE Win2
110 SHOW Win2
120 HIDE

OUTPUT

(Two windows are created and then removed from
the screen.)
*

RELATED ITEMS

HIDE, WINDOW, WIDGETDEF, WPRINT

..
174 NS BASIC Handbook

SIGNUM Function

SIGNUM(x)

DESCRIPTION

SIGNUM returns the sign of x. It returns 1 if x is positive, 0
if x is zero, and -1 if x is negative.

EXAMPLE

10 REM SIGNUM Example
20 PRINT "Please enter a number"
30 INPUT X
40 PRINT "SIGNUM of x is = " ; SIGNUM(X)

OUTPUT

Please enter a number
?

-4
SIGNUM of x is = -1
*

RELATED ITEMS

..
NS BASIC Handbook 175

SIN Function

SIN(x)

SINH(x)

ASIN(x)

ASINH(x)

DESCRIPTION

SIN returns the sine of the angle x in radians.

SINH returns the hyperbolic sine of x.

ASIN returns the arc sine of x.

ASINH returns the arc-hyperbolic sine of x.

EXAMPLE

10 REM SIN Example
20 PRINT "Please enter an angle"
30 INPUT Angle
40 PRINT "The Sine of the angle is = " ;
SIN(Angle) ; " radians"

OUTPUT

Please enter an angle
?

63.7
The Sine of the angle is = 0.763132715516785
radians
*

RELATED ITEMS

TAN, COS

..
176 NS BASIC Handbook

SLIDER Widget

WINDOW winNum, windowSpec, "SLIDER"

DESCRIPTION

The SLIDER widget provides a gauge that the user can set.
The value of the widget is a number from 0 (slider all the way
to the left) to 100 (slider all the way to the right). Whenever
the slider is changed by the user, your GOTO or GOSUB
routine will be called. You access the user's selection using:

setting = windowSpec.viewValue

The widget is controlled using the windowSpec. These fields
are supported:

viewValue: current setting of the slider from 0 to 100

You may also use these fields in windowSpec: viewBounds,
viewFlags, viewFont, GOTO, GOSUB, viewFormat.

To change the value of the slider in a program, use:

SETVALUE(windowSpec, 'viewValue, newSetting)

where newSetting has an integer value between 0 and 100.

EXAMPLE

10 REM SLIDER Example
20 w1Spec := {viewBounds:SETBOUNDS(20,20,90,¬
 30)}
30 WINDOW w1, w1Spec, "SLIDER"
40 SHOW w1

OUTPUT

RELATED ITEMS

GAUGE, HIDE, SHOW, WINDOW

..
NS BASIC Handbook 177

SORT Function

SORT(array, test, key)

DESCRIPTION

SORT returns array sorted by test applied to the element
key. Values for test are as follows.

If key is NIL, the items of array are sorted directly by their
values. To sort an array where each element is a frame, put
the name of the element to be sorted by as the third
parameter, preceded by a ' sign.

EXAMPLE 1

10 REM SORT an array Example
20 DIM A[3]
30 A[0]=23
40 A[1]=5
50 A[2]=54
60 A=SORT(A,'|<|,NIL)
70 PRINT A[0],A[1],A[2]

OUTPUT

5 23 54
*

'|<| Sort in ascending numerical order

'|>| Sort in descending numerical order

'|str<| Sort in ascending string order

'|str>| Sort in descending string order

..
178 NS BASIC Handbook

EXAMPLE 2

10 REM SORT of array of frames Example
15 DIM a[4]
20 a[0] := {name: "Arthur", seq: 2}
30 a[1] := {name: "Ford", seq: 3}
40 a[2] := {name: "Trill", seq: 1}
50 a[3] := {name: "Zaphod", seq: 4}
60 a=SORT(a,'|<|, 'seq)
70 FOR i=0 TO 3
80 PRINT a[i].name
90 NEXT i

OUTPUT

Trill
Arthur
Ford
Zaphod
*

RELATED ITEMS

..
NS BASIC Handbook 179

SQRT Function

SQRT(x)

DESCRIPTION

SQRT returns the square root of the number x.

EXAMPLE

10 REM SQRT Example
20 REM This program returns the square root of
the number entered at the prompt.
30 PRINT "Please enter a number"
40 INPUT Number
50 PRINT "Square root = " ; SQRT(Number)

OUTPUT

Please enter a number
?

2
Square root = 1.14121356237309
*

RELATED ITEMS

POW

..
180 NS BASIC Handbook

STATS Command

STATS

DESCRIPTION

STATS shows information on memory usage for the current
program.
Under the name of the currently loaded program are three
lines. The first line displays the number of lines of code for
the program, and how much active memory it uses.
The second line displays the memory used for code space.
The third line displays the remaining available memory.
Note: There is no direct correlation between the program
size and how much memory remains.
The remaining lines show the program build time and the
environment variables. You may also view the environment
variables by tapping the i button in the NS BASIC
environment and selecting Prefs from the menu.

EXAMPLE

*

STATS
OUTPUT
CurrentProgram:SCRATCH
 938 bytes used for 11 statements
 837 bytes used for code space
 51820 bytes free.

Build:12/7/1996

ENV:{enableBreak:NIL,slt2:<frame:1>,inputPro
mpt:"?
",makeFatPackage:NIL,infr:<frame:1>,serialNu
mber:xxxxxx,store:1,slt1:<frame:1>,extr:<fra
me:1>,mmnp:<frame:4>,mdem:<frame:2>,useScrat
ch:TRUE,programName:"SCRATCH.BAS:NSBASIC",sh
owKeyboard:NIL,printDepth:0,io:"extr",tag:"B
ASIC:NSBASIC",_uniqueID:260,_modTime:4888705
8,listWidgets:TRUE,cacheMax:3}

RELATED ITEMS

VARS

..
NS BASIC Handbook 181

STOP Statement

STOP

DESCRIPTION

STOP halts execution of the program, and plays a BEEP on
the Newton. The program may then be continued from the
line after STOP by using the CON Command. The STOP
Command can be used during debugging to STOP the
program at a certain line.

EXAMPLE

10 REM STOP Example
20 PRINT "First Program Section"
30 STOP
40 PRINT "Second Program Section"

OUTPUT

First Program Section
Stop at 0030
*

CON
Second Program Section
*

RELATED ITEMS

END, CON

..
182 NS BASIC Handbook

STRCOMPARE Function

STRCOMPARE(string1, string2)

DESCRIPTION

STRCOMPARE returns a negative number if string1 is less
than string2 alphabetically. It returns zero if string1 and
string2 are equal. It returns a positive number if string1 is
greater than string2 This function is not case sensitive. The
strings are compared based on all the ASCII codes of the
characters within them.

EXAMPLE

10 REM STRCOMPARE Example
20 REM User enters two items which are forced
into strings. Computer compares them.
30 PRINT "Please enter item 1"
40 INPUT String1$
50 PRINT "Please enter item 2"
60 INPUT String2$
70 Result = STRCOMPARE(String1$, String2$)
80 IF Result = 0 THEN PRINT "Strings are Equal"
90 IF Result > 0 THEN PRINT "Second string is
larger"
100 IF Result < 0 THEN PRINT "First string is
larger"

OUTPUT

Please enter item 1
?

Hello World
Please enter item 2
?

Llamas
First string is larger
*

RELATED ITEMS

STREQUAL

..
NS BASIC Handbook 183

STREQUAL Function

STREQUAL(string1, string2)

DESCRIPTION

STREQUAL returns TRUE if string1 and string2 are equal. It
returns NIL for all other cases. This function is not case
sensitive. The strings are compared based on all the ASCII
codes of the characters within them.

EXAMPLE

10 REM STREQUAL Example
20 PRINT "Please enter item 1"
30 INPUT String1$
40 PRINT "Please enter item 2"
50 INPUT String2$
60 IF STREQUAL(String1$, String2$) THEN PRINT
"Strings are Equal" ELSE PRINT "Strings are
not Equal"

OUTPUT

Please enter item 1
?

Hello World
Please enter item 2
?

Goodbye World
Strings are not Equal
*

RELATED ITEMS

STRCOMPARE

..
184 NS BASIC Handbook

STRINGER Function

STRINGER(array)

DESCRIPTION

STRINGER returns a string containing all the elements in
array concatenated together. Numbers, characters, and
symbols are all converted to their string representation.
Elements that are frames, arrays or Booleans are converted
to an empty string.

EXAMPLE

10 REM STRINGER Example
20 REM Concatenates 3 array elements
30 DIM Array[3]
40 FOR i = 0 TO 2
50 PRINT "Please enter something"
60 INPUT Element
70 Array[i] = Element
80 NEXT i
90 PRINT "The result is..."
100 PRINT STRINGER(Array)

OUTPUT

Please enter something
?

Hello
Please enter something
?

World
Please enter something
?

17.9
The result is...
HelloWorld17.9
*

RELATED ITEMS

..
NS BASIC Handbook 185

STRINGTONUMBER Function

STRINGTONUMBER(string)

DESCRIPTION

STRINGTONUMBER returns the real number value of
string. string must contain a string representation of a
number, such as "46".

EXAMPLE

10 REM STRINGTONUMBER Example
20 REM Places two "string" numbers together
and adds 5 to that number.
30 PRINT "Please enter 2 numbers"
40 INPUT Number1$,Number2$
50 NewNumber = Number1$ & Number2$
60 PRINT "The numbers concatenated are... " ;
NewNumber
70 PRINT "The Numbers with 5 added are... " ;
STRINGTONUMBER(NewNumber)+5

OUTPUT

Please enter 2 numbers
?

5,7
The numbers concatenated are... 57
The Numbers with 5 added are... 62
*

RELATED ITEMS

NUMBERSTRING

..
186 NS BASIC Handbook

STRINGTOTIME Function

STRINGTOTIME(string)

STRINGTODATE(string)

DESCRIPTION

STRINGTOTIME returns the TIME() value of string. string
must contain a string representation of a time, such as
"3:40 pm". STRINGTODATE also returns the TIME()
value of string.

EXAMPLE

10 REM STRINGTOTIME Example
20 theTime = STRINGTOTIME("3:40 pm")
30 PRINT theTime

OUTPUT

48371980
*

RELATED ITEMS

DIGITALCLOCK, TIME, TIMESTR

..
NS BASIC Handbook 187

STRLEN Function

STRLEN(string)

DESCRIPTION

STRLEN returns the number of characters in string.

EXAMPLE

10 REM STRLEN Example
20 PRINT "Enter a String"
30 INPUT string$
40 PRINT "There are " ; STRLEN(String$) ; "
characters in the string"

OUTPUT

Enter a string
?

Hello World
There are 11 characters in the string
*

RELATED ITEMS

..
188 NS BASIC Handbook

STRPOS Function

STRPOS(string, substring, start)

CHARPOS(string, char, start)

DESCRIPTION

STRPOS returns the position of substring in string, or NIL if
substring is not found. The search begins at character
position start (the first character position is zero.) This
function is not case sensitive. The position returned is also
numbered from zero. CHARPOS returns the position of the
single character char in string, and is case sensitive.

EXAMPLE

10 REM STRPOS Example
20 REM Looks for a substring in a user defined
string.
30 PRINT "Please enter a string"
40 INPUT String
50 PRINT "Please enter a string to look for"
60 INPUT Substring
70 Result = STRPOS(String,Substring,0)
80 IF Result = NIL THEN PRINT "Substring not
found" ELSE PRINT "Substring is at character
" ; Result

OUTPUT

Please enter a string
?

This is a simple string
Please enter a string to look for
?

Simple
Substring is at character 10
*

RELATED ITEMS

SUBSTR, STRLEN

..
NS BASIC Handbook 189

SUBSTR Function

SUBSTR(string, start, count)

DESCRIPTION

SUBSTR returns a new string containing count characters
from string, starting at character start. Character positions
begin with zero for the first character. If count is NIL, all
characters from start to the end of string are returned.

EXAMPLE

10 REM SUBSTR Example
20 REM Creates a substring from the first 5
characters of a string.
30 PRINT "Please enter a string"
40 INPUT String
50 Result = SUBSTR(String, 0, 4)
60 PRINT "The new substring is " ; Result

OUTPUT

Please enter a string
?

Sample string
The new substring is "Samp"
*

RELATED ITEMS

STRPOS, STRLEN

..
190 NS BASIC Handbook

TAN Function

TAN(x)

ATAN(x)

ATAN2(x,y)

TANH(x)

ATANH(x)

DESCRIPTION

TAN returns the tangent of the angle x in radians.

ATAN returns the arc tangent of x.

ATAN2 returns the arc tangent of x/y in [-π,π].

TANH returns the hyperbolic tangent of x.

ATANH returns the arc-hyperbolic tangent of x.

EXAMPLE

10 REM TAN Example
20 PRINT "Please enter an angle"
30 INPUT Angle
40 PRINT "The tangent of the angle is = " ;
TAN(Angle) ; " radians"

OUTPUT

Please enter an angle
? 72
The tangent of the angle is =
-0.262417377501932 radians
*

RELATED ITEMS

COS, SIN

..
NS BASIC Handbook 191

TEXT Widget

WINDOW winNum, windowSpec, "TEXT"

DESCRIPTION

The TEXT widget provides a text entry area that does not
scroll. Hand written entry in this area will be recognized and
converted into text. The viewFlags field of the
windowSpec can be used to indicate which recognition
should be attempted. You extract the text entered by the
user with this expression:

enteredText = windowSpec.text

The widget is controlled using the windowSpec. These fields
are supported:

text: the text displayed and entered by the user

viewLineSpacing: spacing of the lines, in pixels

You may also use these fields in windowSpec: viewBounds,
viewFlags, viewFont, viewFormat.

EXAMPLE

10 REM TEXT Example
20 w1Spec = {text: "Input..."}
30 WINDOW w1, w1Spec, "TEXT"
40 SHOW w1

OUTPUT

RELATED ITEMS

HIDE, PARAGRAPH, SCROLLER, SHOW, WINDOW

..
192 NS BASIC Handbook

TEXTBUTTON Widget

WINDOW winNum, windowSpec, "TEXTBUTTON"

DESCRIPTION

The TEXTBUTTON widget displays a standard Newton
button with a text label.The button hilites correctly when
tapped.

The widget is controlled using the windowSpec. These fields
are supported:

text: the button label to display.

You may also use these fields in windowSpec: viewBounds,
viewFlags, viewFont, viewFormat, viewJustify,
GOTO, GOSUB.

EXAMPLE

10 REM TEXTBUTTON Example
20 w1Spec:={text:"Tap Me!",GOTO:'buttonTap,¬
 viewBounds: SETBOUNDS(20, 20, 70, 35)}
30 WINDOW w1, w1Spec, "TEXTBUTTON"
40 SHOW w1
50 WAIT -1
100 buttonTap: REM tapped button
110 HIDE
120 PRINT "Tapped."

OUTPUT

RELATED ITEMS

HIDE, SHOW, PICTUREBUTTON, WINDOW

..
NS BASIC Handbook 193

TEXTLIST Widget

WINDOW winNum, windowSpec, "TEXTLIST"

DESCRIPTION

The TEXTLIST widget displays list of strings that may
optionally include checkboxes for multiple selections and
scroll arrows. A number can be entered by tapping on the
number display.

The widget is controlled using the windowSpec. These fields
are supported:

listItems: an array of strings representing the list to
display

useScrollers: when TRUE, show Newton scroll arrows
if list does not fit within viewBounds. When NIL the user
may drag the pen to scroll.

useMultipleSelections: when TRUE display
checkboxes and allow more than one item to be selected

scrollAmounts: an array of three integers defining how
scrolling should work. The first integer is the scroll
amount, in pixels, when the user taps the scroll arrows.
The second integer is the scroll amount when the user
double-taps the arrows, and the third is the scroll amount
if the user holds the pen down on an arrow.

selection: the last item selected

selectedItems: if multiple selections are allowed, this is
an array of the indexes of the selected items.

You may also use these fields in windowSpec: viewBounds,
viewFlags.

Use the following statements to update the TEXTLIST:

windowSpec.listItems := ["new","items"]
U.windowSpec:SETUPLIST()
U.windowSpec:REDOCHILDREN()

..
194 NS BASIC Handbook

EXAMPLE

10 REM TEXTLIST Example
20 w1Spec:={viewBounds:SETBOUNDS(20,20,200,¬
 80),listItems:[],useScrollers:TRUE,¬
 useMultipleSelections:TRUE,¬
 ScrollAmounts:[1,3,20]}
30 WINDOW w1, w1Spec, "TEXTLIST"
40 SHOW w1
50 WAIT
60 w1Spec.listItems := ["A","B","C",¬
 "D is a long item", "E", "F"]
70 w1Spec:SETUPLIST()
80 w1Spec:REDOCHILDREN()
90 WAIT
100 w1Spec.useMultipleSelections=NIL
110 U.w1Spec:REDOCHILDREN()

OUTPUT

RELATED ITEMS

HIDE, SHOW, WINDOW

..
NS BASIC Handbook 195

TICKS Function

TICKS()

DESCRIPTION

TICKS returns the number of ticks of the system clock. A
tick is 1/60th of a second. There is no defined starting time
for ticks. TICKS are used to measure intervals and durations
of time.

EXAMPLE

10 REM TICKS Example
20 Oldtime = TICKS()
30 PRINT "Tap any key, then the enter key when
ready"
40 INPUT A$
50 Newtime = TICKS()
60 PRINT (Newtime-Oldtime) / 60 ; " Seconds
passed"

OUTPUT

Tap the enter key when ready
?
12.83333333 Seconds passed
*

RELATED ITEMS

TIME, HOURMINUTE, DATENTIME

..
196 NS BASIC Handbook

TIME Function

TIME()

DESCRIPTION

TIME returns the current time in minutes as an integer. This
is the number of minutes passed since midnight, January 1,
1904. Use the HOURMINUTE and DATENTIME Functions
to process the number returned by TIME.

EXAMPLE

10 REM TIME Example
20 PRINT "The Number of Minutes passed since
01/01/04 is..." ; TIME()
30 PRINT "The Current Date and Time is " ;
DATENTIME(TIME())

OUTPUT

The Number of Minutes passed since 01/01/04
is... 47526491
The Current Date and Time is 5/20/94 2:05 AM
*

RELATED ITEMS

DATENTIME, HOURMINUTE

..
NS BASIC Handbook 197

TIMESTR Function

TIMESTR(timeValue, option)

DESCRIPTION

TIMESTR returns a string representation of the timeValue.

The option parameters controls how the string is formatted.

The DIGITALCLOCK widget returns a timeValue, as does
the TIME() Function.

EXAMPLE

10 REM TIMESTR Example
20 theTime = TIME()
30 PRINT TIMESTR(theTime, 0)
40 PRINT TIMESTR(theTime, 1)
50 PRINT TIMESTR(theTime, 2)
60 PRINT TIMESTR(theTime, 3)
70 PRINT TIMESTR(theTime, 4)

OUTPUT

* run
2:18:00 pm
2
18
00
 pm
*

RELATED ITEMS

DATENTIME, DIGITALCLOCK, HOURMINUTE, TIME

0 "HH:MM:SS AM/PM"

1 Hours

2 Minutes

3 Seconds

4 AM/PM

..
198 NS BASIC Handbook

TITLE Widget

WINDOW winNum, windowSpec, "TITLE"

DESCRIPTION

The TITLE widget displays a text label formatted as a
standard Newton title.

The widget is controlled using the windowSpec. These fields
are supported:

text : the text of the label.

You may also use these fields in windowSpec: viewBounds,
viewFlags, viewFont.

EXAMPLE

10 REM TITLE Example
50 w1Spec = {viewBounds: SETBOUNDS(20,20,¬
 120,60), text: "Sample Title"}
60 WINDOW w1, w1Spec, "TITLE"
70 SHOW w1

OUTPUT

RELATED ITEMS

HIDE, SHOW, WINDOW

..
NS BASIC Handbook 199

TOOLS Command

TOOLS

DESCRIPTION

Tools are optional modules of NS BASIC that only need to
be installed if you are using them. These include BIT (the
BASIC Internet Tool), Visual Designer, and MakePkg. The
TOOLS Command displays a list of the currently installed
NS BASIC tools. The version number for each tool is also
displayed.

EXAMPLE

* TOOLS

OUTPUT

The following tools are installed:

bit 1.01
makePkg 3.53
VisualDesigner 1.03
Runtime 3.53
*

RELATED ITEMS

..
200 NS BASIC Handbook

TRACE Statement

TRACE ON

TRACE OFF

DESCRIPTION

TRACE ON enables the tracing of line numbers during
program execution. TRACE OFF disables it.

After processing the TRACE ON Statement, NS BASIC will
display each line number as that line is executed.

The TRACE Statement is useful in debugging programs
where it can show you exactly where a problem happened.

If a program is executed from a point other than the
beginning, the condition (ON or OFF) of the TRACE
Statement is not reset. RUNning a program from the
beginning always turns off tracing.

TRACE Statements are ignored unless Enable Break has

been tapped (the is displayed) before the program is
RUN.

..
NS BASIC Handbook 201

EXAMPLE

10 REM TRACE Example
20 PRINT "This is an EXAMPLE"
30 PRINT "Llamas"
40 TRACE ON
50 FOR i = 1 TO 3
60 PRINT i
70 NEXT i
80 TRACE OFF
90 PRINT "End of program reached."

OUTPUT

This is an EXAMPLE
Llamas
[X0050]
[X0060]
1
[X0050]
[X0060]
2
[X0050]
[X0060]
3
[X0050]
[X0060]
End of program reached.
*

RELATED ITEMS

RUN, STOP, CON

..
202 NS BASIC Handbook

VARS Command

VARS

DESCRIPTION

VARS displays a listing of all variables and their current
values.

VARS displays the elements of arrays created with the DIM
Statement, and the fields of frames.

The GOSUB stack is shown after all variables. This is a list
of the line numbers for each GOSUB statement executed
that has not yet reached a RETURN statement.

EXAMPLE

10 X = 100
20 Y = 200
30 DIM Z[2]
40 I = { Name:"John", Age: 12}
*

RUN
*

VARS

OUTPUT

x: 100
y: 200
Z:[0,0]
i:{name:"John",AGE:12}
Gosub Stack:
*

RELATED ITEMS

LET, RUN, STATS

..
NS BASIC Handbook 203

WAIT Statement

WAIT [ticks | -1]

DESCRIPTION

WAIT stops the program for ticks thousandths of a second.
If ticks is not supplied 5000 (5 seconds) is used. The largest
value for ticks is 858993, around 14 minutes 20 seconds.

Once the number of specified ticks have passed the next
statement is executed. If the user taps on a WINDOW with
a windowspec.GOTO value defined while the program
is WAITing, the program will branch to the line number
specified in the value.

This feature is often used with Widgets to wait for the user
to finish interacting with a form.

If ticks is -1 then WAIT waits forever. In this case you must
have SHOWn at least one WINDOW or Widget that
contains a GOTO or GOSUB field in its WidgetDef, or the
program will be stuck in an infinite loop. Use WAIT -1 in
place of an infinite-WAIT loop. The four lines below:

50 SHOW layout_0
60 DO
70 WAIT
80 LOOP

are equivalent to but slower than:

50 SHOW layout_0
80 WAIT -1

Note: Since windows remain on the display even after the
program has stopped, the buttons remain active as well.

..
204 NS BASIC Handbook

EXAMPLE

10 REM WAIT Example
11 f := {GOTO:'toggleCheck, ¬
viewBounds: SETBOUNDS(100, 100, 110, 110)}
15 CLS
17 cbox = NIL
20 WINDOW w1,f
30 SHOW w1
40 FOR i=1 TO 3
45 PRINT i
50 WAIT
70 NEXT i
80 STOP
1000 toggleCheck: REM toggle checkbox
1010 cbox = NOT cbox
1020 IF cbox THEN WPRINT w1, CHR(8730) ¬
ELSE WPRINT w1,""

OUTPUT

1
2
3
Stop at 0080
*

(Before Tap)

(After Tap)

Note that in the above example CHR(8730) is the character
number that prints out as a checkmark. Refer to Appendix
C of this Handbook for a list of special character codes.

RELATED ITEMS

GOTO, WIDGETDEF, WINDOW

..
NS BASIC Handbook 205

WDRAW Statement

WDRAW windowNum, shapes [, styleFrame]

DESCRIPTION

WDRAW draws shapes in the window windowNum.
windowNum is the number returned by the WINDOW
Statement. Shapes may be a single shape or an array of
shapes. The style used to display the shapes can be defined
using styleFrame. There are several elements in the frame
which can be set. If they are not set, defaults are used.

PenSize specifies the size of the pen in pixels. An array can
be used to specify [width, height]. The default is 1.

PenPattern defines the pattern drawn by the pen. The
default is vfBlack.

FillPattern defines the pattern inside of closed shapes. The
default is vfNone.

font defines the font for any text shapes displayed. See the
WINDOW statement for a complete list. The default is the
user's default font.

penSize:

penPattern: vfNone, vfWhite,
vfLtgray, vfGray,
vfDkgray, vfBlack

fillPattern: vfNone, vfWhite,
vfLtgray, vfGray,
vfDkgray, vfBlack

font: {family: fontName, face:
fontFace, size: fontSize}

..
206 NS BASIC Handbook

Justification defines the alignment of any text shapes
displayed. The default is 'left .

EXAMPLE

10 REM WDRAW Example
20 W1Spec={viewBounds: ¬
SETBOUNDS(10, 10, 150, 75)}
30 WINDOW WinNum, W1Spec
40 SHOW WinNum
50 WDRAW WinNum, [MAKELINE(55,15,75,45),¬
MAKEOVAL(10,10,40,40)], {penSize:2,¬
penPattern:vfGray, fillPattern:vfBlack}

OUTPUT

RELATED ITEMS

SHOW, HIDE, MAKELINE, WINDOW

justification: 'left, 'right,
'center

..
NS BASIC Handbook 207

WIDGETDEF Statement

WIDGETDEF widgetSpec

DESCRIPTION

WIDGETDEF defines a widget layout that may be edited
with the Visual Designer. The value returned from the Visual
Designer is a frame containing fields for each widget in the
layout. The field names correspond to the widget names you
set in the Visual Designer. Refer to Chapter 4 for more
information on the Visual Designer.

When LISTing a program the environment variable
LISTWIDGETS controls the display of the contents of the
layouts defined in WIDGETDEF Statements. Setting it to
TRUE shows the contents, setting it to NIL hides them. The
environment variable PRETTYPRINT controls indenting of
the WIDGETDEF contents. When set to TRUE the
contents will be indented such that they line up and are easy
to read. When listed this way a program cannot be
ENTERed or cut and paste into NS BASIC. When set to NIL
the contents are not indented, so the LISTing may be
ENTERed or cut and paste into NS BASIC.

..
208 NS BASIC Handbook

EXAMPLE

*

ENVIRON LISTWIDGETS = TRUE
*

ENVIRON PRETTYPRINT = TRUE
*

LIST
*

ENVIRON PRETTYPRINT = NIL
*

LIST 50
*

ENVIRON LISTWIDGETS = NIL
*

LIST 50
*

OUTPUT

10 REM WIDGETDEF Example
20 appSpec={goto:'endProgram,title:
"WIDGETDEF Example"}
30 WINDOW app,appSpec,"APP"
40 SHOW app
50 widgetdef Layout_0
:={Byebtn:{widgetType:"textButton",order:¬
 0,Goto:'bye,viewBounds:{left:141,top:19
9,right:200,bottom:¬
 214},viewFlags:514,text:"Bye",viewFont:{
family:'espy,face:1¬
 , size:9},viewFormat:67109456}}
60 WINDOW wlist,Layout_0
70 SHOW wlist
100 WAIT -1 // indefinitely
9000 endProgram: REM
9005 bye: REM
9010 HIDE
9020 STOP
*
0050 widgetdef Layout_0
:={Byebtn:{widgetType:"textButton",order:¬
0,Goto:'bye,viewBounds:{left:141,top:199,rig
ht:200,bottom:¬
214},viewFlags:514,text:"Bye",viewFont:{fami
ly:'espy,face:1¬
, size:9},viewFormat:67109456}}
*
0050 WIDGETDEF Layout_0

RELATED ITEMS

WINDOW, SHOW, HIDE, WAIT

..
NS BASIC Handbook 209

WINDOW Statement

WINDOW winNum, windowSpec, [, widget]

DESCRIPTION

WINDOW creates a graphic window on the Newton. Each
window is given an unique number by NS BASIC. The
WINDOW Command returns this number in winNum. Use
this number for subsequent SHOW, HIDE, WPRINT, and
WDRAW Statements.

windowSpec is a frame containing information about the
window. There are several elements in the frame which can
be set. If they are not set, defaults are used.

Note: Never use the same windowSpec variable in multiple
WINDOW Statements without first assigning a new frame
value to the variable.

ViewBounds defines the bounds of the window. Position1 to
position4 is the location of the window on the screen. A
Newton MessagePad's screen is approximately 240 pixels
wide by 320 pixels high.

viewBounds: {top: position1, left: position2,
bottom: position3, right:
position4}

viewFlags: vVisible + vFloating +
vClickable +
vGesturesallowed +
vSingleunit +
vCharsallowed +
vLettersallowed +
vPunctuationallowed +
vShapesallowed +
vStrokesallowed +
vCapsrequired +
vNumbersallowed +
vNamefield + vPhonefield
+ vDatefield + vTimefield

..
210 NS BASIC Handbook

viewFlags defines the special characteristics of the
window. Not all combinations are valid. Each characteristic
is described below.

Note: Not all combinations of these values are valid. If you
try a combination that does not look as expected, then
you've found an invalid combination.

vVisible TRUE to make window visible,
NIL to hide

vFloating TRUE to make window float over
all others, NIL for normal
window stacking

vClickable TRUE if the window accepts pen
taps

vGesturesallowed TRUE to accept Newton gestures
such as scrub.

vSingleunit TRUE to accept only one word

vCharsallowed TRUE to use word recognition

vLettersallowed TRUE to use letter-by-letter
recognition

vPunctuationallowed TRUE to accept punctuation

vShapesallowed TRUE to recognize Boxes, Lines,
and Circles

vStrokesallowed TRUE to accept digital ink

vCapsrequired TRUE to capitalize first letter of
each word as entered

vNumbersallowed TRUE to accept numbers

vNamefield TRUE if this is a name field

vPhonefield TRUE if this is a phone field

vDatefield TRUE if this is a date field

vTimefield TRUE if this is a time field

..
NS BASIC Handbook 211

viewFont defines the font to be displayed in the
WINDOW. fontName is the name of the font you wish to
be used in the window. Possible fonts on the Newton are
'espy, 'geneva, 'newyork, or 'handwriting. Note:
The ' sign is required.

fontFace is the style of the font: 0 for plain, 1 for bold, 2 for
italics, 4 for underline, 8 for outline, 128 for superscript, 256
for subscript. fontSize may be 9,10,12,14 or 18.

Note: Not all combinations of fontName, fontFace and
fontSize are valid. If you try a combination that does not
look as expected, then you've found an invalid combination.

viewFormat defines the visual format of the WINDOW. If
viewFormat is 0, then the window is transparent.
frameColor is the color (pattern) of the window border.
frameColor may be one of:

fillColor is the color of the contents of the window. fillColor
may be one of:

x*vfPen sets the width of the border in pixels. X should be
between 0 and 15. Y*vfShadow sets the width of the
shadow in pixels. Y should be between 0 and 3. Z*vfRound

viewFont: {family: fontName, face:
fontFace, size: fontSize}

viewFormat: frameColor + fillColor + x*vfpen +
y*vfshadow + z*vfround

vfFramewhite vfFrameltgray

vfFrameGray vfFrameDkgray

vfFrameBlack vfFrameMatte (thick
gray bordered by
black)

vfFillWhite vfFillLtgray

vfFillGray vfFillDkGray

vfFillBlack

..
212 NS BASIC Handbook

is the corner radius, in pixels. Z should be between 0 and 15.

viewJustify defines the type of justification used for the
text displayed in WINDOW. justifyCode is 0 for text left, 1
for text right, 2 for text centered and 3 for text stretched
across the entire width of WINDOW.

GOTO defines tap processing. lineNumber is the line of code
or label the program should GOTO if the WINDOW is
tapped. A click sound is played on the Newton when the
user taps on a WINDOW that has a GOTO defined for it.

GOSUB defines tap processing. lineNumber is the line of code
or label the program should GOSUB if the WINDOW is
tapped. A click sound is played on the Newton when the
user taps on a WINDOW that has a GOSUB defined for it.
A RETURN will return execution to the line following the
WAIT that was executing when the window was tapped.

Note: When using labels with GOTO or GOSUB, you must
preceeed the label with a ' character. You may also use a
variable name in place of a lable. The variable must contain
an integer that represents the desired line number to
GOTO or GOSUB.

You may examine the windowSpec frame after a tap has
been processed and a GOTO or GOSUB is performed. The
windowSpec will contain these four additional fields:

FIRSTX: The X coordinate of the first point on the Newton
Screen where the user placed the pen down.

FIRSTY: The Y coordinate of the first point on the Newton
Screen where the user placed the pen down.

LASTX: The X coordinate of the point on the Newton
Screen where the user lifted the pen.

LASTY: The X coordinate of the point on the Newton
Screen where the user lifted the pen.

viewJustify: justifyCode

GOTO: lineNumber

GOSUB: lineNumber

..
NS BASIC Handbook 213

Whenever NS BASIC performs a GOTO or GOSUB in
response to a pen tap, the variable WSTAT is set to the
winNum of the window that was tapped.

Note: You should avoid using a variable named WSTAT for
your own purposes.

text contains the current text displayed in the window
using WPRINT.

drawing contains the current graphic displayed in the
window using WDRAW.

widgetType contains a string specifing one of the widget
names shown below. It overrides the value in widget, if
provided. See the section below on the array and frame of
frames forms of windowSpec for more details.

This code fragment creates a valid windowSpec with many of
these elements:

10 windowSpec:={viewBounds: SETBOUNDS¬
(10, 10, 40, 30), viewFont: {family:¬
'handwriting, face: 0, size: 12}, ¬
viewFormat: vfFrameBlack + vfFillWhite ¬
+ 2*vfPen + 3*vfShadow + 6*vfRound, viewJustify: ¬
0, GOTO: 'windowTap, text: "Yo!"}
20 WINDOW w1, windowSpec
25 SHOW w1
30 WAIT -1
2000 windowTap: REM Call me when tapped!
2010 END // just stop

text:

drawing:

widgetType:

..
214 NS BASIC Handbook

widget is a string. If included, it must be one of the values
shown below. Each widget is described separately in the
Visual Designer Reference section.

APP an application background

AZTABS an alphabet picker

AZVERTTABSan alphabet picker in a verical orientation

CHECKBOX a checkbox followed by a label

CLOSEBOX a small Newton close box

DATEPICKER a calendar display and date picker

DIGITALCLOCK a digital clock display

DRAW a box that accepts pen drawings

GAUGE a linear display of a value

GLANCE a text window that appears for 3 seconds

LABELINPUT a labeled text entry field

LABELPICKER a labeled field with a pick list

LARGECLOSEBOX a large Newton close box.

MONTH a month display that accepts date selections

NEWSETCLOCK a clock that can be set

NUMBERPICKER a number display and picker

PARAGRAPH a window that displays styled text

PICKER a pick list, showing the current selection

PICTUREBUTTON a button that displays an icon

RCHECKBOX a label followed by a checkbox

SCROLLER a text entry field that expands and scrolls

SETCLOCK a clock that can be set

SLIDER linear display and entry of values

TEXT a plain text entry window

TEXTBUTTON a button with a text label

TEXTLIST a scrollable, checkable list

TITLE a lable in the standard Title font

Widgets may be hilighted (shown in inverse) once they are
displayed using the windowSpec for the widget. For example:

U.windowSpec:HILITE(TRUE)
U.windowSpec:HILITE(NIL)

The first line will invert the widget associated with
windowSpec, the second will revert it to a normal display.

..
NS BASIC Handbook 215

windowSpec may optionally be an array of frames, or a frame
of frames. These two special formats are created by the
WIDGETDEF Statement and the Visual Designer. You can
also create them yourself when created programs without
the Visual Designer since you program will execute more
quickly when compared to using multiple WINDOW
Statements. When using the array or frame of frames form
for windowSpec, each Widget specification must contain a
field named widgetType and a field named order. The
windgetType field contains a string specifing the type of
widget to create. The order field contains an integer
representing the front to back position (starting from 0 for
frontmost) of the window or widget. The WINDOW
Statement will return an array of window numbers in
winNum that correspond to the windows and widgets in the
windowSpec. They will be in the same order as the front-to-
back ordering of the individual window specifications. Refer
to Chapter 4 for more information on the Visual Designer.

EXAMPLE

10 REM WINDOW Example
20 W1Spec := {viewbounds: SETBOUNDS(10, 50,
150, 75), viewFont: {family: 'espy, face: 7,
size:14}, viewFormat: 4*vfRound +2*vfPen
+vfFrameBlack+vfFillWhite, viewJustify: 2}
30 WINDOW WinNum, W1Spec
40 SHOW WinNum
50 WPRINT WinNum, "Slartybartfast"

OUTPUT

RELATED ITEMS

HIDE, HWINPUT, SHOW, WAIT, WDRAW,
WIDGETDEF, WPRINT

See WAIT for an example of using the GOTO element in a
windowSpec.

..
216 NS BASIC Handbook

WPRINT Statement

WPRINT windowNum, expression

DESCRIPTION

WPRINT displays the contents of expression in window
windowNum. windowNum is the number returned by the
WINDOW Statement. The font and style used to display
the text will be those defined for window windowNum.

WPRINT can also be used to update the display of a
GAUGE widget once the viewValue has been changed.

EXAMPLE

10 REM WPRINT Example
20 W1Spec := {viewbounds: SETBOUNDS(10, 50,
150, 75), viewFont: {family: 'espy, face: 7,
size:14}, viewFormat: 4*vfRound +2*vfPen
+vfFrameBlack+vfFillWhite, viewJustify: 2}
30 WINDOW WinNum, W1Spec
40 SHOW WinNum
50 WPRINT WinNum, "Slartybartfast"

OUTPUT

RELATED ITEMS

SHOW, GAUGE, HIDE, WINDOW, HWINPUT

..
NS BASIC Handbook 217

C H A P T E R

4
...

4. Using The Visual Designer

4.1 The Newton Interface

When you use applications on your Newton, they usually
use what we’ll call a Newton interface. That means that they
consist of buttons, pickers, and handwriting input areas.
They rely on the user interacting with a screen and then
tapping a button or selecting an item from a popup menu to
indicate that they are done. Not all applications are exactly
the same, but most present several different screens to the
user.

NS BASIC supports most of the standard Newton interface
elements. These are called widgets in NS BASIC. You may
also have heard of protos or views if you’ve read any
NewtonScript programming books. If you're a Visual BASIC
programmer, you'll know them as controls. No matter what
you call them, widgets are simply handy building blocks that
you use to create a Newton interface for your NS BASIC
programs.

There are as many ways to design a visual program as their
are programmers. Rather than try to describe them all we’ll
present the two most common ways to add a visual
interface to a program. The two ways are by using the Visual
Designer and using widgets separately. You’ll find that, even
when using the Visual Designer, you’ll probably need to
create one or more widgets separately.

This chapter will describe how to use the WIDGETDEF
Statement and Visual Designer to add a Newton interface to
your program. Next, you’ll learn how to use widgets, the
WINDOW and WAIT Statements, and windowSpecs to
create an interface from scratch. Finally, a strategy for
designing creating your own programs is presented.

4.2 Visual Terminology

Before jumping into the discussion of the Visual Designer
and widgets, lets define some terms that we’ll be using:

..
218 NS BASIC Handbook

Widget: A standard Newton visual element such as a text
button, paragraph, or title.

windowSpec: The window specification frame used to
control the visual appearance of a widget, and to extract the
user-entered values from a widget. For example, your
program can check or un-check a CHECKBOX widget, and
can also determine if the user checked it, by using a specific
element in the windowSpec for the CHECKBOX.

Layout: A frame containing multiple windowSpecs created
and edited in the Visual Designer. A layout is considered to
be one entire screen for your program. It contains several
widgets. Each widget has a windowSpec that is contained as
an element of the layout. Think of your program as
consisting of one or more layouts that are displayed and
hidden as needed.

Application: The main window for your program. This is
usually an APP widget and possibly one or more
TEXTBUTTONs or PICTUREBUTTONs that are always
visible. The user may perform several tasks in a program
with each task having its own layout, but the application
items are always visible.

Event loop: An event loop is a point in your program
where you have displayed a layout (or several widgets) and
are waiting for the user to indicate that they have finished
filling in the layout. An example would be filling in several
fields for a new record in a file. The program displays the
layout and then waits for the user to fill in the fields and tap
a Save button.

4.3 WIDGETDEF and the Visual Designer

NS BASIC allows you to create an application interface one
widget at a time. That is fine for a simple program, but
suppose you would like to use several widgets in a layout? If
you had to create the layout one widget at a time you’d have
a lot of work on your hands. Instead, you can use the
WIDGETDEF Statement and the Visual Designer to create
the entire layout right on the Newton. To illustrate this let’s
make an Inches/Centimeters conversion program.

To use the Visual Designer you add a WIDGETDEF
Statement to your program for each unique layout. We’ll
create a program that uses a single layout so you can get

..
NS BASIC Handbook 219

started with the Visual Designer. The Technical Notes
included on the NS BASIC disk includes a more complex
example that uses multiple layouts.

In order to edit a layout with the Visual Designer you use
the EDIT Command on each WIDGETDEF Statement. Then
you add WINDOW, SHOW, and HIDE Statements to
complete the interface.

If you have a program that displays a single layout (like we
will in our example) you can begin by using the
NEWPROGRAM Command. This clears any currently
loaded program and then enters a program template that
includes all the statements you need for a typical program.
It then EDITs the WIDGETDEF Statement in that program
for you, so you’re ready to start adding widgets in the Visual
Designer.

Visual Designer

Begin by entering the NEWPROGRAM Command. This will
clear the currently loaded program from memory and enter
a template for a program that uses the Visual Designer. You
will see a series of * characters as each Statement in the
template program is added, and then the Visual Designer will
open, displaying an empty layout. This is not magic, it’s just
a quick way to get started. The template program entered
for you is shown below:

0010 REM program template
0020 LET appSpec={goto:'endProgram,title:
"Demo"}
0030 window app,appSpec,"APP"
0040 show app
0050 widgetdef Layout_0
0060 window wlist,Layout_0
0070 show wlist
0100 wait -1 // indefinitely
9000 endProgram: rem
9010 hide
9020 stop

Once this program is entered by the NEWPROGRAM
Command (displaying a * for each Statement) NS BASIC
issues an EDIT 50 Command for you, opening the Visual
Designer. Let’s add some widgets to this layout:

..
220 NS BASIC Handbook

Creating Widgets

You can both create and edit widgets in a layout. For the
most part, what you see in the Visual Designer is what you
get in your running program. The grid of dots does not
display in your application. They are shown to help you align
widgets. Also, the Visual Designer title showing the layout
name appears in the same place as an APP widget title. If you
place widgets in this area they will most likely cover the title
displayed by the APP widget.

Let’s add some widgets to this layout. You create a new
widget by either tapping the New button or by making a V
gesture to insert a widget at a specific location. In either case
a scrolling list of all the NS BASIC widgets except for APP
and PICKER is displayed:

..
NS BASIC Handbook 221

Select the type of widget you want from the list and it is
displayed on the layout. Let’s begin with a TITLE widget. You
may need to scroll the list of widgets down to see the TITLE
widget. Tap it, and a new widget is created in the layout. The
widget is initialized with default values in its windowSpec.
New widgets are selected automatically, which means they
are displayed with a dotted rectangle surrounding it. This
rectangle represents the viewBounds of the widget. The
little black square in the lower right corner
is called a resize handle. The Property floater for the
widget is then displayed.

Editing Widgets

You edit widgets using the pen or by changing property
values using the Property floater. In either case you’re really
just setting values of elements of the widget’s windowSpec.

..
222 NS BASIC Handbook

Pen Edits

You select a widget by tapping it with the pen. You delete a
widget using the standard Newton scrub-out gesture. You
move a selected widget to a new location on the screen by
placing the pen anywhere inside the selection outline and
dragging. You resize a widget from the lower right corner by
placing the pen on the resize handle and dragging it. Just the
handle moves to indicate the new lower right corner for the
widget. Lift the pen and the new viewBounds are used.
Since both moving and resizing a widget is just changing its
viewBounds, you can control the exact placement using the
Property floater to edit the viewBounds property. In fact,
you can perform all these edits and more using the Property
floater.

Property Floater Edits

The Property floater can edit any property of a widget. All
properties are described in the reference page for
WINDOW on page 209. In addition, each widget reference
page lists the properties it supports. Fortunately, the Visual
Designer knows the most common properties for a given
widget. When you select a widget the Property floater for
that widget is displayed, customized for the particular type
of widget. Tap Property to display the list of available
properties for the select widget, and then tap on a property
to edit it.

The Property floater displays one or more fields or
checkboxes as needed to edit the property. For example,
the viewBounds property editor shows four text entry
boxes for the left, top, right, and bottom viewBounds
values.

..
NS BASIC Handbook 223

All widgets include two special properties. The order
property is an integer value that determines the front-to-
back ordering of widgets. This is important when two or
more widgets overlap. Widgets are drawn from lower
numbers for order to higher numbers, so lower numbers
are behind or in back of higher numbers. You’ll need to use
this number to selectively SHOW or HIDE specific widgets
in the layout. The other property is widgetName. The value
of this property is displayed in the title of the Property
picker for the selected widget, and is also the element name
given to the windowSpec for the widget within the
WIDGETDEF Statement. This is important when you wish
to change or access the contents of the windowSpec in your
program. Each widget is given a default name of Widget_N
(where N is a number) when it is created. If you don’t need
to access the widget (it is a TITLE widget for example) then
you can leave the default name as is. If not, you should give
each widget a descriptive name, using the same rules for
names as for variables. We’ll give an example of using the
widgetName property in the next section. There is a more
detailed example in the Technical Notes included on the NS
BASIC disk that shows how to use the order property.

The Property floater includes a button. You use this
button to change the front-to-back position of the widget,
duplicate the widget, or delete it. As you make changes to
the widget its display is updated in the layout. This happens
automatically after one second of inactivity.

Creating the Example Layout

Our Inches/Centimeters converter needs six widgets.
There is a TITLE, NUMBERPICKER, and TEXT widget for
the Inches portion and for the Centimeters portion. If you
haven’t created a TITLE widget yet, select New and the
scroll the menu until you see TITLE in the list. Tap TITLE
and a new TITLE widget is added to the display. Drag this
widget to the left half of the screen, about an inch below the
top of the screen. Since it’s a TITLE widget we don’t need
to give it a specific widget name. We do need to edit the
text property so it displays the correct title. Tap Property
and the tap text from the menu.

..
224 NS BASIC Handbook

The Property floater should look like this:

Scrub out title and write Inches.

Tap New and tap NUMBERPICKER from the menu. Notice
how the Property floater is now displaying Widget_1 in its
title? That’s because the new widget has been selected. We
need to give this widget a name because we reference it in
our program. Begin by tapping Property and then
widgetName. Scrub out the default name and enter
inchpicker. We’re only going to use four digits in the
picker, so tap Property and then maxValue. Change the
default to 9999. Notice that now only four digits are
displayed in the NUMBERPICKER. Also notice that the
dotted rectangle is still as large as it was before - we haven’t
changed the viewBounds yet! Tap Property and then
viewBounds. Change the Left value so it is 90 less than the
Right value (for example, if Right is 372 then change Left to
be 282.) We need some way to call a subroutine in our
program whenever the user changes the value displayed in
the NUMBERPICKER. If we add a GOSUB property then that
will do what we want. Tap Property. Notice that there is no
GOSUB property in the list. We can add it by tapping on add
property. Tap on add property and then enter GOSUB.
It is very important that you don’t have any spaces or
misspell GOSUB. If you do then your subroutine won’t get
called! After you’re done tap Property and then tap GOSUB.
Enter 'recalc_inchp. You’ll find that using the on-screen
keyboard really helps for entering text into the Property
floater. Finally drag the NUMBERPICKER so it is below the
TITLE widget and near the left edge of the screen. We’re
almost done.

Tap New and tap TEXT from the menu. We also need to
give this widget a name because we reference it in our
program. Tap Property and then widgetName. Scrub out
the default name and enter inchtext. We only want one
line of text for this widget, so tap Property and then
viewBounds. Change the Right value to be 230 larger than

..
NS BASIC Handbook 225

the Left value, and the Bottom value to be 20 more than
the Top value. Tap Property and then text. Scrub out the
default text. Add a GOSUB property and the set it to
'recalc_inchtx. Finally, drag the widget to be just to the
right of the NUMBERPICKER.

Create three additional widgets just as you did before, with
the following changes:

Set the second TITLE widget text property to Centimeters.
Adjust it’s viewBounds so the Right value is 112 larger than
the Left value, and drag it to about an inch below the first
three widgets.

Set the second NUMBERPICKER widgetName to cmpicker,
and its GOSUB property to 'recalc_cmp. Drag it below the
Centimeters TITLE widget.

Set the second TEXT widgetName to cmtext, and its
GOSUB property to 'recalc_cmtx. Drag it to the right of the
Centimeters NUMBERPICKER widget.

That’s it. It sounds like a lot of work, but it should only take
a few minutes. When you’re done the layout should like
something like this:

..
226 NS BASIC Handbook

Saving and Editing Layouts

To save a layout, simply close the Visual Designer. You will
be returned to the NS BASIC Command prompt. If you have
the environment variable LISTWIDGETS set to TRUE then
you can LIST the program and see information in the
WIDGETDEF Statement you just edited. To make additional
changes in a layout simply EDIT the line number of the
WIDGETDEF again. To remove a layout from your program
delete the Statement line.

WINDOW and WIDGETDEF

To actually display a layout created by a WIDGETDEF
Statement you still need to use the WINDOW and SHOW
Statements. The WINDOW Statement is used in a
simplified form:

0060 window wlist,Layout_0

Notice that we don’t specify a widget. That’s because each
windowSpec in Layout_0 includes a widgetType element.
Since a layout contains several widgets, wlist contains an
array of window numbers after this Statement executes.
You can SHOW and HIDE all the widgets in a layout by using
the array of window numbers in a SHOW or HIDE
Statement. You can also SHOW or HIDE a specific widget if
you use the desired array element in a SHOW or HIDE
Statement.

Once you’ve shown a layout, you still need to use an event
loop to wait for the user to finish interacting with the layout.
This means there must be some way for the user to exit the
layout. When they do you typically will want to access the
values the user entered into the layout and then HIDE it. In
our example there is a single layout for the whole program,
so the user exits the layout and the program by tapping the
APP widget close box.

The program below includes the four subroutines needed to
fully implement the Inches/Centimeters converter program.
This LISTing is with LISTWIDGETS set to NIL, the example
on the NS BASIC disk contains the full listing.

0010 REM Visual Designer Example
0020 LET appSpec={goto:'endProgram,¬
 title:"Distance Converter"}
0030 window app,appSpec,"APP"

..
NS BASIC Handbook 227

0040 show app
0050 widgetdef Layout_0
0060 window wlist,Layout_0
0070 show wlist
0100 wait -1 // indefinitely
2000 recalc_inchp: REM Inch picker changed
2010 newCMVal = ¬
 Layout_0.inchpicker.value*2.54
2020 SETVALUE(Layout_0.inchtext, 'text,¬
 "" & Layout_0.inchpicker.value)
2030 SETVALUE(Layout_0.cmpicker, 'value,¬
 FLOOR(newCMVal))
2040 SETVALUE(Layout_0.cmtext, 'text,¬
 "" & newCMVal)
2050 RETURN
3000 recalc_inchtx: REM Inch text changed
3010 newInchVal = STRINGTONUMBER(¬
 Layout_0.inchtext.text)
3020 IF newInchVal = NIL ¬
 THEN newInchVal = 0
3030 newCMVal = ¬
 newInchVal*2.54
3040 SETVALUE(Layout_0.inchpicker,¬
 'value, FLOOR(newInchVal))
3050 SETVALUE(Layout_0.cmpicker, ¬
 'value, FLOOR(newCMVal))
3060 SETVALUE(Layout_0.cmtext, ¬
 'text, "" & newCMVal)
3070 RETURN
4000 recalc_cmp: REM CM picker changed
4010 newInchVal = ¬
 Layout_0.cmpicker.value/2.54
4020 SETVALUE(Layout_0.cmtext, 'text,¬
 "" & Layout_0.cmpicker.value)
4030 SETVALUE(Layout_0.inchpicker, ¬
 'value, FLOOR(newInchVal))
4040 SETVALUE(Layout_0.inchtext, ¬
 'text, "" & newInchVal)
4050 RETURN
5000 recalc_cmtx: REM CM text changed
5010 newCMVal = ¬
 STRINGTONUMBER(Layout_0.cmtext.text)
5020 IF newCMVal = NIL ¬
 THEN newCMVal = 0
5030 newInchVal = ¬
 newCMVal/2.54
5040 SETVALUE(Layout_0.cmpicker, ¬
 'value, FLOOR(newCMVal))
5050 SETVALUE(Layout_0.inchpicker, ¬
 'value, FLOOR(newInchVal))

..
228 NS BASIC Handbook

5060 SETVALUE(Layout_0.inchtext, ¬
 'text, "" & newInchVal)
5070 RETURN
9000 endProgram: rem
9010 hide
9020 end

The only change to the initial program generated by
NEWPROGRAM is that we’ve changed the APP widget title
in line 20. The four subroutines called by the GOSUBs we
added to the widgets in the Visual Designer make up the
bulk of the program. Although they look complicated
they’re actually pretty simple. We will look at just one in
detail, since all four are actually quite similar.

Lines 2000-2050 are executed when the user changes the
Inches NUMBERPICKER widget. Line 2010 computes the
new value in centimeters by multiplying the value of the inch
picker by 2.54. The current value is also converted to a
string and the text property of the inchtext TEXT
widget is set to it in line 2020. The cmpicker
NUMBERPICKER widget value property is set to the
integer portion of the new value in line 2030, and the
cmtext TEXT widget text property is set to the full value
(converted to a string) in line 2040.

The other three subroutines do about the same thing: they
convert the changed value either to inches or centimeters
and then update the other three widgets so they display the
correct value.

..
NS BASIC Handbook 229

The interface for the example program is displayed below:

4.4 Widgets, WINDOW, and WAIT

You use the WINDOW Statement and your own
windowSpec to create widgets one at a time. This gives you
complete control over the elements of each widget. For
simple interfaces of two or three widgets and for the
widgets that make up the application it works very well. For
programs that display many layouts it can become tedious.
For this reason we recommend that you use the Visual
Designer for most programs.

In order to create an interface in this way you first define
one or more windowSpecs. Each windowSpec is stored in its
own unique variable. You then use a WINDOW Statement
to create each widget. Next, a SHOW Statement shows the
widgets. Finally, a WAIT -1 Statement creates an event loop
where your program waits for the user to make a selection.
Let’s create a simple stop watch program that displays an
APP widget. The user taps the close box to exit the

program, and taps the button to get information. There
is also a Time button that is used to start and stop the
watch. The elapsed time is displayed using the NOTIFY
Function.

..
230 NS BASIC Handbook

0010 REM Widget Example
0020 w1Spec := {Title: "Widget Example", ¬
 GOTO:'appDone, GOSUBinfo: 'showInfo}
0030 w2Spec:={text:"Start",¬
 GOSUB:'buttonTap, viewBounds:¬
 SETBOUNDS(10, 30, 54, 43), viewFont: ¬
 {family:'espy, face:1, size:9}}
0040 WINDOW w1, w1Spec, "APP"
0050 WINDOW w2, w2Spec, "TEXTBUTTON"
0060 SHOW w1, w2
0070 WAIT -1
0080 appDone: REM tapped close box
0090 HIDE
0100 PRINT "Closed."
0110 END
0120 showInfo: REM Info button tapped
0130 NOTIFY("Stop Watch", ¬
 "Stop watch example")
0140 RETURN
0150 buttonTap: REM
0160 IF w2Spec.text = "Start" THEN
0170 startTicks = TICKS()
0180 SETVALUE(W2Spec, 'text, "Stop")
0190 ELSE
0200 totalSeconds = (TICKS()-startTicks)/60
0210 SETVALUE(W2Spec, 'text, "Start")
0220 NOTIFY("Stop Watch", "Time is " & ¬
 totalSeconds & " seconds.")
0230 END IF
0240 RETURN

..
NS BASIC Handbook 231

The program’s Newton interface is shown below:

There are two widgets created in this program. They are the
APP and TEXTBUTTON widgets. The windowSpecs for
these are defined in lines 20 and 30. The widgets are created
using WINDOW Statements in lines 40 and 50, and are
displayed with the SHOW Statement in line 60. Line 70 is
our event loop. By using a WAIT -1 Statement the program
will loop forever at line 70. The only way to execute other
Statements in the program is via GOTOs or GOSUBs from
within the windowSpecs of the two widgets.

The APP has a GOTO element in its windowSpec so we can
exit if the user taps the close box. The APP also has a
GOSUBinfo element so we can process a tap on the
button. The subroutine that processes that tap is in lines
120-140. It just displays an information window using the
NOTIFY Function and then it returns.

The TEXTBUTTON widget has a GOSUB element in its
windowSpec so we can process a tap of the button by the
user. The subroutine that processes that tap is in lines 150-
240. The first thing this subroutine does is determine the
currently displayed label for the button in line 160. If the
label is "Start" then the current value returned by the

..
232 NS BASIC Handbook

TICKS Function is stored in a variable (line 170) and then
the TEXTBUTTON label is changed to "Stop" by using the
SETVALUE Function in line 180. If the label was not
"Start" then the total number of seconds since the last tap
is calculated in line 200. Line 210 changes the
TEXTBUTTON label back to "Start". Line 220 displays the
elapsed time using the NOTIFY Function.

Using the WINDOW Statement to create widgets gives you
complete control over the settings used for a widget. For
instance you can calculate the viewBounds for widgets and
then use the computed values to place them exactly where
you want. This is important if you want your interface to
take advantage of additional screen space available when
running on different Newtons, or when the display is
rotated. When you use the WINDOW Statement you do
have to do more work to create all the widgets. This can
make your program larger and a little slower.

4.5 A Visual Strategy

We’ve already presented most of the programming tips you
use with Visual Designer and widgets. They are summarized
below.

Use Labels Not Line Numbers

Use labels for all your GOTO and GOSUB Statements and
in windowSpecs. By doing this you can give a descriptive name
to the action associated with a widget.

Name Your Widgets

Always name every widget in each layout that you intend to
access in your program. It makes the program easier to read
and helps save you from having to edit your program if you
add or reorder the widgets in a layout.

Use the Order Element

When accessing a specific widget’s window number to HIDE
or SHOW it in a layout, don’t hard code a number into your
program. Use the order element of the windowSpec for the
widget you want to HIDE or SHOW.

..
NS BASIC Handbook 233

Think In Screens

Think of your program as presenting several screens on top
of a single application. The application contains widgets that
allow the user to move from one task to another. Each task
corresponds to a new layout. Complex tasks may require
more than one layout to complete, and you may need more
than one event loop. If you can use a single event loop you
will find that it is easier to understand your program.

Start Slowly

Use NEWPROGRAM to create the initial program.
Customize the application by adding whatever additional
widgets are needed, and then SHOW all of them. Create as
many WIDGETDEFs as are needed for your screens. If you
structure the application with one event loop you’ll need to
keep track of the currently displayed layout in a variable. If
you have multiple event loops then each task can show its
task related layout and then enter a new event loop. This
event loop processes actions for the specific layout, and also
processes the exiting of the task. That includes saving data
and hiding the layout. By doing this your program does not
need to keep track of which layout is currently displayed.

..
234 NS BASIC Handbook

..
NS BASIC Handbook 235

C H A P T E R

5
...

5. Advanced Topics
This chapter provides detailed examples showing the use of
the advanced and Newton-specific features of NS BASIC.
We'll present each topic, walk through a detailed example,
and give you advice on why you'd want to use these features
in your own programs. This section of the Handbook will be
much more informal. Curl up with your Newton, NS BASIC,
and the Handbook, and follow along! Once you’re done
reading this section you should read the Technical Notes
included on the disk. They contain more examples and
descriptions of the amazing things you can do with NS
BASIC.

5.1 Frames

The frame data structure is required for files and windows.
It can be used for many other purposes as well. You can
think of a frame as a container. You can add as many named
items to the container as you'd like, and retrieve them by
name in any order.

Our example shows creating a frame, adding several values
to it, and then accessing those values:

10 REM frame Example
20 REM myUser is a variable holding
30 REM all the info for a user
40 myUser = {} // an empty container
50 PRINT "Enter your first name:"
60 INPUT name$
70 myUser.firstName = name$
80 PRINT myUser // see elements added
90 PRINT "Enter your last name:"
100 INPUT name$
110 myUser.lastName = name$
120 PRINT myUser // see another element!
130 PRINT "Enter your age, or S to Skip:"
140 INPUT age$
150 IF age$ = "S" THEN GOTO 170
160 myUser.age = STRINGTONUMBER(age$)
170 PRINT myUser // final form
180 PRINT "First Name: "; myUser.firstName
190 PRINT "Last Name: "; myUser.lastName

..
236 NS BASIC Handbook

200 IF myUser.age = nil THEN GOTO 220
210 PRINT "Age: "; myUser.age
220 PRINT "Try again? (Y/N):"
230 INPUT ans$
240 IF ans$ = "Y" THEN GOTO 30

OUTPUT

Enter your first name:
?

Jane
{firstname:"Jane"}
Enter your last name:
?

Doe
{firstname:"Jane",lastname:"Doe"}
Enter your age, or Q to Quit:
?

q
{firstname:"Jane",lastname:"Doe"}
First Name: Jane
Last Name: Doe
Try again? (Y/N):
?

y
Enter your first name:
?

John
{firstname:"John"}
Enter your last name:
?

Doe
{firstname:"John",lastname:"Doe"}
Enter your age, or Q to Quit:
?

24
{firstname:"John",lastname:"Doe",AGE:24}
First Name: John
Last Name: Doe
Age: 24
Try again? (Y/N):
?

n

We were able to add the named items firstName ,
lastName , and age to the frame simply by assigning a
new named container inside the frame variable.

We also can test to see if a frame has a named item by
testing to see if that item is NIL. Line 200 checks to see if
there is an age item for the frame, and if not, skips the print
statement on the next line. If you are testing a named item
that contains a Boolean, you can use the HASSLOT
Function.

You must use frames in order to write information to a file.
The frames you write to a file may have different items

..
NS BASIC Handbook 237

stored in them.

5.2 Files

This section discusses the use of indices to quickly locate a
particular entry in a file. We'll also use the techniques we
just learned in the previous section to create a file of
records with different elements in them.

The program below is an expanded version of a program
that was first shown in the Reference Chapter for the
CREATE Statement. We've expanded it in lines 40-140 to
support entry of multiple records and both a key and a data
field.

The retrieval section (lines 150-230) also retrieves as many
records as you want.

10 REM File/Key retrieval Example
20 REM OPEN or CREATE a file...prompts for¬
some information, stores it, then allows¬
the user to fetch records.
30 OPEN chan, "EXAMPLEFile", keyname
40 IF FSTAT = 1 THEN ¬
CREATE chan, "EXAMPLEFile", keyname
50 IF FSTAT =1 THEN GOTO 300
60 PRINT "Please enter a Key, Q to finish"
70 INPUT FileKey$
80 IF FileKey$ = "Q" THEN GOTO 210
90 fileRecord = {}
100 fileRecord.keyname = FileKey$
110 PRINT "Please enter some data for this
Key"
120 INPUT FileData
130 fileRecord.info = FileData
140 PRINT "Enter a number, or S to Skip:"
150 INPUT num$
160 IF num$ = "S" THEN GOTO 180
170 fileRecord.num = STRINGTONUMBER(num$)
180 PUT chan, fileRecord
190 IF FSTAT=1 THEN STOP
200 GOTO 60
210 PRINT "Please enter a Key to find, Q to
end"
220 INPUT FileKey$
230 IF FileKey$ = "Q" THEN GOTO 290
240 GET chan,FetchedData,FileKey$
250 IF FSTAT=1 THEN STOP
260 IF FSTAT=2 THEN PRINT ¬
"Not found! Close Record is..." ¬

..
238 NS BASIC Handbook

ELSE PRINT "Data is..."
270 PRINT FetchedData
280 GOTO 210
290 END
300 REM error, cannot OPEN or CREATE file!
310 PRINT "Error! Cannot OPEN or CREATE
EXAMPLEfile."
320 END

Enter the following data into the program. We're not
showing the prompts in the Handbook.

*

RUN
?

test
?

mydata
?

s
?

abracadabera
?

this IS data
?

100
?

Zippy
?

The Smallhead
?

47
?

OK
?

Middle of the DB
?

-12.5
?

q
Please enter a Key to find, Q to end
?

abr
Not found! Close Record is...
{KEYNAME:"abracadabera",info:"this IS
data",num:100,_uniqueID:1}
Please enter a Key to find, Q to end
?

abracadabera
Data is...
{KEYNAME:"abracadabera",info:"this IS
data",num:100,_uniqueID:1}
Please enter a Key to find, Q to end
?

p
Not found! Close Record is...
{KEYNAME:"test",info:"mydata",_uniqueID:0}
Please enter a Key to find, Q to end
?

q
*

RUN
Please enter a Key, Q to finish
?

Stimpy
Please enter some data for this Key
?

Happy! Happy! Joy! Joy!
Enter a number, or S to Skip:
?

s

..
NS BASIC Handbook 239

Please enter a Key, Q to finish
?

q
Please enter a Key to find, Q to end
?

stimpy
Data is...
{KEYNAME:"Stimpy",info:"Happy! Happy! Joy!
Joy!",_uniqueID:4}
Please enter a Key to find, Q to end
?

a
Not found! Close Record is...
{KEYNAME:"abracadabera",info:"this IS
data",num:100,_uniqueID:1}
Please enter a Key to find, Q to end
?

q
*
There are several interesting things to look at in this
program:

Lines 30-50 attempt to OPEN or CREATE a data file. If the
OPEN fails, we try a CREATE. If that fails, we GOTO the
end of the program and give up.

Lines 60-200 let the user input as many records as they
want. We build our frame in the same way as shown in the
previous section.

Lines 210-280 let the user enter a key to find. We check
FSTAT after the GET Statement. If it is 2, then an exact
match was not found.

If you look at the output, you'll note that some of the frames
printed out (test and Stimpy) don't have an entry for num .
This shows that you can store different kinds of frames in
the same file, as long as they all have the required key entry.

We ran the program twice, and the data entered in the file
was still there in the second run.

Note: NS BASIC adds the item __uniqueID to every
frame that is PUT into a file. You should avoid using a field
with this name in any frame you want to PUT in a file. Never
change the value of this item in a frame you GET from a file.

5.3 Accessing and Using Other Files, Data, and
Applications

You can examine the contents of any file in your Newton.
The table below lists the names of the files used with the
built-in applications.

..
240 NS BASIC Handbook

Note: You can read these files. If you write to or delete
entries in these files you may lose data. Please be sure you
have backed up your Newton prior to deleting or writing
records to these files.

Dates

Note Pad

Names

You can write a small program that OPENs these files, GETs
an entry, and PRINTs it. You can examine the output to
learn the item names within these files, and their contents.
This program displays an entry from the calendar file:

10 OPEN ch,"calendar",mtgstartdate
20 GET ch, n
30 PRINT n // dump record

OUTPUT

{viewStationery:Meeting,mtgStartDate:4770198
0,mtgDuration:150,mtgText:"Some Meeting

File Name Key Name Contents

calendar mtgStartDate daily meetings that
don't repeat

repeat
meetings

mtgStopDate daily meetings that
repeat

calendar
notes

mtgStartDate day notes (written to
the left of the
calendar) that don't
repeat

repeat notes mtgStopDate day notes that repeat

to do list date to-do entries

File Name Key Name Contents

notes timestamp notepad data

File Name Key Name Contents

names sortOn name data

..
NS BASIC Handbook 241

Text!",mtgAlarm:47701970,_uniqueID:35,_modti
me:47567291}

You can also examine and modify data within other
applications installed on your Newton.

Note: As with files, extreme care should be taken when
accessing, changing, or calling other applications. Data loss is
possible. Backup your data.

5.4 Handling Errors

In a perfect world, there are never any errors. Our
programs are seldom perfect worlds! We protect our users
(often ourselves) from many errors using two techniques:
defensive programming and ON ERROR.

The basic idea with error handling is to anticipate which
parts of your program could have run-time errors. and to
set up special program code to deal with it.

Defensive programming

You can use the CLASSOF Function to verify that a variable
contains the expected data type following an INPUT or
READ Statement.

You can check the value of FSTAT after each file input and
output statement.

You can verify that numeric values are within the valid range
before using them in numeric expressions. For example, you
can check that a variable is not zero before using it as the
divisor.

Using ON ERROR

If you are prompting the user to enter a numeric value, the
user may well enter a string. Your program can do one of
two things at that point: spit out the standard NS BASIC
error message and halt, or print a message that gently
reminds the user to enter a number and re-prompt for input
again. Let's look at both and see how they work.

NO ERROR CHECKING

10 REM simple user entry of a number
20 REM without error checking
30 PRINT "enter your age"
40 INPUT age
50 dogAge = age * 7

..
242 NS BASIC Handbook

60 PRINT "You are "; dogAge; " in Dog Years!"
*

RUN
enter your age
?

33
You are 231 in Dog Years!
*

RUN
enter your age
?

fred
0050 :Error 29 - Expression

Everything looked fine until the user entered fred. Then we
got this cryptic error message. Add the following code to
catch the error and deal with it in a more user-friendly way:

* 42 ON ERROR GOTO 100
* 52 ON ERROR GOTO 0
* 70 END // don't run into error handler
* 100 REM This error handler is for invalid
entry
* 105 BEEP 1 // error feedback
* 110 PRINT age; " is not a valid age, try
again."
* 120 GOTO 30

Now that we are prepared for incorrect input, the program
behaves well. Let's RUN it and see:

*

RUN
enter your age
?

fred
fred is not a valid age, try again.
enter your age
?

100
You are 700 in Dog Years!
*

You could also use defensive programming to avoid this
error. One technique is to use the CLASSOF Function to
test the class of the value INPUT by the user:

42 IF CLASSOF(age) <> 'int and CLASSOF(age) <>
'real THEN GOTO 100

Alternatively, you can accept the INPUT data as a string by
using a variable ending in a $ sign. Use the
STRINGTONUMBER Function to convert that string into a
number. If the result is NIL then the user did not enter a
valid number.

..
NS BASIC Handbook 243

Either of these approaches avoids the need for ON ERROR
handlers.

The technique shown above can handle every run-time
error in NS BASIC. The strategy is simple. Just before you
do an operation that may fail, use an ON ERROR Statement
to set up a branch to a specific error handler. Just as soon
as you have passed the section that may fail, reset the error
handler to the default. Always end your program with an
END Statement to avoid running into your error handler
code.

Your error handler code may:

• Display a helpful message and retry the operation, using
GOTO to return to the section of code (like our example
above),

• Correct the error by setting one or more variables to
some default value (i.e., you can limit an input to a
maximum value) and then return to the section that failed
via GOTO, or

• Display an error message of your own design, perform
some clean up (perhaps update a file) and then end the
program.

5.5 Calling NS BASIC from other Applications

Several Newton Applications (the spread sheet program
QuickFigure, for example) allow you to enter NewtonScript
code fragments. You may call NS BASIC and run a program
from these programs. Your NS BASIC program can return
a value using the BYE statement. You can pass a value into
your program from the NewtonScript code fragment as
well. This value is placed into a variable named
CHAINPARAM.

Note: You should avoid using a variable named
CHAINPARAM for your own purposes.

This example program in NS BASIC simply increments the
value passed in via CHAINPARAM, and returns it in the BYE
Statement: Save it with the name calltest.

10 REM calltest
20 BYE chainParam+1

If you want to call this program from QuickFigure, you

..
244 NS BASIC Handbook

would insert the following NewtonScript code fragment
into a cell:

=GETROOT().|basic:NSBASIC|:chain("calltest",
123);

When you press return, the NS BASIC program is executed
and the new value (124) is placed into the cell.

The general form of the NewtonScript expression to call NS
BASIC is:

GETROOT().|basic:NSBASIC|:chain(programName,
chainValue)

Where programName is a string that contains the name of
the program to run, without the .BAS extension, and
chainValue is the value to place in CHAINPARAM.
NS BASIC runs silently without changing the screen, unless
you execute a PRINT or SHOW statement.

You can execute any kind of NS BASIC program, with one
proviso: if the NS BASIC program halts at any point, to get
input from the user for example, the calling NewtonScript
code fragment will receive a return value of NIL . In other
words, as long as you are computing values, accessing files,
or creating displays, the calling code fragment will not
receive a return value until the BYE Statement is reached. If
your program executes an INPUT, HWINPUT, or WAIT
Statement, the calling code fragment will receive a NIL
return value at that point in your NS BASIC program.

..
NS BASIC Handbook

245

A P P E N D I X

A

...

A. Error Messages

Compile and Run-Time

Error 1 - Incorrect Data Type

The Statement or Function expects data of a different
type. Refer to the Reference Chapter of this Handbook
for the expected data type.

Error 2 - Statement or syntax invalid

NS BASIC cannot understand the Statement.

Error 4 - Invalid Checksum on Runtime

The RunTime program file is damaged.

Error 5 - Statement Number

An invalid line number was used.

Error 7 - Label already exists

A Statement begins with a Label that already exists in the
program.

Error 8 - Renumber overlap

When RENUMing a partial range of Statements, the new
number overlaps an existing program Statement.

Error 9 - Invalid Label

A Label was used in a GOTO or GOSUB Statement and
the Label does not exist in the program.

Error 11 - Parenthesis

Mismatched parenthesis.

Error 12 - Label not found

A Label was used in a GOTO or GOSUB Statement and
the Label does not exist in the program.

Error 13 - Line Number

Invalid line number was used.

Error 14 - Out of Memory

You have run out of memory. Reset your Newton to free

..

246

NS BASIC Handbook

more memory.

Note:

 All variable values are cleared after this error.

Error 15 - End of DATA

A READ Statement attempted to read past the last
element of your DATA Statements.

Error 16 - Arithmetic

Numeric overflow or underflow.

Note:

Divide by Zero does not cause an error on
Newton 2.0 units.

Error 19 - RETURN - No GOSUB

There is a RETURN that is missing the GOSUB.

Error 22 - NEXT - No FOR

There is a NEXT without a FOR, or the program has
branched to inside of a FOR NEXT loop.

Error 24 - Invalid WindowSpec

A WindowSpec contains invalid elements or element
values.

Error 25 - Unknown Window

An invalid window number was used in a SHOW or HIDE
Statement.

Error 29 - Expression

NS BASIC cannot understand the Expression. Try to
break complex Expressions into multiple Statements.

Error 30 - Object is read only

An attempt to change a value of or add an item to a
system frame. Frames retrieved using GETROOT() are
often read only.

Error 31 - Subscript or Frame error

Access to an array element that is larger than the array,
or a frame item that does not exist.

Error 32 - Program must be SAVEd

Attempted to use MAKEPACKAGE on an unsaved
program.

Error 34 - Not a bitmap

An invalid bitmap was used.

..
NS BASIC Handbook

247

Error 35 - MakePkg not installed

MAKEPACKAGE Command attempted without
MAKEPKG.PKG installed.

Error 36 - VisualDesigner not installed

EDIT Command attempted on a WIDGETDEF without
VISUALDESIGNER.PKG installed.

Error 46 - Input Error

The user entered more items (separated by commas)
than were expected.

Error 48 - Incorrect SAVE version

NS BASIC may change the internal form of SAVEd
programs. If you get this error, use ENTER to load the
program and then SAVE the new version.

Error 59 - Zero step

A FOR loop has a Zero step.

Error 60 - LOOP without DO

A LOOP Statement was execute before a DO Statement.

Error 61 - EXIT not in loop

An EXIT Statement was executed before a DO
Statement.

Error 63 - Incorrect # of args

The Statement or Function expects a different number of
arguments. Refer to the Reference Chapter of this
Handbook for the expected number of arguments.

Error 87 - Missing ELSE or ENDIF

A Block IF Statement was executed and was not followed
by a closing ELSE or END IF Statement.

Error 88 - Unexpected ELSE,ENDIF

An ELSE or END IF Statement was executed before a
block IF Statement.

File

I/O Error 1 - Illegal file name

The file name used is not valid. File names cannot have
spaces, but may contain both upper and lower case
letters, as well as special characters like underscore (_)

..

248

NS BASIC Handbook

and hyphen (-).

I/O Error 2 - Illegal key

The data type of the key is not correct for the index of a
file.

I/O Error 3 - Opened without keys

A GET with a key was attempted on a file that was
OPENed without a key.

I/O Error 4 - Incorrect key type

A GET or PUT was attempted that specified a key of the
wrong type.

I/O Error 5 - File already Exists

SAVE specified a name already used for an existing
program.

I/O Error 6 - End of file

A GET was attempted after the last record was read. Use
an ON ERROR handler to detect and handle the end of
file when reading every record in a file.

I/O Error 10 - File not found

A file name was specified for a file or program and it does
not exist.

I/O Error 11 - Not a Newton Book

An ENTER was attempted on a package that was not a
Newton Book.

I/O Error 12 - no key on OPEN

A PUT with a key was attempted on a file that was
OPENed without a key.

I/O Error 13 - Channel not open

A GET or PUT was attempted using a channel that was
not returned from CREATE or OPEN

I/O Error 14 - Error creating file

A problem (most often out of space, or card read-only)
occurred while attempting to CREATE a file.

..
NS BASIC Handbook

249

I/O Error 20 - Connect failed

A MMNP connection failed.

I/O Error 21 - Buffer overrun

A communications error occurred.

I/O Error 22 - Comms timed out

The specified time-out in

INPUT.REQTIMEOUT

 has
expired.

I/O Error 23 - Port in use

The specified port is already open by some other
application.

I/O Error 24 - No such port

The specified port is not a valid port.

I/O Error 25 - Comms output overun

A communications error occurred.

I/O Error 26 - Modem not found

An attempt was made to use the MMNP port with no
modem installed.

I/O Error 27 - No dial tone

The modem did not receive a dialtone.

I/O Error 28 - No answer

The modem did not receive an answer.

I/O Error 29 - Line busy

The dialed number is busy.

I/O Error 30 - Modem not responding

The modem did not respond.

I/O Error 31 - Modem connect failed

I/O Error 32 - Error correct failed

I/O Error 33 - Lost connection

The modem did not connect , or lost the connection.

I/O Error 34 - Invalid phone number

The phone number specified is not valid.

I/O Error 35 - Port not connected

An attempt was made to input or output on a port that is
not connected.

..

250

NS BASIC Handbook

..
NS BASIC Handbook

251

A P P E N D I X

B

...

B. Keywords

The following list of keywords are reserved for the use of
NS BASIC and should not be used as variable names.

AND
BEEP
BYE
CHAIN
CHAINPARAM
CLOSE
CLS
CON
CREATE
DATA
DEF
DEL
DELETE
DIM
DIR
EDIT
ELSE
END
ENTER
ENVIRON
ERASE
ERROR
FOR
FUNCTION
GET
GOSUB
GOTO
HIDE
HWINPUT
IF
INPUT
LET
LIST
LOAD
MAKEPACKAGE
NEXT

NIL
NOT
OFF
ON
OPEN
OR
PRINT
PUT
RANDOMIZE
READ
REM
REPLACE
RESTORE
RETURN
REVUP
RUN
RM
SAVE
SELF
SHOW
STATS
STOP
THEN
TRUE
TRACE
VARS
WAIT
WDRAW
WINDOW
WPRINT
WSTAT

..

252

NS BASIC Handbook

..
NS BASIC Handbook

253

160 umlaut
161 ¡
162 ¢
163 £
164 ¤
165 ¥
167 §
168 ¨
169 ©
170 ª
171 «
172 ¬
174 ®
175 ¯
176 °
177 ±
180 ´
181 µ
182 ¶
183 ·
184 ¸
186 º
187 »
191 ¿
192 À
193 Á
194 Â
195 Ã
196 Ä
197 Å
198 Æ
199 Ç
200 È

201 É
202 Ê
203 Ë
204 Ì
205 Í
206 Î
207 Ï
209 Ñ
210 Ò
211 Ó
212 Ô
213 Õ
214 Ö
216 Ø
217 Ù
218 Ú
219 Û
220 Ü
223 ß
224 à
225 á
226 â
227 ã
228 ä
229 å
230 æ
231 ç
232 è
233 é
234 ê
235 ë
236 ì
237 í

238 î
239 ï
241 ñ
242 ò
243 ó
244 ô
245 õ
246 ö
247 ÷
248 ø
249 ù
250 ú
251 û
252 ü
255 ÿ
305 ı
338 Œ
339 œ
376 Ÿ
402 ƒ
8706 ∂
8710 ∆
8719 ∏
8721 ∑
8730 √
8734 ∞
8747 ∫
8776 ≈
8800 ≠
8804 ≤
8805 ≥

A P P E N D I X

C

...

C. Special Character Codes

These special characters may be generated using the CHR
Function.

..

254

NS BASIC Handbook

..
NS BASIC Handbook

255

INDEX

...

S

YMBOLS

$

29

&

27

&&

27

:=

113

;

146

=

113

[]

27

{}

27

¬

25

A

ABS

34

ACOS

57

ACOSH

57

ADDARRAYSLOT

35

ANNUITY

36

APP

37

ARRAYREMOVECOUNT

39

ARRAYTOPOINTS

40

ASIN

175

ASINH

175

ATAN

190

ATAN2

190

ATANH

190

B

BEEP

44

BEGINSWITH

45

Break Mode

19

BYE

46

,

243

C

CEILING

47

CHAIN

48

CHAINPARAM

243

CHARPOS

188

CHR

50

CLASSOF

51

CLOSE

52

CLS

54

Commands
CON

17

,

56

,

77

,

181

DIR

69

EDIT

14

,

74

ENTER

24

LIST

15

,

78

,

114

LOAD

20

,

78

,

116

MAKEPACKAGE

121

NEW

12

,

126

NEWPROGRAM

127

RENUM

13

,

157

REPLACE

20

,

158

,

164

REVUP

161

RUN

15

,

163

SAVE

20

,

164

STATS

80

,

180

VARS

18

,

202

COMPOUND

16

,

55

CON

17

,

56

COS

57

COSH

57

CREATE

58

Creating a Program

12

Creating Packages

22

D

DATA

60

Data Types

26

Array

27

Boolean

26

Frame

27

Numeric

26

String

27

Symbol

28

DATENTIME

61

Debugging

32

Debugging a Program

16

DEF FN

90

DEL 64

..
256 NS BASIC Handbook

DELETE 24, 66

desktop computer 1, 3, 5
Using NS BASIC With 10

DIM 68

DIR 69

DIV 30, 70

DO 71

DO UNTIL 71

DO WHILE 71

DRAWINTOBITMAP 73

E

EDIT 14, 74

Editing a Program 13

ELEMENTS 75

ELSE 76

END 77

END IF 77

ENTER 24, 78

ENV 80

ENVIRON 80

MAKEFATPACKAGE 23

Environment Variables
Controlling Serial Port 80

inputPrompt 82

IO 81

PRINTDEPTH 80

ERASE 15, 85

Errors
RunTime 241

Examining a Program 15

Executing a Program 15

EXIT DO 86

EXIT FOR 86

EXP 87

EXPM1 87

Expressions 29

F

FABS 34

Fat Packages 23

FIRSTX 212

FIRSTY 212

FLOOR 88

FMAX 122

FMIN 123

FMOD 124

FOR 89

FSTAT 241

FUNCTION 90

Functions
ABS 34

ACOS 57

ACOSH 57

ADDARRAYSLOT 35

ANNUITY 36

ARRAYREMOVECOUNT 39
ARRAYTOPOINTS 40

ASIN 175

ASINH 175

ATAN 190

ATAN2 190

ATANH 190

BEGINSWITH 45

CEILING 47

CHARPOS 188

CHR 50

CLASSOF 51, 241

COMPOUND 16, 55

COS 57

COSH 57

DATENTIME 61, 196

DIV 30, 70

DRAWINTOBITMAP 73

ELEMENTS 75

ENV 80

EXP 87

EXPM1 87

FABS 34

FLOOR 88

FMAX 122

FMIN 123

FMOD 124

GETGLOBALS 95, 113

HASSLOT 99, 236

HEXDUMP 100

HILITE 214

..
NS BASIC Handbook 257

HITSHAPE 102

HOURMINUTE 103, 196

INTERN 75, 107

IOCONNECT 108

IODISCONNECT 108

IOPRINT 108

LENGTH 112

LGAMMA 117

LOG 117

LOG10 117

LOGB 117

LOGIP 117

MAKEBITMAP 119

MAKELINE 119

MAKEOVAL 119

MAKEPOLYGON 119

MAKERECT 119

MAKEROUNDRECT 119

MAKESHAPE 119

MAKETEXT 119

MAKEWEDGE 119

MAX 122

MIN 123

MOD 124

NOTIFY 130

NUMBERSTR 132

ORD 138

POINTSTOARRAY 143

POW 144

PROGRESS 145

REMAINDER 30, 124, 155

REMOVESLOT 156

ROUND 162

SENDIRREMOTE 167

SETBOUNDS 169

SETVALUE 169, 172

SIGNUM 174

SIN 175

SINH 175

SORT 177

SQRT 179

STRCOMPARE 182

STREQUAL 183

STRINGER 184

STRINGTODATE 186

STRINGTONUMBER 185

STRINGTOTIME 186

STRLEN 112, 187

STRPOS 188

SUBSTR 189

TAN 190

TANH 190

TICKS 103, 195

TIME 61, 103, 196

TIMESTR 197, 199

G

GET 93

GETGLOBALS 95

GOSUB 97

GOTO 13, 98

H

HASSLOT 99

HEXDUMP 100

HIDE 101

HILITE 214

HITSHAPE 102

HOURMINUTE 103

HWINPUT 104

I

IF 105

Immediate Statement Execu-
tion 31

INPUT 106, 108

inputPrompt 81

Installing
On a Storage Card 4

On the Newton 4

INTERN 107

IO 81

IOCONNECT 108

IODISCONNECT 108

IOPRINT 108

..
258 NS BASIC Handbook

L

LASTX 212

LASTY 212

LENGTH 112

LET 30, 113

LGAMMA 117

Line Continuation 25

LIST 15, 114

Listing your program 11

LISTWIDGETS 80, 114, 207

Literals 26

LOAD 20, 116

LOG 117

LOG10 117

LOGB 117

LOGIP 117

LOOP 118

LOOP UNTIL 118

LOOP WHILE 118

M

MAKEBITMAP 119

MAKEFATPACKAGE 23

MAKELINE 119

MAKEOVAL 119

MAKEPACKAGE 22, 121

MAKEPOLYGON 119

MAKERECT 119

MAKEROUNDRECT 119

MAKESHAPE 119

MAKETEXT 119

MAKEWEDGE 119

MAX 122

MIN 123

MOD 124

Moving a Program 24

N

NBU 3

NEW 12, 126

NEWPROGRAM 127

Newton Backup Utility 3

Newton Press 24

NEXT 129

NIL 26

Notation Conventions 7

Notepad 14

NOTIFY 130

NUMBERSTR 132

O

ON ERROR GOTO 133

ON GOSUB 134

ON GOTO 134

Operators 29

:= 113

= 113

Arithmetic 29

Boolean 30

Relational 30

ORD 138

P

Picking Items Out of a List 10

POINTSTOARRAY 143

POW 144

PRINT 146

PRINTDEPTH 80

Program
Creating New 12, 20

Listing 11

Loading Existing 20

Loading using desktop
computer 11

PROGRESS 145

PUT 147

R

RANDOM 149

RANDOMIZE 150

READ 151

REM 153

..
NS BASIC Handbook 259

REMAINDER 30, 155

REMOVESLOT 156

RENUM 13, 157

REPLACE 20, 158

Resetting Newton 12

RESTORE 159

RETURN 160

REVUP 161

RM 66

ROUND 162

RUN 15, 163

S

SAVE 20, 164

Saving and Loading
Programs 20

SENDIRREMOTE 167

Serial Cable 3

Serial Port Programming 80

SETBOUNDS 169

SETICON 22, 121, 171

SETVALUE 172

SHOW 173

SIGNUM 174

Simple Calculations 31

SIN 175

SINH 175

SORT 177

Splitting Long Statements 25

SQRT 179

Starting NS BASIC 8

Statements 25

; 146

BEEP 44, 181

BYE 46, 243

CHAIN 48

CLOSE 52

CLS 54

CREATE 58, 64, 93, 136, 147

DATA 60, 151, 159

DEF FN 90

DEL 64, 136

DELETE 24, 58, 66

DIM 68

DO 71

DO UNTIL 71

DO WHILE 71

ELSE 76

END 77

END IF 77

ENTER 78, 114

ENVIRON 80

ERASE 15, 85

EXIT DO 86

EXIT FOR 86

FOR 89, 129

FUNCTION 90

GET 93, 136, 147

GOSUB 97, 98, 160

GOTO 13, 97, 98

HIDE 101, 173, 209

HWINPUT 104

IF THEN ELSE 105

INPUT 51, 104, 106, 108

LET 30, 113

LOOP 118

LOOP UNTIL 118

LOOP WHILE 118

NEXT 89, 129

ON ERROR 241

ON ERROR GOTO 133

ON GOSUB 134

ON GOTO 134

OPEN 64, 93, 136, 147

PRINT 80, 146

PUT 58, 136, 147

RANDOMIZE 150

READ 151, 159

REM 153

RESTORE 151, 159

RETURN 97, 160

SETICON 171

SHOW 173, 209

STOP 17, 181

TRACE 19

TRACE OFF 17, 200

TRACE ON 17, 200

WAIT 203

..
260 NS BASIC Handbook

WDRAW 205

WIDGETDEF 207, 215, 218

WINDOW 101, 173, 205,
209, 216

WPRINT 209, 216

STATS 180

STOP 17, 181

STRCOMPARE 182

STREQUAL 183

STRINGER 184

STRINGTODATE 186

STRINGTONUMBER 185

STRINGTOTIME 186

STRLEN 187

STRPOS 188

SUBSTR 189

T

TAN 190

TANH 190

Tap processing 212

TEXTLIST 193

The Newton Keyboard 9

TICKS 195

TIME 196

TIMESTR 197, 199

TITLE 198

TRACE 19

TRACE OFF 17, 200

TRACE ON 17, 200

TRUE 26

U

Using NS BASIC with a
Computer or Terminal 10

V

Variables 26

Data Types 29

Names 28

VARS 18, 202

Visual Designer 218

and WINDOW Statement
215

W

WAIT 203

WDRAW 205

Web Site 2

WIDGETDEF 207, 215, 218

Widgets 214

APP 37, 214

AZTABS 42, 214

AZVERTTABS 42, 214

CHECKBOX 49, 214

CLOSEBOX 53, 214

DATEPICKER 62, 214

DIGITALCLOCK 67, 214

DRAW 72, 214

GAUGE 92, 214

GLANCE 96, 214

LABELINPUT 109, 214

LABELPICKER 111, 214

LARGECLOSEBOX 53, 214

MONTH 125, 214

NEWSETCLOCK 128, 214

NUMBERPICKER 131, 214

PARAGRAPH 139, 214

PICKER 140, 214

PICTUREBUTTON 142, 214

RCHECKBOX 49, 214

SCROLLER 165, 214

SETCLOCK 170, 214

SLIDER 176, 214

TEXT 191, 214

TEXTBUTTON 192, 214

TEXTLIST 193, 214

TITLE 198, 214

WINDOW 209

WPRINT 216

WSTAT 213

WWW 2

..
NS BASIC Handbook

261

USER'S COMMENT FORM

Please use this form only to identify publication errors or to
request changes in publications. Please let us know if you
would like a reply. Return to:

NS BASIC Corporation
77 Hill Crescent
Toronto, Canada M1M 1J3
fax (416) 264-5888

Page Comments

