

ð

ð

N e w t o n D e v e l o p e r
T o o l s

Newton C++ Tools
Programmer’s Reference

May 16, 1996
© Apple Computer, Inc. 1996



Apple Computer, Inc.
© 1996x, Apple Computer, Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying,
recording, or otherwise, without
prior written permission of Apple
Computer, Inc., except in the normal
use of the software or to make a
backup copy of the software. The
same proprietary and copyright
notices must be affixed to any
permitted copies as were affixed to
the original. This exception does not
allow copies to be made for others,
whether or not sold, but all of the
material purchased (with all
backup copies) may be sold, given,
or loaned to another person. Under
the law, copying includes
translating into another language or
format. You may use the software on
any computer owned by you, but
extra copies cannot be made for this
purpose.
Printed in the United States of
America.
The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for licensed
Newton platforms.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, LaserWriter,
Macintosh, and Newton are
trademarks of Apple Computer,
Inc., registered in the United States
and other countries.
The light bulb logo, MessagePad,
NewtonScript, and Newton Toolkit
are trademarks of Apple Computer,
Inc.
FrameMaker is a registered
trademark of Frame Technology
Corporation.
Helvetica and Palatino are
registered trademarks of Linotype
Company.
ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, APDA
will replace the media or manual at no
charge to you provided you return the
item to be replaced with proof of
purchase to APDA.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
“AS IS,” AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

iii

Contents

Figures, Tables, and Listings vii

Preface

About This Book

ix

How to Use This Book ix
Related Books x
Conventions xi
Developer Products and Support xi

Chapter 1

C++ Toolkit Introduction

1-1

Using C++ With NewtonScript 1-1
Calling NewtonScript from C++ 1-2
Calling C++ from NewtonScript 1-3

C++ Code Restrictions 1-4
Methods, Functions, and Name-Mangling 1-4
Memory Allocation 1-4
Function Arguments and Return Values 1-6

The Newton Object System 1-6
Newton Symbols and Object Types 1-6
Object References 1-7
Accessing Data In a Binary Object 1-10
NewtonScript Magic Pointers 1-11
Path Expressions 1-12
Newton Exceptions and C++ 1-12

NewtonScript and C++ Equivalences and Examples 1-13
A Simple Example in NewtonScript and C++ 1-14
An Example of Defining and Calling Several C++ Functions 1-15
An Example of a Wrapper Function 1-16
An Example of Converting a C++ Array into NewtonScript 1-16
An Example of Automatic Allocation of RefArgs 1-17
An Example of Allocating Persistent Storage 1-18
An Example of Accessing Binary Data 1-19

Chapter 2

C++ and NewtonScript Conversion Reference

2-1

Constants for Using C++ With NewtonScript 2-1
Type Conversion Functions 2-1
Type Checking Functions 2-4
Value Checking Functions and Macros 2-5

iv

Debugging Macros 2-6
Summary of C++ and NewtonScript Conversion Reference 2-7

Constants for Using C++ With NewtonScript 2-7
Type Conversion Functions and Macros 2-7
Type Checking Functions 2-7
Value Checking Functions and Macros 2-7
Debugging Functions and Macros 2-8

Chapter 3

Newton Object System Reference

3-1

Object System Classes 3-1
Iteration Macros 3-1
Object Iterator Class 3-4
Iterator Functions 3-5

C++ Object System Functions 3-5
Summary of Object System Reference 3-22

Object System Classes 3-22
Object Iterator Class 3-22

Newton Object System Functions and Macros 3-22
Iterator Functions 3-22
Iteration Macros 3-22
C++ Newton Object Functions 3-22

Chapter 4

Newton Memory Manager Reference

4-1

About the Newton Memory Manager 4-1
Memory Manager Functions 4-1
Summary of Memory Manager Reference 4-9

Memory Manager C++ Functions 4-9

Chapter 5

Newton Exceptions Reference

5-1

About Newton Exceptions 5-1
Defining Exceptions 5-1
Exception Data 5-3
Exception Blocks 5-4
Volatile Values 5-5
Newton System Software Exceptions 5-5

Exception Types 5-6
Exception Functions and Macros 5-6
Exception-Handling Macros 5-9
Summary of Exceptions Reference 5-13

Exception C++ Functions 5-13

v

Functions and Macros to Define and Throw Exceptions 5-13
Exception-Handling Macros 5-13

Chapter 6

NewtonScript Reference

6-1

NewtonScript Interpreter Functions 6-1
Functions for Calling NewtonScript Functions From C++ 6-1
Functions for Accessing NewtonScript Slot Values from C++ 6-14

Calling C++ Functions from NewtonScript 6-15
Summary of NewtonScript Interpreter Functions 6-17

Functions for Calling NewtonScript Functions From C++ 6-17
NSCall 6-17
NSCallGlobalFn 6-17
NSSend 6-17
NSSendIfDefined 6-18
NSSendProto 6-18
NSSendProtoIfDefined 6-19

Functions for Accessing NewtonScript Slot Values from C++ 6-19

Chapter 7

Newton Unicode Reference

7-1

.Unicode Constants and Data Types 7-1
The UniChar Type 7-1
Encoding Type Constants 7-1
Unicode Character and String Constants 7-2

Unicode Functions 7-2
Summary of Unicode Reference 7-9

Unicode Data Types 7-9
Encoding Type Constants 7-9
Unicode Character and String Constants 7-9
Unicode Functions 7-9

Chapter 8

Newton C Library Reference

8-1

C Library Constants and Data Types 8-1
C Library Constants 8-1
Standard Library Types 8-2
Math Types 8-3
Time Types 8-4

C Library Functions 8-5
Character Conversion Functions 8-5
Floating-point Math Functions 8-6
Financial Functions 8-17

vi

Variable Argument List Macros 8-17
Standard Input and Output Functions 8-18
Standard C Library Functions 8-20
Heap Functions 8-23
Memory Block Manipulation Functions 8-25
String Manipulation Functions 8-26
Time Functions 8-30

Summary of C Library Reference 8-34
C Library Constants and Types 8-34

Standard Library Types 8-34
Math Types 8-34
Time Types 8-34

C Library Functions 8-35
Character Conversion Functions 8-35
Floating-point Math Functions 8-35
Financial Functions 8-37
Variable Argument List Macros 8-37
Standard Input and Output Functions 8-37
Standard C Library Functions 8-37
Heap Functions 8-38
Memory Block Manipulation Functions 8-38
String Manipulation Functions 8-38
Time Functions 8-39

Appendix A

C++ Function Tables

A-1

Functions and Macros for Using C++ With NewtonScript A-1
Newton Object System Functions A-2
C++ Toolkit Memory Manager Functions A-6
C++ Toolkit Exception-Handling Functions A-8
C++ NewtonScript Functions A-9
C++ Toolkit Unicode Functions A-10
C++ Toolkit ANSI-C Functions A-11

vii

Figures, Tables, and Listings

Chapter 1

C++ Toolkit Introduction

1-1

Table 1-1

Newton object types 1-7

Table 1-2

Summary of C++ Toolkit reference types 1-8

Table 1-3

Examples of object reference use 1-9

Listing 1-1

Using a locked pointer to access a binary object 1-10

Table 1-4

Path expressions 1-12

Listing 1-2

Working with a C++ object in an exception block 1-13

Table 1-5

NewtonScript expressions and their C++ equivalences 1-13

Listing 1-3

A NewtonScript

search

 function 1-14

Listing 1-4

C++ version of the

search

 function 1-14

Listing 1-5

Defining a C++ function in a module 1-15

Listing 1-6

Calling a C++ function from NewtonScript 1-16

Listing 1-7

A wrapper function for a C++ function callable from
NewtonScript 1-16

Listing 1-8

Converting a C++ array into a NewtonScript object 1-16

Listing 1-9

An example of inefficient automatic allocation of

RefArgs 1-17

Listing 1-10

An example of a more efficient

RefArg

 loop 1-17

Listing 1-11

NewtonScript code for using a binary object as persistent storage
for C++ 1-18

Listing 1-12

C++ code for using a binary object as persistent storage 1-18

Listing 1-13

Accessing binary data 1-19

Chapter 2

C++ and NewtonScript Conversion Reference

2-1

Chapter 3

Newton Object System Reference

3-1

Listing 3-1

An example of using the FOREACH macro 3-2

Listing 3-2

An example of using the FOREACH_WITH_TAG macro 3-3

Chapter 4

Newton Memory Manager Reference

4-1

Chapter 5

Newton Exceptions Reference

5-1

Table 5-1

An exception-handling hierarchy 5-3

Table 5-2

Newton system software exceptions 5-5

Listing 5-1

Using the

newton_try

,

newton_catch

, and

end_try

macros 5-9

Listing 5-2

Using the

newton_catch_all

 macro 5-11

Listing 5-3

Using the

unwind_protect

,

on_unwind

 , and

unwind_end

macros 5-12

viii

Chapter 6

NewtonScript Reference

6-1

Chapter 7

Newton Unicode Reference

7-1

Table 7-1

Unicode punctuation symbols 7-6

Chapter 8

Newton C Library Reference

8-1

Appendix A

C++ Function Tables

A-1

Table A-1

C++ and NewtonScript conversion functions and macros A-1

Table A-2

C++ Toolkit Object System functions A-2

Table A-3

C++ Toolkit Memory Manager functions A-6

Table A-4

C++ Toolkit exception-handling functions A-8

Table A-5

C++ Toolkit NewtonScript functions A-9

Table A-6

C++ Toolkit Unicode functions A-10

Table A-7

C++ Library ANSI-C Library functions A-11

ix

P R E F A C E

About This Book

This book describes the C++ Toolkit, which allows you to develop code in the
C++ language that can be included in a NewtonScript application. This book
documents the collection of C++ functions and data types that you can use to
interface with the Newton.

IMPORTANT

The C++ Toolkit software allows you to use C++ code in a NewtonScript
application. You must understand the Newton progamming
environment before using the C++ Toolkit. If you have never written a
Newton application, you need to read the

Newton Programmer’s Guide:
System Software

and

The NewtonScript Programming Language

. This book
only explains those parts of the Newton programming environment that
are unique for C++ programming.

▲

How to Use This Book

This book is a reference guide to the functions, data types, and constants that
the C++ Toolkit provides. Many of the functions of the C++ Toolkit provide
the same functionality as the functions of the NewtonScript programming
language.

To learn about specific tools, menu choices, and options in the programming
environment for including C++ code in your NewtonScript application, refer
to the

Getting Started with C++ Tools

 document.

The NewtonScript documentation describes the Newton programming
environment and provides a wealth of how-to information for developing
Newton applications. To learn more about programming the Newton, refer to
the

Newton Programmer’s Guide: System Software

.

This book contains eight chapters and one appendix:

■

Chapter 1, “Introduction,” provides an overview of how C++ programs
interact with the NewtonScript world.

■

Chapter 2, “C++ and NewtonScript Conversion Reference,” describes the
constants, data types, and functions that you can use to convert objects
between NewtonScript and C++.

■

Chapter 3, “Object System Reference,” describes the C++ functions that
you use to manipulate Newton objects.

■

Chapter 4, “Memory Manager Reference,” the C++ functions that you use
to work with the Newton memory manager.

x

P R E F A C E

■

Chapter 5, “Exceptions Reference,” describes the C++ functions that you
can use to raise and handle exceptions during the execution of your
Newton applications.

■

Chapter 6, “NewtonScript Reference,” describes the programming interface
that you can use from your C++ programs to call into the NewtonScript
interpreter. It also explains how to structure your C++ functions to allow
NewtonScript applications to call them.

■

Chapter 7, “Unicode Reference,” describes the C++ constants, data types,
and classes that you use to manipulate Unicode strings.

■

Chapter 8, “C Library Reference,” describes the constants, data types, and
functions from the C Library that you can use with your Newton programs.

■

Appendix A, “C++ Function Tables,” provides tables that show the location
of the header and description for each function in the C++ Toolkit.

Related Books

This book is a standalone book that describes the C++ functions that you can
use with your NewtonScript applications for the Newton. For more
information about the Newton programming environment, refer to:

■

Newton C++ Tools for the Mac OS User Guide. This book describes the
development environment and tools that you use to implement C++ code
for the Newton.

■ Newton Programmer’s Guide. This book is the definitive guide and reference
for Newton programming. It explains how to write Newton programs and
describes the system software routines that you can use to do so.

■ The NewtonScript Programming Language. This book describes the
NewtonScript programming language.

xi

P R E F A C E

Conventions

This book uses the following font and syntax conventions:

Developer Products and Support

APDA is Apple’s worldwide source for a large number of develop-
ment tools, technical resources, training products, and information for anyone
interested in developing applications on Apple platforms. Every four months,
customers receive the APDA Tools Catalog featuring current versions of
Apple’s development tools and the most popular third-party development
tools. Ordering is easy; there are no membership fees, and application forms
are not required for most products. APDA offers convenient payment and
shipping options including site licensing.

To order product or to request a complimentary copy of the APDA Tools
Catalog:

APDA
Apple Computer, Inc.

Courier The Courier font represents material that is typed
exactly as shown. Code listings, code snippets,
and special identifiers in the text such as
predefined system frame names, slot names,
function names, method names, symbols, and
constants are shown in the Courier typeface to
distinguish them from regular body text.

italics Text in italics represents replacable elements, such
as function parameters, which you must replace
with your own values.

boldface Key terms and concepts are printed in boldface
where they’re defined. Words defined in this book
appear in the glossary in the An Introduction to
Newton Driver Development Kits.

…

…

An ellipsis in a syntax description means that
the preceding element can be repeated one or
more times.

An ellipsis in a code example represents
code not shown.

[] Square brackets enclose optional elements in
syntax descriptions.

xii

P R E F A C E

P.O. Box 319
Buffalo, NY 14207-0319

If you provide commercial products and services, call 408-974-4897
for information on the developer support programs available from Apple.

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDA

CompuServe 76666,2405

Internet APDA@applelink.apple.com

C H A P T E R 1

Using C++ With NewtonScript 1-1

C++ Toolkit Introduction 1

This chapter introduces the C++ Toolkit, which allows you to use C++ code in
NewtonScript applications. This chapter describes the details of interfacing your C++
code into the NewtonScript world. The remainder of this book provides reference
descriptions of the data types and functions that you can use in your C++ code to
interface with the NewtonScript world.

This chapter begins with an overview of using C++ and NewtonScript together. It then
describes the Newton object system from the C++ developer’s perspective and discusses
the restrictions that you face in your C++ code when using the C++ Toolkit. Finally, this
chapter presents a table of NewtonScript and C++ code equivalencies and provides a
number of examples of using C++ with NewtonScript.

IMPORTANT

The C++ Toolkit software allows you to use C++ code in a NewtonScript
application. You must understand the Newton progamming
environment before using the C++ Toolkit. This book only explains
those parts of the Newton programming environment that are unique
for C++ programming. If you have never written a Newton application,
you need to read the Newton Programmer’s Guide and The NewtonScript
Programming Language. You should also understand the development
environment that you need to use for implementing your C++ code,
which is described in C++ Tools for the Mac OS User Guide. ▲

Using C++ With NewtonScript 1

The purpose of the C++ Toolkit is to allow you to mix C++ code with NewtonScript code
to create applications for the Newton. While you can manipulate objects and perform
computations in C++, the user interface and main body of your Newton applications
must be written in NewtonScript.

Figure 1-0
Table 1-0
Listing 1-0

C H A P T E R 1

C++ Toolkit Introduction

1-2 Using C++ With NewtonScript

Writing C++ code for the Newton is the same as writing C++ for other computing
devices; however, you do face the following important restrictions:

■ The Newton does not have a file system, which means that your C++ code cannot
make file system calls.

■ Memory management capability is limited, as described in the section “C++ Code
Restrictions” beginning on page 1-4.

■ You cannot modify the Newton screen from your C++ code. You must use
NewtonScript or call into NewtonScript from C++ to “talk” to the screen.

This book describes the C++ functions that you can use to manipulate objects in the
Newton object system and mechanisms that you can use to call NewtonScript functions
from C++. To use the C++ Toolkit, you need to understand the NewtonScript language,
the Newton object system, and how to build Newton programs using the Newton
Toolkit. To learn about Newton programming, read the Newton Programmer’s Guide. To
learn about the NewtonScript language, read the NewtonScript Programming Language. To
learn about the Newton Toolkit, read the Newton Toolkit User’s Guide.

To use C++ with NewtonScript, you need to utilize two mechanisms: calling C++ from
NewtonScript, and calling NewtonScript from C++. You also need to understand how
the representation of certain objects in NewtonScript is different from their
representation in your C++ programs. This chapter describes those differences.
Chapter 2, “C++ and NewtonScript Conversion Reference,” describes the C++ functions
that you can use to convert between these two representations.

IMPORTANT

This section provides information that you need to understand when
you mix C++ code with NewtonScript code. Read this section
carefully. ▲

Calling NewtonScript from C++ 1
To call into NewtonScript from C++, you can use the NSCall function or one of its
variants, which are described in Chapter 6, “NewtonScript Reference.”

Some NewtonScript functions are implemented as C++ functions to improve their
performance. You call these functions directly in C++ without using NSCall or its
variants. All of the functions that you can call in this manner are documented in this
book and are listed in the tables in Appendix A, “C++ Function Tables.”.

If you want to call a NewtonScript function from your C++ code, you should first
determine if a C++ implementation exists for the function, using either this book’s index
or the tables in Appendix A, “C++ Function Tables.”. If the function is described in this
book, use that function as documented. If a C++ version does not exist, call the
NewtonScript function using NSCall or one of its variations, which are described in
Chapter 6, “NewtonScript Reference.”

C H A P T E R 1

C++ Toolkit Introduction

Using C++ With NewtonScript 1-3

Note

This book shows the declaration for each function implemented in the
C++ Toolkit and provides descriptions for functions that are unique to
the C++ Toolkit. This book does not provide descriptions for C++
Toolkit functions that are equivalent to NewtonScript functions. You will
need to refer to the Newton Programmer’s Guide for descriptions of these
functions, as noted with the declaration of each. ◆

Calling C++ from NewtonScript 1
You can call a C++ function from NewtonScript just like you would call any other
function in NewtonScript. However, the your usage of C++ functions is restricted in the
following ways:

■ You must preface the function name with its module designator, as described in the
next section, “C++ Modules.”

■ The first parameter to the C++ function must be a reference to the receiver frame for
the function. Note that the NewtonScript caller does not see supply this parameter.

■ The C++ function can take from zero to six arguments; each argument must be
delcared as type RefArg.

■ The C++ function must return a Ref as its function result.

■ The C++ function must be a standalone function (not a method of a class).

■ The C++ function must be declared as extern "C".

The restrictions listed above are explained in more detail in the next section, “C++ Code
Restrictions.”

The following is an example of a C++ function that can be called from NewtonScript:

extern "C" Ref MyCplusFunction(RefArg receiver,

RefArg firstArg,

RefArg secondArg);

The following is an example of a NewtonScript expression for calling the C++ function
in the above example:

call myModule.MyCplusFunction with (firstarg, secondArg);

C++ Modules 1

For NewtonScript to access your C++ functions, you must use a module designator
when you call the C++ function. The module designator consists of the module name for
the function, followed by a period.

You must define the module name in your MPW project exports (".exp") file. The
default name of the module, which is set by MPW when you create the project, is your
project name.

C H A P T E R 1

C++ Toolkit Introduction

1-4 C++ Code Restrictions

For example, to call a C++ function named myFcn that is defined in the project
myProject, your NewtonScript code would call myProject.myFcn. The section “An
Example of Defining and Calling Several C++ Functions” beginning on page 1-15 shows
a C++ module that defines several functions and NewtonScript code for calling those
functions.

C++ Code Restrictions 1

This section describes the limitations that you face when developing C++ code for use
with NewtonScript.

Methods, Functions, and Name-Mangling 1
The C++ language allows you to create classes that include methods. You can also define
overloaded methods, which means that a single method name can be used for different
declaration forms. For example, a single method can be declared to take different
numbers or combinations of parameters or to return different value types.

Many C++ compilers implement this language feature using a technique that is
commonly known as name-mangling. With name-mangling, the compiler builds an
internal name for each declaration form of a method. The internal (mangled) name
includes the method’s class name and a representation of its parameter and return types.
This makes it possible for a method to be called in various forms while retaining the
type-checking capabilities of the C++ language.

Unfortunately, calling a C++ method whose name has been mangled by a compiler is not
supported from NewtonScript. Due to this restriction, you cannot call a C++ method
from NewtonScript; you can only call a standalone function. Furthermore, you must
declare the function as extern "C", which tells the compiler to not mangle the function
name.

IMPORTANT

You can only call standalone C++ functions (not methods of a class)
from NewtonScript. These functions must be declared as extern "C".
For example:

extern "C" Ref ReturnIt(RefArg rcvr)

▲

Memory Allocation 1
You are limited to a subset of the standard C library memory allocation and deallocation
functions.

You need to know that the Newton system software uses two heaps: one for
NewtonScript objects and another for system storage and C++ usage. Whenever you

C H A P T E R 1

C++ Toolkit Introduction

C++ Code Restrictions 1-5

perform an allocation from C++ (by calling a function such as malloc or NewPtr),
storage is allocated in the system heap. This means that if your C++ code runs out of
heap space, the entire system software heap is out of space. You must be diligent about
explicitly disposing of any storage that you allocate in your C++ code.

WARNING

The heap that you use to allocate storage in your C++ code is the same
heap that the Newton system software uses for system-related objects. If
you corrupt the heap, the Newton will need to be restarted. ▲

Storage for an object in the NewtonScript heap is automatically reclaimed by the Newton
garbage collector when there are no longer any references to the object. If you are
referring to a NewtonScript object from C++, the Newton garbage collector needs to
know about your references. You accomplish this by using the object reference classes
and types, which are described in the section “Object References” beginning on page 1-7.

For more information about using memory allocation and deallocation functions in your
C++ code, refer to Chapter 4, “Newton Memory Manager Reference.”

Static Variables 1

You cannot declare any static C variables. You cannot have any C++ static class variables.

WARNING

Although MPW generates an error if your code contains a static variable
declaration, neither the C++ compiler nor the linker will tell you where
in your code the problem exists. ▲

Global Data 1

Any global data that you reference in your C++ functions must be read-only data. You
must reference this data with a constant pointer to constant data, which you can declare
as follows:

const *const globPtr;

Allocating Persistent Storage 1

You sometimes need to allocate memory for use in your C++ code that is like global data.
Since you cannot use non-constant global data in your C++ code, you need to utilize a
coordinated effort between your NewtonScript and C++ code to achieve this.

The preferred method for allocating memory that you can use in this way is to create a
binary object for the memory in your NewtonScript code. You then access the memory as
a binary object from C++. By using this method, you don’t need to concern yourself with
deallocating the memory—the NewtonScript garbage collector will automatically collect
the storage when there are no longer any references to the binary object.

C H A P T E R 1

C++ Toolkit Introduction

1-6 The Newton Object System

The section “An Example of Allocating Persistent Storage” beginning on page 1-18
shows sample code in NewtonScript and C++ for using a binary object to create
persistent storage for use in C++.

Function Arguments and Return Values 1
All arguments to your C++ functions that can be called from NewtonScript must be of
type RefArg. The return value from each of your C++ functions that can be called from
NewtonScript must be of type Ref. This means that the return value and each of the
arguments must be NewtonScript objects.

Typically, you will need to implement a “wrapper” function for any C++ function that
you want to call from NewtonScript. Your wrapper function can call the Newton
conversion functions to convert data types. These functions are described in the section
“Type Checking Functions” beginning on page 2-4.

The section “An Example of a Wrapper Function” beginning on page 1-16 shows sample
code for creating a wrapper function for a C++ function that you want to call from
NewtonScript.

If you need to convert a C++ array structure into a NewtonScript object, you can call
functions to create a NewtonScript array or a NewtonScript frame. You can then add
objects to the array or frame with other calls. These functions are described in Chapter 3,
“Newton Object System Reference.”

The section “An Example of Converting a C++ Array into NewtonScript” beginning on
page 1-16 shows sample code for converting a C++ array into a NewtonScript object.

The Newton Object System 1

The Newton Object System is the name for the component of the Newton system
software that manages the objects that Newton applications manipulate and store. The
Newton Object System allows you to access objects from both NewtonScript and C++.

Newton Symbols and Object Types 1
Newton uses symbols as identifiers for variables, classes, messages, and frame slots.
Symbol names can contain up to 254 characters, including any printable ASCII character.

Note

NewtonScript applications sometimes define symbols enclosed between
vertical bars. You should never use vertical bars when defining symbols
in C++ programs. ▲

C H A P T E R 1

C++ Toolkit Introduction

The Newton Object System 1-7

The Newton Object System supports four primitive object classes, which are shown in
Table 1-1.

The primitive object classes divide into two types: immediates and reference objects.
Each object value is stored in 32 bits. Two of the bits are used to store class information.
Immediate objects contain their values within the remaining 30 bits, and reference
objects contain a pointer to the actual data in the remaining 30 bits.

Immediate objects can be integers, characters, and booleans.

Reference objects can be binaries, arrays, and frames. Object references are described in
the next section, “Object References.”

See The NewtonScript Programming Language for a full explanation and examples of
Newton symbols and the Newton object classes.

Object References 1
Newton objects are referenced by object references, of type Ref. An object reference is a
32-bit value that can represent an immediate object or a pointer to a binary object, array
object, or frame object.

Note that Refs are similar to handles in other object-oriented programming systems.
One significant implication of this is that you often need to lock Refs before using them,
as described later in this chapter.

The Newton garbage collector automatically collects the storage allocated for objects to
which there are no longer any references. When you use Newton objects in your C++
code, you need to maintain references to those objects appropriately; otherwise, the
garbage collector might collect the objects at the wrong time.

Table 1-1 Newton object types

Object type Description

Immediate A constant value such as an integer or a character. Immediate values
are signed, 30-bit, twos complement integers.

Binary A sequence of bytes.

Array An array of object references.

Frame A collection of slots, each of which is a tag/value pair. The tag is a
NewtonScript symbol.

C H A P T E R 1

C++ Toolkit Introduction

1-8 The Newton Object System

The C++ Toolkit provides four object reference types that make it safe for you to refer to
NewtonScript objects in C++, as shown in Table 1-2.

Any reference that is not stored in a RefVar or RefStruct object can become invalid
after any call to the object system (which may provoke a call to the garbage collector).

The following rules apply to the use of the object reference types:

■ you can only use the Ref type as the return type for functions. You must never
declare a variable of type Ref in your C++ code. If you write a function that receives a
Ref as the return value of another function, you must immediately store that value
into a protected structure. This is because Refs are highly volatile and can be garbage
collected at any time.

■ to keep a reference in a local variable, use a RefVar. You can only allocate RefVars
on the stack; it is incorrect to allocate a RefVar with the new operator.

■ to pass a reference to a function, use a RefArg, which is simply a typedef for "const
RefVar &". The effect of this is to reuse the caller’s RefVar as a read-only value,
which reduces the number of RefVar allocations. This means that you cannot assign
a new value to a RefArg parameter; if you need to do so, you must copy the value
into a local RefVar.

■ when you pass the return value of a function (a Ref) as a function argument, the
RefArg declaration of that parameter causes the automatic allocation of a temporary
RefVar.

■ you allocate and deallocate RefStruct objects like other C++ objects, which means
that the RefStruct class constructor creates and initializes a RefStruct value for
you, and the RefStruct destructor deallocates the memory used by the object.

■ When an exception occurs in your application, the Newton system software will
automatically clean up reference variables on the stack (RefVars). The system
software does not automatically clean up non-stack-based reference variables; thus, if
you want a reference maintained after an exception is handled, you need to store the
reference in a RefStruct.

Table 1-2 Summary of C++ Toolkit reference types

Type Description

Ref Use only as the return value of a function. The receiving function must
immediately store the returned Ref value into one of the other
reference types.

RefVar A C++ class used to create a local (automatic) reference variable.

RefStruct A C++ class used to store an object reference in a structure.

RefArg A C++ typedef (const RefVar &) used to pass an object reference as
an argument to a function.

C H A P T E R 1

C++ Toolkit Introduction

The Newton Object System 1-9

IMPORTANT

Any Ref can become invalid after any call to the object system. Calls to
construct a RefVar or RefStruct object are part of the object system
and are thus subject to this warning too. ▲

Using Ref as The Function Return Type 1

You must use Ref as the return type of any C++ function that can be called from
NewtonScript. There are two important issues to be aware of regarding Ref:

■ NewtonScript object references are 32-bit values. In C++, Ref has been defined as a
long value for compatibility. Since Ref is declared as a long, the compiler cannot
distinguish between long and Ref. This means that you can mistakenly return an
integer (long) value as the function result rather than returning a reference to a
NewtonScript object (a Ref). If you want to return an integer value as the result of a
function that returns an object reference, you must use the MakeInt function. For
example, to return the value 1, use the following statement in your C++ function:

return(MakeInt(1));

Listing 1-1 on page 1-10 shows an example of a function that uses MakeInt to return
an integer value.

■ Values of type Ref are highly volatile, which means that their location can change at
any time. Because of this, the function that calls your Ref function must immediately
store the result into a RefVar or RefStruct. You can also use the function value as a
parameter. In this case, C++ automatically creates a temporary RefArg to hold the
value.

Table of Object Reference Use 1

Table 1-3 shows several examples of declarations involving object references and
explains which examples are valid and which could lead to erroneous results.

Table 1-3 Examples of object reference use

Example Validity Explanation

void foo(Ref x)… Doesn’t work Function parameters must be
RefArgs

void foo(RefStruct x)… Doesn’t work Function parameters must be
RefArgs

void foo(RefVar x)… Could be bad Function parameters must be
RefArgs

void foo(RefArg x)… CORRECT

Ref x = … Doesn’t work Only use Ref as the return type
of a function.

C H A P T E R 1

C++ Toolkit Introduction

1-10 The Newton Object System

Accessing Data In a Binary Object 1
When you need to access the data in a binary object, you need to use a locked pointer.
The C++ Toolkit provides two macros for using locked pointers.

You start a block of code with the WITH_LOCKED_BINARY macro and end that block of
code with the END_WITH_LOCKED_BINARY macro.

The WITH_LOCKED_BINARY macro takes a reference to a binary object and a pointer
variable; it makes the pointer variable work as a pointer to the binary object within the
block. The END_WITH_LOCKED_BINARY macro terminates the locked pointer block and
unlocks the object.

The WITH_LOCKED_BINARY macro declares the pointer variable (of type void*) for
you. Note that the pointer is no longer valid once you exit the locked pointer block of
code. Within the locked pointer block of code, you can access the binary object with the
pointer. For example, the code segment in Listing 1-1 makes the variable thePtr a
pointer to the binary object binObj.

Listing 1-1 Using a locked pointer to access a binary object

RefVar binObj;

WITH_LOCKED_BINARY(binObj, thePtr)

// use thePtr to access data in the binary object

END_WITH_LOCKED_BINARY(binObj)

RefStruct x = … Doesn’t work Do not allocate RefStructs on
the stack.

RefVar x = … CORRECT

Ref* Doesn’t work Only use Ref as the return type
of a function.

RefVar* Could be bad RefVars are for local,
stack-based references only.

RefStruct* CORRECT

new RefVar Doesn’t work RefVars are for local,
stack-based references only.

new RefStruct CORRECT

Table 1-3 Examples of object reference use

Example Validity Explanation

C H A P T E R 1

C++ Toolkit Introduction

The Newton Object System 1-11

WARNINGS

There are several key points that you must keep in mind when working
with locked pointers:

■ If you assign something to the binary object (binObj in Listing 1-1),
the object could be destroyed.

■ The pointer that the WITH_LOCKED_BINARY macro declares for you
is not valid after the END_WITH_LOCKED_BINARY macro executes.
You must not attempt to use the pointer after that.

■ You must not access locations before the pointer or after the end of
the object (after the location defined by ((char*) thePtr) +
Length(binObj) in Listing 1-1).

■ You can use the SetLength function to resize the binary object
within the locked code block; however, attempting to lengthen the
size of the object with the code block will almost always fail.

If you do attempt to use the pointer or access memory outside of the
bounds of the binary object, you can corrupt the Newton frames heap
and cause your program to terminate. ▲

The section “An Example of Accessing Binary Data” beginning on page 1-19 shows
sample code for accessing a NewtonScript binary object in C++.

Note

You can nest an instance of the WITH_LOCKED_BINARY macro inside of
another instance of the macro, as long as each instance has a
corresponding call to the END_WITH_LOCKED_BINARY macro. ◆

NewtonScript Magic Pointers 1
NewtonScript uses special references known as magic pointers to access certain objects
that are stored in Newton ROM. Magic pointer references are resolved at run time by the
operating system, which substitutes the actual address of a ROM object for each magic
pointer reference.

You only need to be concerned with magic pointers in your C++ code if you receive a
pointer from NewtonScript and subsequently try to manipulate it as a C++ pointer. In
that case, you have to know that you can’t use the magic pointer like an ordinary
pointer; for example, you would not want to follow the pointer when traversing a list of
objects.

WARNING

If you try to use the WITH_LOCKED_BINARY macro with a magic
pointer, disastrous results will occur. ▲

You can use the IsMagicPtr function, which is described on page page 2-4, to
determine if a pointer is indeed a magic pointer. The IsRealPtr function, which is
described on page 2-4, determines if a pointer is not a magic pointer.

C H A P T E R 1

C++ Toolkit Introduction

1-12 The Newton Object System

Path Expressions 1
Some object functions allow you to specify a path expression as the value of a parameter.
A path expression can be specified in three ways, as shown in Table 1-4.

Specifying Symbols 1

When an object function uses a symbol as a parameter, you need to use either the
MakeSymbol function or the SYM macro to specify that symbol. The SYM macro is the
same as the MakeSymbol function, except that it eliminates the need to quote the
symbol name. SYM is defined as follows:

#define SYM(name) MakeSymbol(#name)

For example, to specify the NewtonScript symbol '|fuzzy|, you can use either of the
following expressions in your C++ code:

MakeSymbol("fuzzy");

SYM(fuzzy)

Newton Exceptions and C++ 1
The Newton system software supports the use of exceptions, which allow an application
to break out of the normal flow of control to respond to exceptional conditions. You can
read about C++ exception handling in Chapter 5, “Newton Exceptions Reference,” and
you can read about NewtonScript exception handling in The NewtonScript Programming
Language.

There is one important issue of concern to C++ developers with regard to exceptions.
When an exception occurs, the Newton system software knows to automatically destroy
any NewtonScript objects that were created within the block of code that is handled by
the exception. However, the Newton system software cannot automatically destroy C++
objects when an exception occurs.

This means that you must be sure to call the object destructor function yourself. When
you create a C++ object, you should work with that object within the context of an
exception handling (newton_try) block and include a call to the object’s destructor
function in the cleanup clause of the exception handler. Listing 1-2 shows the skeleton
code for working with a C++ object.

Table 1-4 Path expressions

Path expression type Example

symbol SYM(fuzzy)
MakeSymbol("fuzzy");

integer immediate MakeInt(432);

array AllocateArray(SYM(pathexpr),2);

C H A P T E R 1

C++ Toolkit Introduction

NewtonScript and C++ Equivalences and Examples 1-13

Listing 1-2 Working with a C++ object in an exception block

TMyClass *myObj;

newton_try {

…

myObj = new TMyClass;

…

}

cleanup {

delete myObj;

}

end_try;

For more information about handling Newton exceptions in C++, including reference
information for the newton_try, cleanup, and end_try calls, see Chapter 5, “Newton
Exceptions Reference.”

NewtonScript and C++ Equivalences and Examples 1

This section provides several examples of NewtonScript and C++ equivalencies as well
as examples of C++ functions that illustrate some of the restrictions that you must
beware of when writing code for the Newton.

Table 1-5 provides examples of C++ equivalences for common NewtonScript
expressions. This table includes the page number in this book for the description of the
C++ function used in the NewtonScript equivalent.

Table 1-5 NewtonScript expressions and their C++ equivalences

NewtonScript
expression C++ equivalent

location of C++
Toolkit description

1 MakeInt(1) page 2-2

nil NILREF page 2-1

true TRUEREF page 2-1

$x MakeChar('x') page 2-2

{} AllocateFrame page 3-6

[] AllocateArray(SYM(array), 0) page 3-6

Array(10,nil) AllocateArray(SYM(array), 10) page 3-6

value := x.y GetFrameSlot(x, SYM(y)) page 3-11

x.y := z SetFrameSlot(x, SYM(y), z) page 3-16

C H A P T E R 1

C++ Toolkit Introduction

1-14 NewtonScript and C++ Equivalences and Examples

A Simple Example in NewtonScript and C++ 1
This section presents a NewtonScript function and a C++ function that performs the
same operation.

Listing 1-3 shows a NewtonScript function that searches through an array for a value
and returns the index of that array entry.

Listing 1-3 A NewtonScript search function

{

items: […],

search: func(value) begin

for i:=0 to Length(items)-1 do

if items[i] = value then

return i;

nil;

end;

}

Listing 1-4 shows the C++ equivalent of the NewtonScript search function that is
shown in Listing 1-3.

Listing 1-4 C++ version of the search function

extern "C" Ref Search(RefArg rcvr, RefArg value)

{

RefVar items = GetVariable(rcvr, SYM(items));

value := x.(y) GetFramePath(x, y, value) page 3-11

x.(y) := z SetFramePath(x, y, z) page 3-15

GetSlot(x,y) GetFrameSlot(x,y) page 3-12

HasSlot(x,y) FrameHasSlot(x,y) page 3-10

x[y] GetArraySlot(x,y) page 3-11

x[y]:=z SetArraySlot(x,y,z) page 3-14

X(a,b) NSCallGlobalFn(SYM(x), a, b) page 6-4

call x with (a,b) NSCall(x, a, b) page 6-2

f:msg(a,b) NSSend(f, SYM(msg), a, b) page 6-6

f:?msg(a,b) NSSendIfDefined(f, SYM(msg), a, b) page 6-8

Table 1-5 NewtonScript expressions and their C++ equivalences (continued)

NewtonScript
expression C++ equivalent

location of C++
Toolkit description

C H A P T E R 1

C++ Toolkit Introduction

NewtonScript and C++ Equivalences and Examples 1-15

RefVar slotValue;

long len = Length(items);

for (long i = 0; i < len; i++) {

slotValue = GetArraySlot(items, i);

if (EQ(slotValue, value))

return(MakeInt(i));

}

return NILREF;

}

The C++ Search function in Listing 1-4 can be called from NewtonScript. The Search
function begins by retrieving a reference to the items array and calling the Length
function to determine the number of entries in items.

The GetVariable function is described on page 6-14.

The Length function is described on page 3-14.

The GetArraySlot function is described on page 3-11.

The MakeInt function is described on page 2-2.

Note

The C++ Search function is slightly different than the NewtonScript
search function because the EQ function does not perform exactly the
same equality testing as does the NewtonScript = operator. Specifically,
EQ tests the equality of floating point values differently than does the =
operator. The testing performed by the EQ function is described on
page 2-5. ◆

An Example of Defining and Calling Several C++ Functions 1
This section presents a listing of a C++ file that defines a simple function that is callable
from NewtonScript, and the NewtonScript code for calling that function.

The C++ code in Listing 1-5 is part of a file para.cp, which is part of a project named
para.

Listing 1-5 Defining a C++ function in a module

#include "objects.h"

extern "C" Ref ReturnIt(RefArg rcvr)

{

short x;

x = 23;

Ref theValue = MakeInt((long) x);

C H A P T E R 1

C++ Toolkit Introduction

1-16 NewtonScript and C++ Equivalences and Examples

return theValue;

}

The NewtonScript code in Listing 1-6

Listing 1-6 Calling a C++ function from NewtonScript

func()

begin

local x;

local xtext;

x:= call para.ReturnIt with ();

xtext := NumberStr(x);

staticwindow.text := Clone(xtext);

end

An Example of a Wrapper Function 1

Listing 1-7 shows an example of a wrapper function for the EQ function.

Listing 1-7 A wrapper function for a C++ function callable from NewtonScript

extern "C" Ref WEQ (RefArg rcvr, RefArg a , RefArg b)

{

int result;

result = EQ(a, b); // actual call

return MakeBoolean(result);

}

An Example of Converting a C++ Array into NewtonScript 1

Listing 1-8 shows an example of a function that converts a C++ array into a
NewtonScript array object.

Listing 1-8 Converting a C++ array into a NewtonScript object

extern "C" Ref CArrayToNSArray(long* myArray, long arraySize)

{

RefVar arrayRef = AllocateArray(SYM(array), arraySize);

for (long i = 0; i < arraySize; i++)

C H A P T E R 1

C++ Toolkit Introduction

NewtonScript and C++ Equivalences and Examples 1-17

SetArraySlot(arrayRef, i, MAKEINT(myArray[i]));

return(arrayRef);

}

An Example of Automatic Allocation of RefArgs 1
C++ will automatically create a temporary RefArg object for you if you pass a Ref as a
parameter value. This is convenient; however, it can be inefficient and can use up a lot of
memory under certain circumstances. For example, the code segment in Listing 1-9
allocates a temporary RefArg for each iteration of the loop.

Listing 1-9 An example of inefficient automatic allocation of RefArgs

Ref MyFcn1(int i)

{

...

}

int MyFcn2(RefArg arg)

{

...

}

for (i=1; i<1000; i++)

val = MyFcn2(MyFcn1(i));

Each call to MyFcn2 in Listing 1-9 creates a temporary RefArg for the result of the call to
MyFcn1. Since the C++ language definition does not specify that these objects have to be
deallocated within the loop, you could potentially be allocating 1000 temporary RefArg
objects. Listing 1-10 uses a temporary variable to create a more efficient version of the
loop.

Listing 1-10 An example of a more efficient RefArg loop

RefVar temp;

for (i=1; i<1000; i++) {

temp = MyFcn1(i);

val = MyFcn2(temp);

}

C H A P T E R 1

C++ Toolkit Introduction

1-18 NewtonScript and C++ Equivalences and Examples

An Example of Allocating Persistent Storage 1

Listing 1-11 shows the NewtonScript code and Listing 1-12 shows you the C++ code for
using a binary object to allocate persistent storage for use in your C++ code, as described
in the section “Allocating Persistent Storage” beginning on page 1-5.

Listing 1-11 NewtonScript code for using a binary object as persistent storage for C++

{

viewSetupFormScript:

func() begin

…

cMemory := MakeBinary('myMemObj, 234);

…

end,

cMemory:nil,

foo:

func() begin

…

self:DoSomeCThing();

…

end,

DoSomeCThing:myCmodule.DoSomeCThing,

}

The NewtonScript code in Listing 1-11 allocates a binary object named with the symbol
cMemory and then calls the C++ function DoSomeCThing, which is defined in a module
(file) named myCmodule.

Listing 1-12 C++ code for using a binary object as persistent storage

extern "C" Ref DoSomeCThing(RefArg rcvr)

{

RefVar cMemory = GetVariable(rcvr, SYM(cMemory));

WITH_LOCKED_BINARY(cMemory, mem)

/* do something with mem */

END_WITH_LOCKED_BINARY(cMemory)

}

The C++ function DoSomeCThing accesses the binary object that represents the memory
area by calling the GetVariable function with SYM(cMemory), the symbol that was
used in NewtonScript to create the object. The DoSomeCThing function then accesses
the object by using the WITH_LOCKED_BINARY macro, which is described in the section
“Accessing Data In a Binary Object” beginning on page 1-10.

C H A P T E R 1

C++ Toolkit Introduction

NewtonScript and C++ Equivalences and Examples 1-19

Note

If you use the method shown in Listing 1-11 and Listing 1-12 to allocate
persistent storage for use in your C++ code, you do not have to be
concerned with deallocating the memory. The NewtonScript garbage
collector will take care of collecting the memory when it is no longer in
use. ◆

An Example of Accessing Binary Data 1
Listing 1-13 shows an example of accessing binary data, as described in the section
“Accessing Data In a Binary Object” beginning on page 1-10. In this case, the binary data
is a terminated Unicode string.

Listing 1-13 Accessing binary data

extern "C" Ref GetStringLength(RefArg rcvr, RefArg str)

{

long result;

WITH_LOCKED_BINARY(str, strPtr)

result = Ustrlen((UniChar*) strPtr);

END_WITH_LOCKED_BINARY(str)

return(MakeInt(result));

}

The Ustrlen function is described on page 7-8.

The MakeInt function is described on page 2-2.

C H A P T E R 1

C++ Toolkit Introduction

1-20 NewtonScript and C++ Equivalences and Examples

C H A P T E R 2

Constants for Using C++ With NewtonScript 2-1

C++ and NewtonScript
Conversion Reference 2

This chapter describes the constants and functions that you can use in your C++
programs to convert or check the representation of objects for interfacing with
NewtonScript applications. NewtonScript uses a different representation for certain
value types than does the C++ language, which makes it necessary for you to convert
objects of these types when using the objects in a cross-language function call.

Constants for Using C++ With NewtonScript 2

The C++ Toolkit defines three constants for use with NewtonScript.

const Ref NILREF = 0x02;

const Ref TRUEREF = 0x1A;

const Ref FALSEREF = NILREF;

Constant descriptions

NILREF A reference to the NewtonScript constant NIL.
TRUEREF A reference to the NewtonScript constant TRUE.
FALSEREF A reference to the NewtonScript constant NIL.

Type Conversion Functions 2

The C++ Toolkit provides a number of type conversion functions to help you pass values
back and forth between C++ and NewtonScript.

Figure 2-0
Table 2-0
Listing 2-0

C H A P T E R 2

C++ and NewtonScript Conversion Reference

2-2 Type Conversion Functions

MakeBoolean 2

Ref MakeBoolean(int i);

i An integer value.

The MakeBoolean function converts the C++ value i into a NewtonScript Boolean
reference. If i is 0, MakeBoolean returns NILREF; otherwise, MakeBoolean returns
TRUEREF.

MakeChar 2

Ref MakeChar(unsigned char c);

c An unsigned character value.

The MakeChar function converts the C++ char value c into a NewtonScript immediate
object with the character value and returns a reference to that object.

MakeInt 2

Ref MakeInt(long i);

i A long integer value.

The MakeInt function converts the C++ long integer value i into a NewtonScript
immediate object with the integer value and returns a reference to that object.

WARNING

NewtonScript integer values are signed, 30-bit two’s complement
values. ▲

MakeReal 2

Ref MakeReal(double d);

d A double precision value.

The MakeReal function converts the C++ double precision value d into a NewtonScript
real number object with the value of d and returns a reference to that object.

MakeString 2

Ref MakeString(const char *s);
Ref MakeString(const UniChar *s);

s A C++ string of 8-bit characters or a C++ string of 16-bit Unicode
characters.

The MakeString function converts the C++ string value s into a NewtonScript string
object and returns a reference to that object.

C H A P T E R 2

C++ and NewtonScript Conversion Reference

Type Conversion Functions 2-3

MakeSymbol 2

Ref MakeSymbol(char* name);

name A C++ string.

The MakeSymbol function converts the C++ string name into a NewtonScript object and
returns a reference to that object.

WARNING

The MakeSymbol function is fairly slow. If you are using a symbol in a
loop, you should consider caching the symbol in a local variable. ◆

RefToUniChar 2

UniChar RefToUniChar(RefArg r);

r A reference to a NewtonScript immediate object.

The RefToUniChar function converts the NewtonScript character immediate r into the
equivalent Unicode character value and returns the character value.

Note

Unicode characters are 16-bit integer values (typedef unsigned
short). Values of type UniChar contain a single Unicode character. ◆

RefToInt 2

long RefToInt(Ref r);

r A reference to a NewtonScript immediate object.

The RefToInt function converts the NewtonScript integer immediate r into the
equivalent C++ long integer value and returns the integer value.

SYM 2

Ref SYM(name);

name A C++ string.

The SYM macro converts the C++ string name into a NewtonScript symbol and returns a
reference to that symbol.

Note

The SYM macro is equivalent to the MakeSymbol function, except that
you do not have to quote the name string when supplying it to SYM. The
SYM macro is defined as follows:

#define SYM(name) MakeSymbol(#name)

◆

C H A P T E R 2

C++ and NewtonScript Conversion Reference

2-4 Type Checking Functions

Type Checking Functions 2

The C++ Toolkit provides a number of functions that you can use in C++ to type-check
NewtonScript values.

IsChar 2

Boolean IsChar(Ref r);

r A reference to a NewtonScript immediate object.

The IsChar function returns TRUE if the NewtonScript value referenced by r is an
immediate character value, and FALSE if not.

IsInt 2

Boolean IsInt(Ref r);

r A reference to a NewtonScript immediate object.

The IsInt function returns TRUE if the NewtonScript value referenced by r is an
immediate integer, and FALSE if not.

IsMagicPtr 2

Boolean IsMagicPtr(Ref r);

r A reference to a NewtonScript immediate object.

The IsMagicPtr function returns TRUE if the NewtonScript value referenced by r is a
magic pointer, and FALSE if not.

IsPtr 2

Boolean IsPtr(Ref r);

r A reference to a NewtonScript immediate object.

The IsPtr function returns TRUE if the NewtonScript value referenced by r is a pointer,
and FALSE if not.

IsRealPtr 2

Boolean IsRealPtr(Ref r);

r A reference to a NewtonScript immediate object.

The IsRealPtr function returns TRUE if the NewtonScript value referenced by r is a
real pointer (not a magic pointer), and FALSE if not.

C H A P T E R 2

C++ and NewtonScript Conversion Reference

Value Checking Functions and Macros 2-5

Value Checking Functions and Macros 2

The C++ Toolkit provides several macros that you can use to test the value of
NewtonScript objects.

EQ 2

Boolean EQ(RefArg a, RefArg b);

The EQ function returns TRUE if the NewtonScript object referenced by a is equal to the
NewtonScript object referenced by b; otherwise, EQ returns FALSE.

The EQ function tests equality as follows:

■ If the objects referenced by a and b are both immediates, EQ returns TRUE if the
immediate values are equal.

■ If the objects referenced by a and b are not both immediates, EQ returns TRUE if the
object referenced by a is the same object as the object referenced by b.

■ The EQ function returns FALSE in all other circumstances.

ISNIL 2

Boolean ISNIL(Ref r);

The ISNIL macro returns TRUE if the NewtonScript value referenced by r is NILREF;
otherwise, ISNIL returns FALSE.

ISFALSE 2

Boolean ISFALSE(Ref r);

The ISFALSE macro returns TRUE if the NewtonScript value referenced by r is
FALSEREF; otherwise, ISFALSE returns FALSE.

ISTRUE 2

Boolean ISTRUE(Ref r);

The ISTRUE macro returns TRUE if the NewtonScript value referenced by r is TRUEREF;
otherwise, ISTRUE returns FALSE.

NOTNIL 2

Boolean NOTNIL(Ref r);

The NOTNIL macro returns TRUE if the NewtonScript value referenced by r is not
NILREF; otherwise, NOTNIL returns FALSE.

C H A P T E R 2

C++ and NewtonScript Conversion Reference

2-6 Debugging Macros

Debugging Macros 2

This section describes the macros you can use with the C++ Toolkit to interact with the
debugger. Note that you should conditionally include debugging statements in your
code so that they do not end up in your final versions.

Debugger 2

Debugger()

The Debugger macro generates a debugger trap.

DebugStr 2

DebugStr(msg)

msg The message you want displayed by the debugger. Note that msg is
a null-terminated C string.

The DebugStr macro generates a debugger trap and displays the msg string in a
debugger window.

WARNING

The DebugStr function always displays its output, regardless of the
default stdout setting. ▲

Note

The DebugStr and DebugCStr functions are equivalent on the
Newton. ◆

DebugCStr 2

DebugCStr(msg)

msg The message you want displayed by the debugger. Note that msg is
a null-terminated C string.

The DebugCStr macro generates a debugger trap and displays the msg string in a
debugger window.

WARNING

The DebugStr function always displays its output, regardless of the
default stdout setting. ▲

Note

The DebugStr and DebugCStr functions are equivalent on the
Newton. ◆

C H A P T E R 2

C++ and NewtonScript Conversion Reference

Debugging Macros 2-7

Summary of C++ and NewtonScript Conversion Reference 2

Constants for Using C++ With NewtonScript 2

const Ref NILREF = 0x02;

const Ref TRUEREF = 0x1A;

const Ref FALSEREF = NILREF;

Type Conversion Functions and Macros 2

Ref MakeBoolean(int i);

Ref MakeChar(unsigned char c);

Ref MakeInt(long i);

Ref MakeReal(double d);

Ref MakeString(const char *s);

Ref MakeString(const UniChar *s);

Ref MakeSymbol(char *name);

UniChar RefToUniChar(RefArg r);

long RefToInt(Ref r);

Ref SYM(char *name);

Type Checking Functions 2

Boolean IsChar(Ref r);

Boolean IsInt(Ref r);

Boolean IsMagicPtr(Ref r);

Boolean IsPtr(Ref r);

Boolean IsRealPtr(Ref r);

Value Checking Functions and Macros 2

Boolean EQ(RefArg a, RefArg b);

Boolean ISNIL(Ref r);

Boolean ISFALSE(Ref r);

Boolean ISTRUE(Ref r);

C H A P T E R 2

C++ and NewtonScript Conversion Reference

2-8 Debugging Macros

Boolean NOTNIL(Ref r);

Debugging Functions and Macros 2

Debugger()

DebugStr(msg)

DebugCStr(msg)

C H A P T E R 3

Object System Classes 3-1

Newton Object System Reference3

This chapter describes the data types and functions that you use to manipulate Newton
objects. This chapter provides the function declaration for each of the Newton Object
System functions that you can use in your C++ applications.

Many of the func tions that you use to manipulate Newton objects are C++ wrappers for
NewtonScript functions. The descriptions of these functions are provided in the Newton
Programmer’s Guide. You call NewtonScript functions using the NewtonScript C++
interface functions, which is described in Chapter 6, “NewtonScript Reference.”

Some Newton Object System functions are implemented directly in C++ (not as
wrappers for NewtonScript functions) to improve their performance. These functions are
described in this chapter.

If you want to use a NewtonScript function in your C++ program, you should first
determine if a C++ implementation exists for the function. If the function is described in
this book, it has a C++ implementation. An easy way to determine that is to look up the
function name in the index or in Appendix A, “C++ Function Tables.” If the function is
described in this book, use it as documented. If a C++ version does not exist, call the
NewtonScript function using one of the NewtonScript C++ interface functions, as
described in Chapter 6, “NewtonScript Reference.”

Object System Classes 3

This section describes the classes that you can use in your C++ programs to interface
with the Newton object system.

Iteration Macros 3
This section describes the macros that you can use to iterate through slots in
NewtonScript array and frame objects. The next section, “Object Iterator Class”
beginning on page 3-4, describes the class these macros use.

Figure 3-0
Table 3-0
Listing 3-0

C H A P T E R 3

Newton Object System Reference

3-2 Object System Classes

FOREACH 3

FOREACH(obj, value_var)

obj The array or frame object with slots through which you want to
iterate.

value_var The name of a variable into which you want the value of the current
slot in the iteration assigned. The FOREACH macro declares this
variable, a RefVar, for you.

You use the FOREACH macro when you want to iterate through the slots in a
NewtonScript array or frame obj and perform some action using the value of each slot.
The FOREACH macro creates an iterator for you and traverses the slots, allowing you to
operate on each (the current slot), one at a time. The FOREACH macro assigns the value of
the current slot to value_var, which you can use as shown in Listing 3-1.

Note

The FOREACH macro declares the value_var variable for you. ◆

Listing 3-1 An example of using the FOREACH macro

EXTERNC

Ref FrameScan(RefArg rcvr, RefArg obj)

{

RefVar result=0;

RefVar value;

FOREACH(obj,value)

if (IsNumber(value))

result = result + value;

else if (IsFrame(value) || IsArray(value))

result = result + FrameScan(rcvr, value);

END_FOREACH

return result;

}

C H A P T E R 3

Newton Object System Reference

Object System Classes 3-3

FOREACH_WITH_TAG 3

FOREACH_WITH_TAG(obj, tag_var, value_var);

obj The array or frame object with slot through which you want to
iterate.

tag_var The name of a variable into which you want the tag (name) of the
current slot in the iteration assigned. The FOREACH_WITH_TAG
macro declares this variable, a RefVar, for you.

value_var The name of a variable into which you want the value of the current
slot in the iteration assigned. The FOREACH_WITH_TAG macro
declares this variable, a RefVar, for you.

You use the FOREACH_WITH_TAG macro when you want to iterate through the slots in a
NewtonScript array or frame obj and perform some action using the name and value of
each slot. The FOREACH_WITH_TAG macro creates an iterator for you and traverses the
slots, allowing you to operate on each (the current slot), one at a time. The
FOREACH_WITH_TAG macro assigns the name of the current slot to tag_var and the value
of the current slot to value_var, which you can use, as shown in Listing 3-2.

Note

The FOREACH_WITH_TAG macro declares the tag_var and value_var
variables for you. ◆

Listing 3-2 An example of using the FOREACH_WITH_TAG macro

RefVar obj;

RefVar myTag = SYM(foo.bar);

FOREACH_WITH_TAG(obj, tag, value)

…

if (SymbolCompareLex(tag, myTag) == 0)

DoSomething(value);

…

END_FOREACH

END_FOREACH 3

END_FOREACH

The END_FOREACH macro terminates an iteration started with either the FOREACH or
FOREACH_WITH_TAG macros. The END_FOREACH macro deletes the iterator that was
created by the other macro.

WARNING

You must call the END_FOREACH macro at the end of an iteration that
you started by calling either the FOREACH or the FOREACH_WITH_TAG
macros.

C H A P T E R 3

Newton Object System Reference

3-4 Object System Classes

Object Iterator Class 3
You use objects of the TObjectIterator class to iterate through the slots in an array or
frame.

Note

You can use the object iteration macros, which are described in the
previous section, for almost all of your iteration needs. Most programs
do not need to make direct use of the TObjectIteratorclass.

class TObjectIterator : public SingleObject {

void Reset(RefArg newObj);

int Next(void);

int Done(void);

Ref Tag(void);

Ref Value(void);

};

Reset 3

void Reset(RefArg newObj);

newObj A reference to an object with slots over which to iterate.

The Reset method of the TObjectIterator class resets the iteration to the first slot in
the object newObj.

Next 3

int Next(void);

The Next method of the TObjectIterator class advances the iteration to the next slot
in the iterator’s object and returns a non-zero value. If there are no more slots in the
object, Next returns 0.

Done 3

int Done(void);

The Done method of the TObjectIterator class returns a non-zero value if the
iteration is done (if the current slot is the last slot belonging to the object or its siblings),
and returns 0 if the iteration is not done (if there are more entries)

Tag 3

Ref Tag(void);

The Tag method of the TObjectIterator class returns a reference to the tag for the
current slot.

C H A P T E R 3

Newton Object System Reference

C++ Object System Functions 3-5

Value 3

Ref Value(void);

The Value method of the TObjectIterator class returns a reference to the value of
the current slot.

Iterator Functions 3
The object creation and object destructor functions for the TObjectIterator class are
private functions. If you want to use a TObjectIterator object, you need to use the
functions described in this section to create and destory that object.

NewTObjectIterator 3

TObjectIterator* NewTObjectIterator(RefArg obj);

obj A reference to an object with slots over which to iterate.

Creates a new TObjectIterator object and returns a pointer to that object.

DeleteTObjectIterator 3

DeleteTObjectIterator(TObjectIterator* iter);

iter A pointer to a TObjectIterator object that was created by
calling the NewTObjectIterator function.

Deallocates storage for and deletes the TObjectIterator object iter.

C++ Object System Functions 3

This section describes the C++ functions that you can call directly to work with the
Newton Object System.

AddArraySlot 3

void AddArraySlot(RefArg obj,
RefArg value);

obj A reference to an array object.

value A reference to a value object that you want added as a new element
in the array.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

C H A P T E R 3

Newton Object System Reference

3-6 C++ Object System Functions

AllocateArray 3

Ref AllocateArray(RefArg theClass,
long length);

theClass A reference to a class object. This is the class of the new array object.

length The number of slots in the array.

The AllocateArray function creates a new array object, with length slots, of class
theClass.

The AllocateArray function returns a reference to the newly created array object.

Note

Calling the AllocateArray function in C++ is the same as using the
following function call in NewtonScript:

SetClass(Array(length,nil), theClass)
◆

AllocateBinary 3

Ref AllocateBinary(RefArg theClass,
long length);

theClass A reference to a class object. This is the class of the new object.

length The number of bytes allocated for the object.

The AllocateBinary function creates a new binary object, with length bytes, of class
theClass, and returns a reference to the new object.

AllocateFrame 3

Ref AllocateFrame(void);

The AllocateFrame function creates a new, empty (slotless) frame object, and returns a
reference to the frame object.

Note

Calling the AllocateFrame function in C++ is the same as using the
following expression in NewtonScript:

{ };

◆

ArrayMunger 3

void ArrayMunger(RefArg a1,
long a1start,
long a1count,
RefArg a2,
long a2start,

C H A P T E R 3

Newton Object System Reference

C++ Object System Functions 3-7

long a2count);

a1 A reference to the destination array.

a1start The starting element in the destination array.

a1count The number of elements to be replaced in the destination array. If
you specify -1 as the value of a1count, elements are replaced to the
end of the array.

a2 A reference to the source array. If you specify NILREF as the value
of a2, there is no source array and elements are deleted from a1.

a2start The starting element in the source array.

a2count The number of elements to use from the source array. If you specify
-1 as the value of a2count, elements are taken to the end of the array.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

IMPORTANT

This function is the same as the NewtonScript function ArrayMunger
with one important difference: in the NewtonScript version, you specify
NIL as the value of a1count or a2count to indicate that elements are taken
to the end of the array. In the C++ version, you specify -1 to indicate the
same thing. ▲

ArrayPosition 3

long ArrayPosition(RefArg array,
RefArg item,
long start,
RefArg test);

array A reference to an array object.

item A reference to an item that might be an element in the array.

start The starting position in the array.

test A reference to a function object used for testing. If you specify
NILREF, the equality test is used.

This function is described as the ArrayPos function in the “Utility Functions” chapter
of Newton Programmer’s Guide.

ArrayRemove 3

Boolean ArrayRemove(RefArg array,
RefArg element);

array A reference to an array object.

element A reference to the element to remove from the array.

C H A P T E R 3

Newton Object System Reference

3-8 C++ Object System Functions

The ArrayRemove function searches for the specified element in the array. If the element
is found in the array, ArrayRemove removes it from the array and shifts any following
elements left so that no empty elements remain.

Note

If there are two matching elements in the array, the ArrayRemove
function only removes the first one. ◆

The ArrayRemove function returns true if element is found and removed, and false
if element is not found in the array.

WARNING

The ArrayRemove function cannot remove an element that is an array
or a frame. ▲

ArrayRemoveCount 3

void ArrayRemoveCount(RefArg array,
FastInt start,
FastInt removeCount);

array A reference to an array object.

start The index of the first element to remove from the array.

removeCount The number of elements to remove from the array.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

ASCIIString 3

Ref ASCIIString(RefArg str);

str A reference to a Unicode string object.

The ASCIIString function creates a binary object that holds an ASCII string from the
Unicode string in str.

WARNING

Since the Unicode string str may contain non-ASCII characters, the
resulting ASCII string may contain characters with the value
kNoTranslationChar, as described in Chapter 7, “Newton Unicode
Reference.”

BinaryMunger 3

void BinaryMunger(RefArg a1,
long a1start,
long a1count,
RefArg a2,
long a2start,

C H A P T E R 3

Newton Object System Reference

C++ Object System Functions 3-9

long a2count);

a1 A reference to the destination value bytes.

a1start The starting position (numbering from 0) in a1.

a1count The number of bytes to be replaced in the destination bytes. If you
specify -1 as the value of a1count, bytes are replaced to the end of
a1.

a2 A reference to the source bytes. If you specify NILREF as the value
of a2, there is no source data and bytes are deleted from a1.

a2start The starting position (numbering from 0) in a2.

a2count The number of bytes to use from the source array. If you specify -1
as the value of a2count, bytes are taken to the end of a2.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

IMPORTANT

This function is the same as the NewtonScript function BinaryMunger
with one important difference: in the NewtonScript version, you specify
NIL as the value of a1count or a2count to indicate that elements are taken
to the end of the array. In the C++ version, you specify -1 to indicate the
same thing. ▲

ClassOf 3

Ref ClassOf(RefArg obj);

obj A reference to an object.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

Clone 3

Ref Clone(RefArg obj);

obj A reference to the object that you want cloned.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

CoerceToDouble 3

double CoerceToDouble(RefArg r);

r A reference to a Newton real number object.

The CoerceToDouble function returns a double-precision value approximation of the
Newton real number object referenced by r.

C H A P T E R 3

Newton Object System Reference

3-10 C++ Object System Functions

CoerceToInt 3

long CoerceToInt(RefArg r);

r A reference to a Newton real number object.

The CoerceToInt function returns a long-integer value approximation of the Newton
real number object referenced by r.

DeepClone 3

Ref DeepClone(RefArg obj);

obj A reference to the object that you want cloned.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

EnsureInternal 3

Ref EnsureInternal(RefArg obj);

obj A pointer to an object.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

FrameHasPath 3

int FrameHasPath(RefArg obj,
 RefArg thePath);

obj A reference to a frame object.

thePath A reference to a path.

The FrameHasPath function determines if the frame referenced by obj contains the path
expression referenced by thePath. If the path is found, FrameHasPath returns a
non-zero value; if the path is not found, FrameHasPath returns 0.

Note

Calling the FrameHasPath function in C++ is the same as using the
following expression in NewtonScript:

obj.(thePath) exists
◆

FrameHasSlot 3

int FrameHasSlot(RefArg obj,
 RefArg slot);

obj A reference to a frame object.

slot A reference to a symbol naming a slot.

C H A P T E R 3

Newton Object System Reference

C++ Object System Functions 3-11

This function is described as the HasSlot function in the “Utility Functions” chapter of
Newton Programmer’s Guide.

GC 3

void GC();

The GC function invokes the Newton garbage collector.

Note

The Newton system software automatically invokes the garbage
collector as required. You rarely, if ever, need to call this function. ◆

GetArraySlot 3

Ref GetArraySlot(RefArg obj,
long slot);

obj A reference to an array object.

slot The index of the slot in the array.

The GetArraySlot function returns a reference to the element at index slot in the array
obj.

Note

Calling the GetArraySlot function in C++ is the same as using the
following expression in NewtonScript:

obj[slot]
◆

GetFramePath 3

Ref GetFramePath(RefArg obj,
RefArg thePath);

obj A reference to a frame object.

thePath A reference to a path expression.

The GetFramePath function returns the value of the object reached by the path
expression thePath in the frame specified by obj.

Note

Calling the GetFramePath function in C++ is the same as using the
following expression in NewtonScript:

value := obj.(thePath)
◆

C H A P T E R 3

Newton Object System Reference

3-12 C++ Object System Functions

GetFrameSlot 3

Ref GetFrameSlot(RefArg obj,
RefArg slot);

obj A reference to a frame object.

slot A reference to a symbol naming the slot whose value you want to
get.

This function is described as the GetSlot function in the “Utility Functions” chapter of
Newton Programmer’s Guide.

IsArray 3

Boolean IsArray(RefArg ref);

ref A reference to an object.

The IsArray function returns TRUE if the object referenced by ref is a Newton array
object and FALSE if not.

IsBinary 3

Boolean IsBinary(RefArg ref);

ref A reference to an object.

The IsBinary function returns TRUE if the object referenced by ref is a Newton binary
object and FALSE if not.

IsFrame 3

Boolean IsFrame(RefArg ref);

ref A reference to an object.

The IsFrame function returns TRUE if the object referenced by ref is a Newton frame
object and FALSE if not.

IsFunction 3

Boolean IsFunction(RefArg ref);

ref A reference to an object.

The IsFunction function returns TRUE if the object referenced by ref is a Newton
function object and FALSE if not.

C H A P T E R 3

Newton Object System Reference

C++ Object System Functions 3-13

IsInstance 3

Boolean IsInstance(RefArg obj,
RefArg super);

obj A reference to an object.

super A reference to a class symbol.

The IsInstance function returns TRUE if the object referenced by obj is an instance of
the class super, and FALSE if not.

IsNumber 3

Boolean IsNumber(RefArg ref);

ref A reference to an object.

The IsNumber function returns TRUE if the object referenced by ref is a Newton number
object and FALSE if not.

IsReadOnly 3

Boolean IsReadOnly(RefArg obj);

obj A reference to an object.

The IsReadOnly function returns TRUE if the object referenced by obj is in read-only
memory and FALSE if not.

IsReal 3

Boolean IsReal(RefArg r);

ref A reference to an object.

The IsReal function returns TRUE if the object referenced by ref is a Newton real
number object and FALSE if not.

IsString 3

Boolean IsString(RefArg ref);

ref A reference to an object.

The IsString function returns TRUE if the object referenced by ref is a Newton string
object and FALSE if not.

IsSubclass 3

Boolea n IsSubclass(RefArg sub,
RefArg super);

sub A reference to a class symbol.

super A reference to a class symbol.

C H A P T E R 3

Newton Object System Reference

3-14 C++ Object System Functions

The IsSubclass function returns TRUE if the class referenced by sub is a subclass of the
class referenced by super, and FALSE if not.

IsSymbol 3

Boolean IsSymbol(RefArg obj);

obj A reference to an object.

The IsSymbol function returns TRUE if the object referenced by ref is a Newton symbol
object and FALSE if not.

Length 3

long Length(RefArg obj);

obj A reference to an object.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

RemoveSlot 3

void RemoveSlot(RefArg frame,
RefArg tag);

frame A reference to a frame object.

tag A reference to a symbol naming a slot.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

IMPORTANT

The C++ version of the RemoveSlot function does not work with
arrays. ▲

ReplaceObject 3

void ReplaceObject(RefArg target,
RefArg replacement);

target A reference to the original object.

replacement A reference to the object to which you want to redirect any
references to target.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

SetArraySlot 3

void SetArraySlot(RefArg obj,
long slotIndex,

C H A P T E R 3

Newton Object System Reference

C++ Object System Functions 3-15

RefArg value);

obj A reference to an array object.

slotIndex The index of the slot in the array.

value A reference to the new value for the slot in the array.

The SetArraySlot function establishes the value of the element at index slot in the
array obj.

Note

Calling the SetArraySlot function in C++ is the same as using the
following expression in NewtonScript:

obj[slot] := value;
◆

SetClass 3

void SetClass(RefArg obj,
RefArg theClass);

obj A reference to an object.

theClass A reference to a class symbol.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

SetFramePath 3

Ref SetFramePath(RefArg obj,
RefArg thePath,
RefArg value);

obj A reference to a frame object.

thePath A reference to a path expression.

value A reference to the new value for the slot specified by the path
expression.

The SetFramePath function sets the value of a slot to value. The slot whose value is set
is determined by thePath, starting at the object obj.

Note

Calling the SetFramePath function in C++ is the same as using the
following expression in NewtonScript:

obj.(thePath) := value
◆

C H A P T E R 3

Newton Object System Reference

3-16 C++ Object System Functions

SetFrameSlot 3

void SetFrameSlot(RefArg obj,
RefArg slot,
RefArg value);

obj A reference to a frame object.

slot A reference to a symbol naming the slot whose value you want to
change.

value A reference to an object that you want to be the value of the slot.

The SetFrameSlot function searches for the slot whose name matches the slot symbol
in the frame referenced by obj. If the named slot is found in the frame, SetFrameSlot
modifies the value of the slot to value. If the named slot is not found, SetFrameSlot
adds a new slot with name slot to the frame and initializes it to value.

Note

Calling the SetFrameSlot function in C++ is the same as using the
following expression in NewtonScript:

obj.(slot) := value
◆

IMPORTANT

The SetFrameSlot function adds a new slot to the frame referenced by
obj if the slot does not already exist. ▲

SetLength 3

void SetLength(RefArg obj,
long length);

obj A reference to an object.

length The new length for the object.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

SortArray 3

void SortArray(RefArg array,
RefArg test,
RefArg key);

array A reference to the array that you want sorted.

test A reference to a function object. The function must take two
parameters and return an integer value that specifies their sorting
relationship.

key The sort key within each array element. .

C H A P T E R 3

Newton Object System Reference

C++ Object System Functions 3-17

This function is described as the Sort function in the “Utility Functions” chapter of
Newton Programmer’s Guide.

Statistics 3

void Statistics(ULong* freeSpace,
ULong* largestFreeBlock);

freeSpace On return, the amount of free space, in bytes, in the task heap.

largestFreeBlock On return, the number of bytes in the largest block of free memory
in the task heap.

The Statistics function returns the total amount of free space in the task heap and
the size of the largest block of free space in the task heap.

StrBeginsWith 3

int StrBeginsWith(RefArg str,
 RefArg prefix);

str A reference to a string object.

prefix A reference to a string object.

This function is described as the BeginsWith function in the “Utility Functions”
chapter of Newton Programmer’s Guide.

StrCapitalize 3

void StrCapitalize(RefArg str);

str A reference to a string object.

This function is described as the Capitalize function in the “Utility Functions”
chapter of Newton Programmer’s Guide.

StrCapitalizeWords 3

void StrCapitalizeWords(RefArg str);

str A reference to a string object.

This function is described as the CapitalizeWords function in the “Utility Functions”
chapter of Newton Programmer’s Guide.

StrDowncase 3

void StrDowncase(RefArg str);

str A reference to a string object.

This function is described as the Downcase function in the “Utility Functions” chapter
of Newton Programmer’s Guide.

C H A P T E R 3

Newton Object System Reference

3-18 C++ Object System Functions

StrEndsWith 3

int StrEndsWith(RefArg str,
RefArg suffix);

str A reference to a string object.

suffix A reference to a string object.

This function is described as the EndsWith function in the “Utility Functions” chapter
of Newton Programmer’s Guide.

StrMunger 3

void StrMunger(RefArg s1,
long s1start,
long s1count,
RefArg s2,
long s2start,
long s2count);

s1 A reference to the destination string.

s1start The starting position in the destination string.

s1count The number of characters to be replaced in the destination string. If
you specify -1 as the value of s1count, characters are replaced to
the end of the string.

s2 A reference to the source string. If you specify NILREF as the value
of s2, there is no source string and characters are deleted from s1.

s2start The starting position in the source string.

s2count The number of characters to use from the source string. If you
specify -1 as the value of s2count, characters are taken to the end of
the string.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

IMPORTANT

This function is the same as the NewtonScript function StrMunger with
one important difference: in the NewtonScript version, you specify NIL
as the value of a1count or a2count to indicate that elements are taken to
the end of the array. In the C++ version, you specify -1 to indicate the
same thing. ▲

StrPosition 3

long StrPosition(RefArg str,
 RefArg substr,

C H A P T E R 3

Newton Object System Reference

C++ Object System Functions 3-19

 long startPos);

str A reference to the string object that you want searched.

substr A reference to the string object for which you want to search.

startPos A reference to the character position in str at which you want the
search to start.

This function is described as the StrPos function in the “Utility Functions” chapter of
Newton Programmer’s Guide.

Note that the StrPosition function returns -1 if substr is not found in str. The
NewtonScript StrPos function returns NIL instead.

StrReplace 3

long StrReplace(RefArg str,
RefArg substr,
RefArg replacement,
long count);

str A reference to a string in which a substring replacement is to be
made.

substr A reference to the substring to be replaced.

replacement A reference to the replacement string.

count The maximum number of replacements that can be made. If you
specify -1, all occurrences will be replaced.

This function is described as in the “Utility Functions” chapter of Newton Programmer’s
Guide.

Note

The C++ StrReplace function uses -1 as the value of count to indicate
that all occurrences of substr should be replaced. The NewtonScript
version uses NIL. ◆

StrUpcase 3

void StrUpcase(RefArgstr);

str A reference to a string object.

This function is described as the Upcase function in the “Utility Functions” chapter of
Newton Programmer’s Guide.

Substring 3

Ref Substring(RefArg str,
 long start,

C H A P T E R 3

Newton Object System Reference

3-20 C++ Object System Functions

 long count);

str A reference to a string object.

start The starting position of the substring in the string.

count The number of characters in the substring.

This function is described as the SubStr function in the “Utility Functions” chapter of
Newton Programmer’s Guide.

SymbolCompareLex 3

int SymbolCompareLex(RefArg sym1,
RefArg sym2);

sym1 A reference to a symbol object to compare.

sym2 A reference to the other symbol object to compare.

The SymbolCompareLex function compares the name of sym1 to the name of sym2,
using a case-insensitive string comparison. SymbolCompareLex returns a value as
follows:

■ if sym1 is greater than sym2, return a positive integer value

■ if sym1 is equivalent to sym2, return 0

■ if sym1 is less than sym2, return a negative integer value

symcmp 3

int symcmp(char* s1,
char* s2);

s1 The string name of a symbol to compare.

s2 The string name of the other symbol to compare.

The symcmp function compares the two symbol names with a case-insensitive string
comparison. symcmp returns a value as follows:

■ if s1 is greater than s2, return a positive integer value

■ if s1 is equivalent to s2, return 0

■ if s1 is less than s2, return a negative integer value

ThrowBadTypeWithFrameData 3

void ThrowBadTypeWithFrameData(NewtonErr errorCode,
RefArg value);

errorCode A numeric error code.

value A reference to the frame data object that caused the exception.

The ThrowBadTypeWithFrameData function raises a “bad type” exception. The
exception frame contains two slots:

C H A P T E R 3

Newton Object System Reference

C++ Object System Functions 3-21

■ a slot named 'errorcode whose value is the integer representation of errorCode

■ a slot named 'value whose value is value.

ThrowRefException 3

void ThrowRefException(ExceptionName name,
 RefArg data);

name An exception symbol.

data A reference to the data object that caused the exception.

The ThrowRefException function raises an exception and creates an exception frame
with the specified name and data.

TotalClone 3

Ref TotalClone(RefArg obj);

obj A reference to an object that you want cloned.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

TrimString 3

void TrimString(RefArg str);

str A reference to a string object.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

C H A P T E R 3

Newton Object System Reference

3-22 C++ Object System Functions

Summary of Object System Reference 3

Object System Classes 3

Object Iterator Class

class TObjectIterator : public SingleObject {

void Reset(RefArg newObj);

int Next(void);

int Done(void);

Ref Tag(void);

Ref Value(void);

};

void Reset(RefArg newObj);

int Next(void);

int Done(void);

Ref Tag(void);

Ref Value(void);

Newton Object System Functions and Macros 3

Iterator Functions

TObjectIterator* NewTObjectIterator(RefArg obj);

DeleteTObjectIterator(TObjectIterator* iter);

Iteration Macros

FOREACH(obj, value_var)

END_FOREACH

FOREACH_WITH_TAG(obj, tag_var, value_var)

C++ Newton Object Functions

void AddArraySlot(RefArg obj, RefArg value);

Ref AllocateArray(RefArg theClass, long length);

C H A P T E R 3

Newton Object System Reference

C++ Object System Functions 3-23

Ref AllocateBinary(RefArg theClass, long length);

Ref AllocateFrame(void);

void ArrayMunger(RefArg a1, long a1start, long a1count,
RefArg a2, long a2start, long a2count);

long ArrayPosition(RefArg array, RefArg item, long start,
RefArg test);

Boolean ArrayRemove(RefArg array, RefArg element);

void ArrayRemoveCount(RefArg array, FastInt start,
FastInt removeCount);

Ref ASCIIString(RefArg str);

void BinaryMunger(RefArg a1, long a1start, long a1count,
RefArg a2, long a2start, long a2count);

Ref ClassOf(RefArg obj);

Ref Clone(RefArg obj);

double CoerceToDouble(RefArg r);

long CoerceToInt(RefArg r);

Ref DeepClone(RefArg obj);

Ref EnsureInternal(RefArg obj);

int FrameHasPath(RefArg obj, RefArg thePath);

int FrameHasSlot(RefArg obj, RefArg slot);

Ref GetArraySlot(RefArg obj, long slot);

void GetFramePath(RefArg obj, RefArg thePath);

Ref GetFrameSlot(RefArg obj, RefArg slot);

void GC();

Boolean IsArray(RefArg ref);

Boolean IsBinary(RefArg ref);

Boolean IsFrame(RefArg ref);

Boolean IsFunction(RefArg ref);

Boolean IsInstance(RefArg obj, RefArg super);

Boolean IsNumber(RefArg ref);

Boolean IsReadOnly(RefArg obj);

Boolean IsReal(RefArg r);

Boolean IsString(RefArg ref);

Boolea n IsSubclass(RefArg sub, RefArg super);

Boolean IsSymbol(RefArg obj);

long Length(RefArg obj);

void RemoveSlot(RefArg frame, RefArg tag);

C H A P T E R 3

Newton Object System Reference

3-24 C++ Object System Functions

void ReplaceObject(RefArg target, RefArg replacement);

void SetArraySlot(RefArg obj, long slot, RefArg value);

void SetClass(RefArg obj, RefArg theClass);

Ref SetFramePath(RefArg bj, RefArg thePath, RefArg value);

void SetFrameSlot(RefArg obj, RefArg slot, RefArg value);

void SetLength(RefArg obj, long length);

void Statistics(ULong* freeSpace, ULong* largestFreeBlock);

void SortArray(RefArg array, RefArg test, RefArg key);

int StrBeginsWith(RefArg str, RefArg prefix);

void StrCapitalize(RefArg str);

void StrCapitalizeWords(RefArg str);

void StrDowncase(RefArg str);

int StrEndsWith(RefArg str, RefArg suffix);

void StrMunger(RefArg s1,long s1start,long s1count,
RefArg s2,long s2start, long s2count);

long StrPosition(RefArg str, RefArg substr, long startPos);

long StrReplace(RefArg str, RefArg substr,
RefArg replacement, long count);

void StrUpcase(RefArg str);

Ref Substring(RefArg str, long start, long count);

int SymbolCompareLex(RefArg sym1, RefArg sym2);

int symcmp(char* s1, char* s2);

void ThrowBadTypeWithFrameData(NewtonErr errorCode,RefArg value);

void ThrowRefException(ExceptionName name, RefArg data);

Ref TotalClone(RefArg obj);

void TrimString(RefArg str);

C H A P T E R 4

About the Newton Memory Manager 4-1

Newton Memory Manager
Reference 4

This chapter describes the functions that you use to work with the Newton memory
manager.

About the Newton Memory Manager 4

The Newton Memory Manager presents a memory model that allows you to allocate and
deallocate heap objects as you would in a standard C++ application programming
environment.

The one thing in the Newton environment of which you must be aware is that the
Newton object system maintains its own heap, the object heap. This is separate from the
application heap that your C++ program uses. Although this is an important fact, it should
not have any impact on your applications.

Memory Manager Functions 4

This section describes the C++ Toolkit Memory Manager functions.

BlockMove 4

void BlockMove(const void* srcPtr,
void* destPtr,

Figure 4-0
Table 4-0
Listing 4-0

C H A P T E R 4

Newton Memory Manager Reference

4-2 Memory Manager Functions

Size byteCount);

srcPtr A pointer to the block in memory that you want copied.

destPtr A pointer to the area into which you want the block copied.

byteCount The number of bytes to copy.

The BlockMove function copies byteCount bytes from srcPtr to destPtr.

Note

The BlockMove function is the same as the C library function
memmove. ◆

CountFreeBlocks 4

unsigned long CountFreeBlocks(Heap h=DEFAULT_NIL);

h A pointer to a heap object. Always use DEFAULT_NIL as the value
of this parameter.

The CountFreeBlocks function returns the number of free blocks in the application
heap.

IMPORTANT

The value of the h parameter to this function must always be
DEFAULT_NIL. ▲

DisposePtr 4

void DisposePtr(Ptr p);

p A pointer to a block of memory allocated in the heap.

The DisposePtr function disposes of (releases) the block of memory pointed to by p.

Note

The DisposePtr function is the same as the C library function free. ◆

EqualBytes 4

int EqualBytes(const void* ptr1,
 const void* ptr2,
 Size byteCount);

ptr1 A pointer to the first block of memory you want compared.

ptr2 A pointer to the second block of memory you want compared.

byteCount The number of bytes that you want compared.

The EqualBytes function compares bytes in memory. It first compares the byte at ptr1
with the byte at ptr2 and then advances each pointer by one byte and compares again.
The comparison continues until the comparison fails or until byteCount bytes have been
compared.

C H A P T E R 4

Newton Memory Manager Reference

Memory Manager Functions 4-3

The EqualBytes function returns 1 if the two blocks are equal and 0 if not.

FillBytes 4

void FillBytes(void* ptr,
 Size length,
 UChar pattern);

ptr A pointer to a block of memory.

length The number of bytes in the block that you want modified. See the
warning below for special considerations.

pattern The byte value that you want assigned to each location in the block.

The FillBytes function fills a block of memory with the byte value specified by
pattern. Each byte starting at ptr and continuing for length bytes is assigned the pattern
value.

WARNING

The FillBytes function does not protect against negative or extremely
large length values. It attempts to allocate the specified amount of
memory, even though such values can cause disastrous results in your
program. You must ensure that your calls to FillBytes supply
appropriate length values. ▲

Note

The FillBytes function is the same as the C library function
memset. ◆

FillLongs 4

void FillLongs(void* ptr,
 Size length,
 ULong pattern);

ptr A pointer to a block of memory.

length The number of bytes in the block that you want modified.

pattern The unsigned long value that you want to fill the block.

The FillLongs function fills a block of memory with the unsigned long value specified
by pattern. The pattern is treated as a sequential array of bytes that is repeatedly written
to the block, starting with the byte pointed to by ptr and continuing until the byte at
offset length from ptr is written.

Note

The length parameter indicates the number of bytes that you want
modified. Remember that you are modifying those bytes by writing a
long (4-byte) value. For example, if you want to overwrite twelve bytes
in memory with a long value, you specify 12 as the value of length. The
pattern will be written three times in this case. ◆

C H A P T E R 4

Newton Memory Manager Reference

4-4 Memory Manager Functions

GetPtrName 4

ULong GetPtrName(Ptr ptr);

ptr A pointer to an object in the heap.

The GetPtrName function returns the 4-byte ID tag associated with ptr.

GetPtrSize 4

Size GetPtrSize(Ptr p);

p A pointer to a block of memory allocated in the heap.

The GetPtrSize function returns the number of bytes in the memory block pointed to
by p.

LargestFreeInHeap 4

Size LargestFreeInHeap(Heap h=DEFAULT_NIL);

h A pointer to a heap object. Always use DEFAULT_NIL as the value
of this parameter.

The LargestFreeInHeap function returns the size of the largest free block in the
application heap.

IMPORTANT

The value of the h parameter to this function must always be
DEFAULT_NIL. ▲

MaxHeapSize 4

Size MaxHeapSize(Heap h=DEFAULT_NIL);

h A pointer to a heap object. Always use DEFAULT_NIL as the value
of this parameter.

The MaxHeapSize function returns the application heap size in bytes.

IMPORTANT

The value of the h parameter to this function must always be
DEFAULT_NIL. ▲

MemError 4

NewtonErr MemError(void);

The MemError function returns the result of the most recent call by your task to the
Memory Manager.

C H A P T E R 4

Newton Memory Manager Reference

Memory Manager Functions 4-5

NewNamedPtr 4

Ptr NewNamedPtr(Size byteCount,
 ULong name);

byteCount The number of bytes in the block to be allocated.

name The name to assign to the block. This is a 4-byte ID tag. See the
warning below for special considerations.

The NewNamedPtr function allocates a non-relocatable block of memory in the heap.
The size of the allocated block is indicated by byteCount. The NewNamedPtr function
returns a pointer to the newly allocated block. The ID tag name is assigned to the pointer.

WARNING

The value of name is limited to valid 30-bit long integer values. If you
specify a larger value, the name is set to 0x7FFFFFF. ▲

If the allocation is successful, the Memory Manager result code (which is returned by the
MemError function) is set to noErr. If the allocation is not successful, the Memory
Manager result code is set to memFullErr.

NewPtr 4

Ptr NewPtr(Size byteCount);

byteCount The number of bytes in the block to be allocated. See the warning
below for special considerations.

The NewPtr function allocates a non-relocatable block of memory in the heap. The size
of the allocated block is indicated by byteCount. The NewPtr function returns a pointer to
the newly allocated block.

WARNING

The NewPtr function does not protect against negative or extremely
large byteCount values. It attempts to allocate the specified amount of
memory, even though such values can cause disastrous results in your
program. You must ensure that your calls to NewPtr supply appropriate
byteCount values. ▲

If the allocation is successful, the Memory Manager result code (which is returned by the
MemError function) is set to noErr. If the allocation is not successful, the Memory
Manager result code is set to memFullErr.

Note

The NewPtr function is the same as the C library function malloc. ◆

NewPtrClear 4

Ptr NewPtrClear(Size byteCount);

byteCount The number of bytes in the block to be allocated. See the warning
below for special considerations.

C H A P T E R 4

Newton Memory Manager Reference

4-6 Memory Manager Functions

The NewPtrClear function allocates a non-relocatable block of memory in the heap.
The size of the allocated block is indicated by byteCount. Each byte in the newly allocated
block is cleared to zero. The NewPtrClear function returns a pointer to the newly
allocated block.

WARNING

The NewPtrClear function does not protect against negative or
extremely large byteCount values. It attempts to allocate the specified
amount of memory, even though such values can cause disastrous
results in your program. You must ensure that your calls to
NewPtrClear supply appropriate byteCount values. ▲

If the allocation is successful, the Memory Manager result code (which is returned by the
MemError function) is set to noErr. If the allocation is not successful, the Memory
Manager result code is set to memFullErr.

ReallocPtr 4

Ptr ReallocPtr(Ptr p,
Size newSize);

p A pointer to a block of memory allocated in the heap.

newSize The size, in bytes, that you want allocated for the block pointed to
by p.

The ReallocPtr function modifies the size (and address) of the otherwise
non-relocatable block of memory pointed to by p, copying the previous contents of the
block as required. The ReallocPtr function returns a pointer to the newly allocated
block.

If p is NULL, ReallocPtr simply calls and returns the value of the NewPtr function.

Note

The ReallocPtr function behaves differently than the standard, ANSI
C library implementation in one case. If the value of newSize is 0,
ReallocPtr does not free p; instead, it sets the size of the buffer
pointed to by p to 0, which indicates that the Newton System Software
can free the pointer at a later time. ◆

If the allocation is successful, the Memory Manager result code (which is returned by the
MemError function) is set to noErr. If the allocation is not successful, the Memory
Manager result code is set to memFullErr.

Note

The ReallocPtr function is the same as the C library function
realloc. ◆

C H A P T E R 4

Newton Memory Manager Reference

Memory Manager Functions 4-7

SetPtrName 4

void SetPtrName(Ptr ptr,
ULong name);

ptr A pointer to an object in the heap.

name A 4-byte ID tag for the object. See the warning below for special
considerations.

The SetPtrName function associates the tag name with ptr.

WARNING

The value of name is limited to valid 30-bit long integer values. If you
specify a larger value, the name is set to 0x7FFFFFF. ▲

SystemRAMSize 4

Size SystemRAMSize(void);

The SystemRamSize function returns maximum number of bytes available for
allocation before the user has stored anything. This is equivalent to all of RAM minus
any user stores in RAM.

TotalFreeInHeap 4

Size TotalFreeInHeap(Heap h=DEFAULT_NIL);

h A pointer to a heap object. Always use DEFAULT_NIL as the value
of this parameter.

The TotalFreeInHeap function returns the total number of bytes of free space in the
application heap.

IMPORTANT

The value of the h parameter to this function must always be
DEFAULT_NIL. ▲

TotalUsedInHeap 4

Size TotalUsedInHeap(Heap h=DEFAULT_NIL);

h A pointer to a heap object. Always use DEFAULT_NIL as the value
of this parameter.

The TotalUsedInHeap function returns the total number of bytes that have been
stored in the application heap.

IMPORTANT

The value of the h parameter to this function must always be
DEFAULT_NIL. ▲

C H A P T E R 4

Newton Memory Manager Reference

4-8 Memory Manager Functions

XORBytes 4

void XORBytes(const void* src1,
const void* src2,
void* dest,
Size byteCount);

src1 A pointer to a block of memory.

src2 A pointer to a block of memory.

destPtr A pointer to a block of memory.

byteCount The number of bytes on which to perform the operation.

The XORBytes functions performs a byte-by-byte exclusive-or operation on two blocks
of memory and writes the resulting bytes to a third block. Each byte in the block pointed
to by src1 is xor’ed with the corresponding byte in the block pointed to by src2; the result
of that exclusive-or is written to the corresponding byte in the block pointed to by destPtr.

ZeroBytes 4

void ZeroBytes(void* ptr,
 Size length);

ptr A pointer to a block of memory.

length The number of bytes in the block that you want zeroed.

The ZeroBytes function clears each byte in the block of memory pointed to by ptr to
zero. A total of length bytes is cleared.

C H A P T E R 4

Newton Memory Manager Reference

Memory Manager Functions 4-9

Summary of Memory Manager Reference 4

Memory Manager C++ Functions 4

void BlockMove(const void* srcPtr, void* destPtr, Size byteCount);

unsigned long
CountFreeBlocks(Heap h=DEFAULT_NIL);

void DisposePtr(Ptr p);

int EqualBytes(const void* ptr1, const void* ptr2,
Size byteCount);

void FillBytes(void* ptr, Size length, UChar pattern);

void FillLongs(void* ptr, Size length, ULong pattern);

ULong GetPtrName(Ptr ptr);

Size GetPtrSize(Ptr p);

Size LargestFreeInHeap(Heap h=DEFAULT_NIL);

Size MaxHeapSize(Heap h=DEFAULT_NIL);

NewtonErr MemError(void);

Ptr NewNamedPtr(Size byteCount, ULong name);

Ptr NewPtr(Size byteCount);

Ptr NewPtrClear(Size byteCount);

Ptr ReallocPtr(Ptr p, Size newSize);

void SetPtrName(Ptr ptr, ULong name);

Size SystemRAMSize(void);

Size TotalFreeInHeap(Heap h=DEFAULT_NIL);

Size TotalUsedInHeap(Heap h=DEFAULT_NIL);

void XORBytes(const void* src1, const void* src2,
void* dest, Size byteCount);

void ZeroBytes(void* ptr, Size length);

C H A P T E R 4

Newton Memory Manager Reference

4-10 Memory Manager Functions

C H A P T E R 5

About Newton Exceptions 5-1

Newton Exceptions Reference 5

This chapter describes the constants, data types, and classes that you use to raise and
handle exceptions in your Newton C++ applications.

About Newton Exceptions 5

You can use exceptions and exception handling to “catch” error conditions that occur
during the execution of your Newton application. Exceptions provide a mechanism for
breaking out of the normal flow of control, responding to an exceptional condition, and
then continuing with execution of your application.

The C++ Toolkit provides exception handling that is analagous to the exception handling
provided in NewtonScript. You can read about NewtonScript exception handling in The
NewtonScript Programming Language.

With the C++ Toolkit, you can define your own exceptions, throw exceptions, and catch
exceptions. When you catch an exception, your exception-handling code is invoked.
Some exceptions include data, which your exception handler can use to process the
exception.

Defining Exceptions 5
The Newton system software defines a number of exceptions that you can catch and
handle. The system software provides default handling for these exceptions, which are
listed in Table 5-2 on page 5-5.

You can use the DefineException macro, which is described on page 5-7, to define a
new exception for use in your application. Each exception is defined with a class name
and a structured exception string.

Figure 5-0
Table 5-0
Listing 5-0

C H A P T E R 5

Newton Exceptions Reference

5-2 About Newton Exceptions

IMPORTANT

The class name that you use to define the exception is the name that you
use with the C++ exception functions and macros. This is, among other
things, a symbolic name for the structured string name of the
exception. ▲

When you define an exception, the Newton system software creates a new class for the
exception. In the following call to DefineException, exMyException is the class
name for the new exception:

DefineException(exMyException, evt.ex.myApp);

In subsequent calls to exception-handling functions, you would use exMyException to
specify this exception.

Note

The C++ exception-handling macros, including DefineException, do
not require the use of quotes around their string arguments. ◆

Exception names are structured strings that create a hierarchy of exceptions. These
structured strings consist of a sequence of dot-separated prefix parts, followed by the
final and most specific exception part. Exception names and exception-handling
hierarchies are described more fully in The NewtonScript Programming Language.

WARNING

Exception name strings cannot exceed 127 characters in length. Longer
exception names can cause a system crash. ▲

Your exception handlers can be structured to handle exceptions in a hierarchy of
specificity: the handler for the most specific exception name catches that exception, and a
less specific handler can catch any exceptions whose prefixes match it. The following are
examples of exception names:

evt.ex

evt.ex.myApp

evt.ex.myApp.entryErr

evt.ex.myApp.entryErr.noDigit

C H A P T E R 5

Newton Exceptions Reference

About Newton Exceptions 5-3

Given the above exception definitions, exception handlers would catch exceptions as
shown in Table 5-1.

WARNING

The Newton system software catches exceptions that begin with one of
two prefixes: evt.ex or type.ref. If an exception does not begin with
one of these prefixes, the system software throws the evt.ex.fr
exception with error number kFramesErrBadExceptionName. ▲

Exception Data 5
When you throw an exception, you can optionally include data in the call to the Throw
function. You can include a pointer to any data that you want to pass along.

Note

One important difference between NewtonScript and C++ exceptions is
that the data included with a C++ exception can be any kind of data.
The data included with a NewtonScript exception is always a
NewtonScript object. ◆

When you include data with an exception, the exception handler needs to be able to
destroy the data after using it. Since the shape of the data is arbitrary, you must tell the
exception handler how to destroy it. You do so by including an
ExceptionDestructor function specification along with the data. The Throw function
can then call the ExceptionDestructor function to deallocate the data.

The ExceptionDestructor specification is described in the section “The Exception
Destructor Type” on page 5-6. The Throw function is described in the section “Throw”
on page 5-8.

Table 5-1 An exception-handling hierarchy

Exception handler string Exceptions handled

evt.ex Any with the prefix evt.ex that has not
been handled by a more specific handler.

evt.ex.myApp Any matching the prefix evt.ex.myApp
that has not been handled by a more specific
handler.

evt.ex.myApp.entryErr An evt.ex.myApp.EntryErr exception
or an
evt.ex.myApp.entryErr.noDigit
exception that has not been handled by a
more specific handler.

evt.ex.myApp.entryErr.noDigit Only the
evt.ex.myApp.entryErr.noDigit
exception.

C H A P T E R 5

Newton Exceptions Reference

5-4 About Newton Exceptions

Exception Blocks 5
Exceptions are handled in exception blocks. This is a block of code that begins with the
newton_try macro and ends with the end_try macro. The exception-handling macros
can only be used within an exception block. The following is an example of an exception
block:

newton_try

{

DoSomeStuff;

}

newton_catch(exMyException)

{

printf("Caught exception %s", CurrentException()->name);

}

end_try;

WARNING

You must not return or break out of an exception block, which
includes newton_try, newton_cleanup, unwind_protect, and
on_unwind blocks. Exiting from one of these blocks with a return or
break statement will cause strange and possibly disastrous behavior in
your program. ▲

Catch Blocks 5

The code block following the newton_catch clause is referred to as a catch block. Some
exception-handling calls, including the CurrentException macro, are only valid
within these blocks. These restrictions are described in the section “Exception-Handling
Macros” beginning on page 5-9.

Other Exception-handling Blocks 5

Within an exception block, you can include several newton_catch clauses as well as
cleanup and unwind_protect clauses. All of these clauses are optional and are
followed by code blocks: the newton_catch clause, is followed by a catch block, the
cleanup clause is followed by a cleanup block, and the unwind_protect clause is
followed by an unwind block.

The cleanup clause, if present, must appear after any newton_catch blocks. If none of
the newton_catch clauses catch the exception, the code in the cleanup block is
executed before the next exception handler in the hierarchy is invoked.

The unwind_protect clause introduces a block of code that must be run whether or
not an exception occurs. This code is known as protected code. Within the
unwind_protect block, you can include on_unwind clause to specify the code that
closes out the protected code block.

C H A P T E R 5

Newton Exceptions Reference

About Newton Exceptions 5-5

The macros mentioned in this section are described in the section “Exception-Handling
Macros” beginning on page 5-9.

Volatile Values 5
You need to declare some local variables as volatile to work around a subtle problem that
occurs with exception usage. The problem occurs as follows:

■ The C++ compiler assigns a local variable to a register.

■ You modify that variable inside of a try block that precedes code that can raise an
exception.

■ You need to access the local variable after exiting the try block. In other words, the
value that you assigned to that variable inside of the try block is used outside of the
try block.

The problem is that the local variable can be kept in a register if you do not declare it
volatile. If this is the case and an exception is raised, the state of the register is restored to
the value that it had when the try block was entered and the value that you assigned to
the variable in the try block is lost.

IMPORTANT

You must use the volatile keyword when declaring a local variable
that you modify inside of a try block. ▲

Newton System Software Exceptions 5

Table 5-2 lists the exceptions that the Newton system software generates.

Table 5-2 Newton system software exceptions

Exception name Data type Description

exAbort generic abort

exAlignment alignment error

exBusError bus error

exDivideByZero divide by zero error

exIllegalInstr illegal instruction

exMsgException exception with message

exOutOfStack out of stack space error

exPermissionViolation permission error

exRootException the mother of all exceptions

exSkia skia error

exWriteProtected write-protection error

C H A P T E R 5

Newton Exceptions Reference

5-6 Exception Types

Exception Types 5

This section describes the data types that you use to work with exceptions in your C++
applications.

The Exception Structure Type 5

When you define an exception, the Newton system software creates a new object class
for that exception. The name of the class is the name that you specify as the first
parameter to the DefineException macro.

The CurrentException macro returns a pointer to an object of this class. You can
access the name of an exception by using the name field of the object. For example, the
structured string name of the current exception can be accessed with the following
statement:

CurrentException()->name;

The Exception Destructor Type 5

The Newton system software uses the exception destructor type, of type
ExceptionDestructor, to define the function type used to destroy the data associated
with an exception. Some exceptions are raised with a pointer to data that is in the heap;
the destructor function is used to deallocate that data. Each destructor function must be
declared with the form defined by the ExceptionDestructor type:

typedef void (*ExceptionDestructor)(void*);

Exception Functions and Macros 5

This section describes the functions that you can use in your C++ applications to work
with Newton exceptions.

CurrentException 5

void* CurrentException();

The CurrentException macro returns a pointer to the exception object for the
exception that is currently being handled. This is a pointer to an object whose class is the
class of the current exception. See the section “The Exception Structure Type” beginning
on page 5-6.

C H A P T E R 5

Newton Exceptions Reference

Exception Functions and Macros 5-7

IMPORTANT

The CurrentException macro is only valid from within a
newton_catch or cleanup block of an exception handler. ▲

DefineException 5

DefineException(excptClass, string);

excptClass The string name of the exception class. See the warning below for
special considerations.

string A “structured string” that becomes the string name of the exception.

The DefineException macro declares a new exception class using the name excptClass.
The exception name given by string is a structured string that defines the exception
name in a manner that allows for hierarchical exception handling.

An exception name can be structured by separating its component parts with the period
('.') character. Each part that follows a period adds specificity to the exception name.
You can then structure your exception handlers to handle increasingly specific
exceptions. For example, you could define three exception names:

evt.ex.myApp

evt.ex.myApp.str

evt.ex.myApp.str.null

You could then define three exception handlers: one to handle only the 'str.null'
exceptions in your application, another to handle any other 'str' exceptions in your
application, and another to handle any other exceptions in your application.

WARNING

Exception name strings cannot exceed 127 characters in length. Longer
exception names can cause a system crash. ▲

The following is an example of using the DefineException macro:

DefineException(exMyException, evt.ex.myException);

rethrow 5

rethrow();

The rethrow macro reraises the current exception to allow the next handler (the next
enclosing Try block) the opportunity to handle it. The data and destructor function
associated with the current exception (if any) are passed along to the next handler.

C H A P T E R 5

Newton Exceptions Reference

5-8 Exception Functions and Macros

Subexception 5

int Subexception(ExceptionName sub,
ExceptionName super);

sub The name of an exception. This string can contain a number of
semicolon-separated parts

super The name of an exception.

The Subexception function determines if the exception named by super is equivalent
to or a prefix of any of the parts of the exception named by sub.

The Subexception function returns 1 if super is a prefix of any part of sub and 0 if not.

Throw 5

void Throw(ExceptionName name,
void* data = NULL,
ExceptionDestructor destructor = NULL);

name A string that is the class name of the exception.

data A pointer to the data that you want associated with the exception.
This is an optional parameter

destructor The function that you want used to destroy the data associated with
the exception. This is an optional parameter.

The Throw function raises an exception. You can optionally associate data and a a data
destructor function with the exception.

If you pass heap data into the Throw function, you can provide a destructor function to
deallocate that data. The Throw function uses the destructor function to deallocate the
data after the exception has been handled.

The following are examples of using the Throw function:

Throw(exMyException);

Throw(exMyException, (void*) 1234);

Throw(exMyException, (void*) 1234, 0);

ThrowMsg 5

void ThrowMsg(char* msg);

msg A message string.

The ThrowMsg function raises an exception with the name exMsgException. The
exception uses the string msg as its data.

You can use the ThrowMsg function to generate debugging messages. For example,

C H A P T E R 5

Newton Exceptions Reference

Exception-Handling Macros 5-9

ThrowMsg("You are here");

Exception-Handling Macros 5

This section describes the macros that you can use to control exception handling in your
C++ programs.

To handle exceptions in your C++ applications, you need to catch the exception. You can
only catch exceptions within a Try block, which is also known as an exception handler.
An exception handler is a block of code that you begin with a call to the newton_try
macro and end with a call to the end_try macro.

You catch exceptions within an exception handler by calling the newton_catch macro.
Exception handlers can be nested within other exception handlers, which allows you to
handle a hierarchy of exception conditions.

Listing 5-1 shows an example of using the newton_try, newton_catch, and end_try
macros:

Listing 5-1 Using the newton_try, newton_catch, and end_try macros

newton_try

{

DoMySetup();

DoMyFcn();

}

newton_catch(exMyException);

{

printf("Exception raised: %s", CurrentException()->name);

}

end_try

In Listing 5-1, the newton_catch clause will handle any exceptions named
exMyException that are raised during the processing of the DoMySetup and DoMyFcn
functions. Any other exceptions will be handled by the next enclosing exception handler
(oftentimes the system software).

cleanup 5

cleanup

You can add a cleanup clause after any newton_catch clauses in your exception
handler. If no newton_catch clause handles the exceptions, the cleanup clause will
execute before the exception is passed onto the next handler.

C H A P T E R 5

Newton Exceptions Reference

5-10 Exception-Handling Macros

Note

The cleanup clause operates in exactly the same manner as does the
newton_catch_all clause, except that the cleanup clause implicitly
(automatically) rethrows the current exception. ▲

WARNING

You must not return or break out of a newton_cleanup code block.
Doing so will cause strange and possibly disastrous behavior in your
program. ▲

end_unwind 5

end_unwind

The end_unwind clause ends a block of protected code.

end_try 5

end_try

The end_try macro marks the end of a block of code within which exceptions can be
caught and handled.

An example of using the end_try macro is shown in Listing 5-1.

newton_catch 5

newton_catch(excptName)

excptName A string that is the class name of the exception. This is the same
string that is used in the call to the Throw function.

The newton_catch macro catches and handles the exception named by excptName. The
macro is followed by a block of code that handles the exception. Within that block of
code, you can reraise the exception by calling the rethrow macro, which is described in
the section “rethrow” on page 5-7.

An example of using the newton_catch macro is shown in Listing 5-1.

WARNING

You must not return or break out of a newton_catch code block.
Doing so will cause strange and possibly disastrous behavior in your
program. ▲

newton_catch_all 5

newton_catch_all

The newton_catch_all macro catches any exceptions that have not been caught by
any preceding newton_catch clauses. The newton_catch_all clause must follow any
newton_catch clauses.

Listing 5-2 shows an example of using the newton_catch_all macro.

C H A P T E R 5

Newton Exceptions Reference

Exception-Handling Macros 5-11

Listing 5-2 Using the newton_catch_all macro

newton_try

{

DoMySetup();

DoMyFcn();

}

newton_catch(exMyException);

{

printf("Exception raised: %s", CurrentException()->name);

}

newton_catch_all

{

exception_occurred = true;

}

end_try

WARNING

You must not return or break out of a newton_catch_all code
block. Doing so will cause strange and possibly disastrous behavior in
your program. ▲

newton_try 5

newton_try

The newton_try macro marks the beginning of a block of code within which exceptions
can be caught and handled.

An example of using the newton_try macro is shown in Listing 5-1.

WARNING

You must not return or break out of a newton_try code block.
Doing so will cause strange and possibly disastrous behavior in your
program. ▲

on_unwind 5

on_unwind

The on_unwind clause closes out a block of protected code. You can call the
unwind_failed macro from within this clause to determine if an exception occurred
during the processing of the protected code block.

WARNING

You must not return or break out of a on_unwind code block. Doing
so will cause strange and possibly disastrous behavior in your
program. ▲

C H A P T E R 5

Newton Exceptions Reference

5-12 Exception-Handling Macros

unwind_failed 5

unwind_failed()

You can call the unwind_failed macro from within the on_unwind clause of a
protected block of code to determine if an exception occurred during the execution of the
block of code. If an exception did occur, it will automatically be rethrown at the end of
the on_unwind clause.

unwind_protect 5

unwind_protect

You can use the unwind_protect construct to specify code in an exception handler that
must be run whether or not an exception occurs. The unwind_protect construct
consists of an unwind_protect clause, an on_unwind clause, and an end_unwind
macro.

Listing 5-3 shows an example of using the unwind_protect clause. Note that you can
use the unwind_protect construct within an exception handler, although you need not
do so.

Listing 5-3 Using the unwind_protect, on_unwind , and unwind_end macros

unwind_protect

{

OpenAFile();

DoSomethingWithFile();

}

on_unwind

{

CloseTheFile();

}

end_unwind

WARNING

You must not return or break out of a unwind_protect code block.
Doing so will cause strange and possibly disastrous behavior in your
program. ▲

C H A P T E R 5

Newton Exceptions Reference

Exception-Handling Macros 5-13

Summary of Exceptions Reference 5

Exception C++ Functions 5

Functions and Macros to Define and Throw Exceptions

void* CurrentException();

DefineException(excptClass, string);

rethrow();

int Subexception(ExceptionName sub, ExceptionName super);

void Throw(ExceptionName name, void* data = NULL,
ExceptionDestructor destructor = NULL);

void ThrowMsg(char* msg);

Exception-Handling Macros

cleanup

end_onwind

end_try

newton_catch(excptName)

newton_catch_all

newton_try

on_unwind

unwind_failed()

unwind_protect

C H A P T E R 5

Newton Exceptions Reference

5-14 Exception-Handling Macros

C H A P T E R 6

NewtonScript Interpreter Functions 6-1

NewtonScript Reference 6

This chapter describes the programming interface that you can use from your C++
programs to call into the NewtonScript interpreter. It also explains how to structure your
C++ functions to allow NewtonScript applications to call them.

NewtonScript Interpreter Functions 6

You can use the NewtonScript interpreter functions in your C++ programs to call
NewtonScript functions.

Some NewtonScript functions are implemented directly as C++ functions to improve
their performance. Those functions are described in Chapter 3, “Newton Object System
Reference.”

If you want to use a NewtonScript function in your C++ program, you should first
determine if a C++ implementation exists for the function. If so, use that function, as
documented in Chapter 3, “Newton Object System Reference.”. If a C++ version does not
exist, use the functions described in this chapter to call the NewtonScript function.

Note

The NewtonScript Interpreter functions use object references (Ref),
object reference parameters (RefArg) and symbols, all of which are
described in the section “The Newton Object System” beginning on
page 1-6 in Chapter 1, “C++ Toolkit Introduction.” ◆

Functions for Calling NewtonScript Functions From C++ 6
This section describes the NewtonScript Interpreter functions that you can call in your
C++ programs. These functions allow you to execute NewtonScript function objects
directly from C++.

Figure 6-0
Table 6-0
Listing 6-0

C H A P T E R 6

NewtonScript Reference

6-2 NewtonScript Interpreter Functions

Note

Each of these functions is overloaded, which means that they are
supplied in different variations that allow you to supply different
numbers of arguments to the functions. There is also a version of each
function that you can call with an argument array. ◆

NSCall 6

Ref NSCall(RefArg fcn);

Ref NSCall(RefArg fcn,
 RefArg arg0);

Ref NSCall(RefArg fcn,
RefArg arg0,
RefArg arg1);

Ref NSCall(RefArg fcn,
RefArg arg0,
RefArg arg1,
RefArg arg2);

Ref NSCall(RefArg fcn,
RefArg arg0,
RefArg arg1,
RefArg arg2,
RefArg arg3);

Ref NSCall(RefArg fcn,
RefArg arg0,
RefArg arg1,
RefArg arg2,
RefArg arg3,
RefArg arg4,

Ref NSCall(RefArg fcn,
RefArg arg0,
RefArg arg1,
RefArg arg2,
RefArg arg3,
RefArg arg4,

C H A P T E R 6

NewtonScript Reference

NewtonScript Interpreter Functions 6-3

RefArg arg5);

fcn The function object that you want to call.

arg0 The value of the first argument to supply as a parameter value to
the function you are calling.

arg1 The value of the second argument to supply as a parameter value to
the function you are calling.

arg2 The value of the third argument to supply as a parameter value to
the function you are calling.

arg3 The value of the fourth argument to supply as a parameter value to
the function you are calling.

arg4 The value of the fifth argument to supply as a parameter value to
the function you are calling.

arg5 The value of the sixth argument to supply as a parameter value to
the function you are calling.

The NSCall function calls the NewtonScript function named by fcn and passes it any
supplied parameter values. The provided variations of NSCall allow you to call
functions that require any number of parameter values from zero to six.

The following is an example of using the NSCall function to call a NewtonScript
function named MyFcn that requires two parameter values:

NSCall(MyFcn, x, y);

The C++ statement above has the same semantics as using the following NewtonScript
expression:

call MyFcn with (x, y);

The NSCall function returns an object reference to the returned value of the function
that you called. If the named function is not defined, NSCall throws an “is not defined
as a function” exception.

NSCallWithArgArray 6

Ref NSCallWithArgArray(RefArg fcn,
RefArg argArray);

fcn The function object that you want to call.

argArray A reference to an array that contains the function parameter values.

The NSCallWithArgArray function is a variant of the NSCall function that allows
you to provide an array of parameter values. You can use this form to call a
NewtonScript function with more than six arguments.

C H A P T E R 6

NewtonScript Reference

6-4 NewtonScript Interpreter Functions

NSCallGlobalFn 6

Ref NSCallGlobalFn(RefArg sym);

Ref NSCallGlobalFn(RefArg sym,
RefArg arg0);

Ref NSCallGlobalFn(RefArg sym,
RefArg arg0,
RefArg arg1);

Ref NSCallGlobalFn(RefArg sym,
RefArg arg0,
RefArg arg1,
RefArg arg2);

Ref NSCallGlobalFn(RefArg sym,
RefArg arg0,
RefArg arg1,
RefArg arg2,
RefArg arg3);

Ref NSCallGlobalFn(RefArg sym,
RefArg arg0,
RefArg arg1,
RefArg arg2,
RefArg arg3,
RefArg arg4);

Ref NSCallGlobalFn(RefArg sym,
RefArg arg0,
RefArg arg1,
RefArg arg2,
RefArg arg3,
RefArg arg4,
RefArg arg5);

C H A P T E R 6

NewtonScript Reference

NewtonScript Interpreter Functions 6-5

sym A symbol representing the name of the function that you want to
call.

arg0 The value of the first argument to supply as a parameter value to
the function you are calling.

arg1 The value of the second argument to supply as a parameter value to
the function you are calling.

arg2 The value of the third argument to supply as a parameter value to
the function you are calling.

arg3 The value of the fourth argument to supply as a parameter value to
the function you are calling.

arg4 The value of the fifth argument to supply as a parameter value to
the function you are calling.

arg5 The value of the sixth argument to supply as a parameter value to
the function you are calling.

The NSCallGlobalFn function calls the NewtonScript global function named by sym
and passes it any supplied parameter values. The provided variations of
NSCallGlobalFn allow you to call functions that require any number of parameter
values from zero to six.

The following is an example of using the NSCallGlobalFn function to call a
NewtonScript function named MyGlobalFcn that requires two parameter values:

NSCallGlobalFn(SYM(MyGlobalFcn), x, y);

The C++ statement above has the same semantics as using the following NewtonScript
expression:

MyGlobalFcn(x, y);

The NSCallGlobalFn function returns an object reference to the returned value of the
function that you called. If the named function is not defined as a global function,
NSCallGlobalFn throws an “is not defined as a function” exception.

NSCallGlobalFnWithArgArray 6

Ref NSCallGlobalFnWithArgArray(RefArg sym,
RefArg argArray);

sym A symbol representing the name of the function that you want to
call.

argArray A reference to an array that contains the function parameter values.

The NSCallGlobalFnWithArgArray function is a variant of the NSCallGlobalFn
function that allows you to provide an array of parameter values. You can use this form
to call a NewtonScript function with more than six arguments.

C H A P T E R 6

NewtonScript Reference

6-6 NewtonScript Interpreter Functions

NSSend 6

Ref NSSend(RefArg receiver,
RefArg sym);

Ref NSSend(RefArg receiver,
RefArg sym,
RefArg arg0);

Ref NSSend(RefArg receiver,
RefArg sym,
RefArg arg0,
RefArg arg1);

Ref NSSend(RefArg receiver,
RefArg sym,
RefArg arg0,
RefArg arg1,
RefArg arg2);

Ref NSSend(RefArg receiver,
RefArg sym,
RefArg arg0,
RefArg arg1,
RefArg arg2,
RefArg arg3);

Ref NSSend(RefArg receiver,
RefArg sym,
RefArg arg0,
RefArg arg1,
RefArg arg2,
RefArg arg3,
RefArg arg4);

Ref NSSend(RefArg receiver,
RefArg sym,
RefArg arg0,
RefArg arg1,
RefArg arg2,
RefArg arg3,
RefArg arg4,
RefArg arg5);

C H A P T E R 6

NewtonScript Reference

NewtonScript Interpreter Functions 6-7

receiver A symbol representing the frame to which the function message is
sent (the message receiver).

sym A symbol representing the name of the function that you want to
call.

arg0 The value of the first argument to supply as a parameter value to
the function you are calling.

arg1 The value of the second argument to supply as a parameter value to
the function you are calling.

arg2 The value of the third argument to supply as a parameter value to
the function you are calling.

arg3 The value of the fourth argument to supply as a parameter value to
the function you are calling.

arg4 The value of the fifth argument to supply as a parameter value to
the function you are calling.

arg5 The value of the sixth argument to supply as a parameter value to
the function you are calling.

The NSSend function sends the message named by sym to receiver with any supplied
parameter values.

The provided variations of NSSend allow you to call methods that require any number
of parameter values from zero to six.

The following is an example of using the NSSend function to call a NewtonScript
method named MySMthd that requires two parameter values:

NSSend(x, SYM(MySMthd), y, z);

The C++ statement above has the same semantics as using the following NewtonScript
expression:

x:MySMthd(y, z);

The NSSend function returns an object reference to the returned value of the method that
was invoked. If the named method is not defined in the receiver frame, the parent chain,
or the proto chain, NSSend throws an “undefined method” exception.

NSSendWithArgArray 6

Ref NSSendWithArgArray(RefArg receiver,
RefArg sym,

C H A P T E R 6

NewtonScript Reference

6-8 NewtonScript Interpreter Functions

RefArg argArray);

receiver A symbol representing the frame to which the function message is
sent (the message receiver).

sym A symbol representing the name of the function that you want to
call.

argArray A reference to an array that contains the function parameter values.

The NSSendWithArgArray function is a variant of the NSSend function that allows
you to provide an array of parameter values. You can use this form to call a
NewtonScript function with more than six arguments.

NSSendIfDefined 6

Ref NSSendIfDefined(RefArg receiver,
 RefArg sym);

Ref NSSendIfDefined(RefArg receiver,
 RefArg sym,
 RefArg arg0);

Ref NSSendIfDefined(RefArg receiver,
 RefArg sym,
 RefArg arg0,
 RefArg arg1);

Ref NSSendIfDefined(RefArg receiver,
 RefArg sym,
 RefArg arg0,
 RefArg arg1,
 RefArg arg2);

Ref NSSendIfDefined(RefArg receiver,
 RefArg sym,
 RefArg arg0,
 RefArg arg1,
 RefArg arg2,
 RefArg arg3);

Ref NSSendIfDefined(RefArg receiver,
 RefArg sym,
 RefArg arg0,
 RefArg arg1,
 RefArg arg2,
 RefArg arg3,

C H A P T E R 6

NewtonScript Reference

NewtonScript Interpreter Functions 6-9

 RefArg arg4);

Ref NSSendIfDefined(RefArg receiver,
 RefArg sym,
 RefArg arg0,
 RefArg arg1,
 RefArg arg2,
 RefArg arg3,
 RefArg arg4,

 RefArg arg5);

receiver A symbol representing the frame to which the function message is
sent (the message receiver).

sym A symbol representing the name of the function that you want to
call.

arg0 The value of the first argument to supply as a parameter value to
the function you are calling.

arg1 The value of the second argument to supply as a parameter value to
the function you are calling.

arg2 The value of the third argument to supply as a parameter value to
the function you are calling.

arg3 The value of the fourth argument to supply as a parameter value to
the function you are calling.

arg4 The value of the fifth argument to supply as a parameter value to
the function you are calling.

arg5 The value of the sixth argument to supply as a parameter value to
the function you are calling.

The NSSendIfDefined function sends the message named by sym to receiver, if and
only if the method is defined.

If the method is defined, it is called with any supplied parameter values. The provided
variations of NSSendIfDefined allow you to call methods that require any number of
parameter values from zero to six.

The following is an example of using the NSSendIfDefined function to call a
NewtonScript method named MyIfMthd that requires two parameter values:

NSSendIfDefined(x, SYM(MyIfMthd), y, z);

The C++ statement above has the same semantics as using the following NewtonScript
expression:

C H A P T E R 6

NewtonScript Reference

6-10 NewtonScript Interpreter Functions

x:?MyIfMthd(y, z);

The NSSendIfDefined function returns an object reference to the returned value of the
method that was invoked. If the method is not defined, NSSendIfDefined returns the
constant NILREF.

NSSendIfDefinedWithArgArray 6

Ref NSSendIfDefinedWithArgArray(RefArg receiver,
RefArg sym,
RefArg argArray);

receiver A symbol representing the frame to which the function message is
sent (the message receiver).

sym A symbol representing the name of the function that you want to
call.

argArray A reference to an array that contains the function parameter values.

The NSSendIfDefinedWithArgArray function is a variant of the NSSendIfDefined
function that allows you to provide an array of parameter values. You can use this form
to call a NewtonScript function with more than six arguments.

NSSendProto 6

Ref NSSendProto(RefArg receiver,
RefArg sym);

Ref NSSendProto(RefArg receiver,
RefArg sym,
RefArg arg0);

Ref NSSendProto(RefArg receiver,
RefArg sym,
RefArg arg0,
RefArg arg1);

Ref NSSendProto(RefArg receiver,
RefArg sym,
RefArg arg0,
RefArg arg1,
RefArg arg2);

Ref NSSendProto(RefArg receiver,
RefArg sym,
RefArg arg0,
RefArg arg1,
RefArg arg2,

C H A P T E R 6

NewtonScript Reference

NewtonScript Interpreter Functions 6-11

RefArg arg3);

Ref NSSendProto(RefArg receiver,
RefArg sym,
RefArg arg0,
RefArg arg1,
RefArg arg2,
RefArg arg3,
RefArg arg4);

Ref NSSendProto(RefArg receiver,
RefArg sym,
RefArg arg0,
RefArg arg1,
RefArg arg2,
RefArg arg3,
RefArg arg4,

 RefArg arg5);

receiver A symbol representing the frame to which the function message is
sent (the message receiver).

sym A symbol representing the name of the function that you want to
call.

arg0 The value of the first argument to supply as a parameter value to
the function you are calling.

arg1 The value of the second argument to supply as a parameter value to
the function you are calling.

arg2 The value of the third argument to supply as a parameter value to
the function you are calling.

arg3 The value of the fourth argument to supply as a parameter value to
the function you are calling.

arg4 The value of the fifth argument to supply as a parameter value to
the function you are calling.

arg5 The value of the sixth argument to supply as a parameter value to
the function you are calling.

The NSSendProto function sends the message named by sym to receiver and passes it
any supplied parameter values. The NSSendProto function only looks in the proto
chain for the method.

If the method is defined, it is called with any supplied parameter values. The provided
variations of NSSendProto allow you to call methods that require any number of
parameter values from zero to six.

C H A P T E R 6

NewtonScript Reference

6-12 NewtonScript Interpreter Functions

The following is an example of using the NSSendProto function to call a NewtonScript
method named MyProtoMthd that requires two parameter values:

NSSendProto(x, SYM(MyProtoMthd), y, z);

The C++ statement above has the same semantics as using the following NewtonScript
expression:

if x.MyProtoMthd exists then x:MyProtoMthd(y, z)

else Throw(<undef method>);

The NSSendProto function returns an object reference to the returned value of the
method that was invoked. If the named method is not defined, NSSendProto throws an
“undefined function” exception.

NSSendProtoWithArgArray 6

Ref NSSendProtoWithArgArray(RefArg receiver,
RefArg sym,
RefArg argArray);

receiver A symbol representing the frame to which the function message is
sent (the message receiver).

sym A symbol representing the name of the function that you want to
call.

argArray A reference to an array that contains the function parameter values.

The NSSendProtoWithArgArray function is a variant of the NSSendProto function
that allows you to provide an array of parameter values. You can use this form to call a
NewtonScript function with more than six arguments.

NSSendProtoIfDefined 6

Ref NSSendProtoIfDefined(RefArg receiver,
RefArg sym);

Ref NSSendProtoIfDefined(RefArg receiver,
RefArg sym,
RefArg arg0);

Ref NSSendProtoIfDefined(RefArg receiver,
RefArg sym,
RefArg arg0,
RefArg arg1);

Ref NSSendProtoIfDefined(RefArg receiver,
RefArg sym,
RefArg arg0,

C H A P T E R 6

NewtonScript Reference

NewtonScript Interpreter Functions 6-13

RefArg arg1,
RefArg arg2);

Ref NSSendProtoIfDefined(RefArg receiver,
RefArg sym,
RefArg arg0,
RefArg arg1,
RefArg arg2,
RefArg arg3);

Ref NSSendProtoIfDefined(RefArg receiver,
RefArg sym,
RefArg arg0,
RefArg arg1,
RefArg arg2,
RefArg arg3,
RefArg arg4);

Ref NSSendProtoIfDefined(RefArg receiver,
RefArg sym,
RefArg arg0,
RefArg arg1,
RefArg arg2,
RefArg arg3,
RefArg arg4,

 RefArg arg5);

receiver A symbol representing the frame to which the function message is
sent (the message receiver).

sym A symbol representing the name of the function that you want to
call.

arg0 The value of the first argument to supply as a parameter value to
the function you are calling.

arg1 The value of the second argument to supply as a parameter value to
the function you are calling.

arg2 The value of the third argument to supply as a parameter value to
the function you are calling.

arg3 The value of the fourth argument to supply as a parameter value to
the function you are calling.

arg4 The value of the fifth argument to supply as a parameter value to
the function you are calling.

arg5 The value of the sixth argument to supply as a parameter value to
the function you are calling.

C H A P T E R 6

NewtonScript Reference

6-14 NewtonScript Interpreter Functions

The NSSendProtoIfDefined function sends the message named by sym to receiver, if
and only if the method is defined. The NSSendProtoIfDefined function only looks in
the proto chain for the method.

If the method is defined, it is called with any supplied parameter values. The provided
variations of NSSendProtoIfDefined allow you to call methods that require any
number of parameter values from zero to six.

The following is an example of using the NSSendProtoIfDefined function to call a
NewtonScript method named MyProtoIfMthd that requires two parameter values:

NSSendProtoIfDefined(x, SYM(MyProtoIfMthd), y, z);

The C++ statement above has the same semantics as using the following NewtonScript
expression:

if x.MyProtoIfMthd exists then x:MyProtoIfMthd(y, z)

else nil;

The NSSendProtoIfDefined function returns an object reference to the returned value
of the method that was invoked. If the method is not defined, NSSendProtoIfDefined
returns the constant NILREF.

NSSendProtoIfDefinedWithArgArray 6

Ref NSSendProtoIfDefinedWithArgArray(RefArg receiver,
RefArg sym,
RefArg argArray);

receiver A symbol representing the frame to which the function message is
sent (the message receiver).

sym A symbol representing the name of the function that you want to
call.

argArray A reference to an array that contains the function parameter values.

The NSSendProtoIfDefinedWithArgArray function is a variant of the
NSSendProtoIfDefined function that allows you to provide an array of parameter
values. You can use this form to call a NewtonScript function with more than six
arguments.

Functions for Accessing NewtonScript Slot Values from C++ 6
This section describes several functions that you can use from your C++ programs to set
the value or retrieve the value of NewtonScript variables.

GetVariable 6

Ref GetVariable(RefArg frame,
RefArg varName,

C H A P T E R 6

NewtonScript Reference

Calling C++ Functions from NewtonScript 6-15

long* found = 0);

frame A reference to the frame in which to start searching for the slot.

varName A symbol representing the name of the slot that you want to find.

found A Boolean value. On exit, this is true if the variable was found and
false if not.

The GetVariable function searches for the slot with name varName and returns its
value. The named slot is searched for using the combined prototype and parent
inheritance lookup, as described in The NewtonScript Programmer’s Language.

If the variable was not found, the function returns NILREF as its result.

SetVariable 6

void SetVariable(RefArg contextFrame,
RefArg varName,
RefArg value);

contextFrame A reference to the frame in which to start searching for the slot.

varName A symbol representing the name of the slot that you want to find.

value A reference to the new value that you want assigned to the slot.

The SetVariable function searches for the slot with name varName and modifies the
value of that slot to value. The named slot is searched for using the combined prototype
and parent inheritance lookup, as described in The NewtonScript Programmer’s Language.

If the SetVariable function does not find a slot with name varName, it adds a new slot
to contextFrame, using varName and value for the new slot.

Calling C++ Functions from NewtonScript 6

This section explains how you can call C++ functions from a NewtonScript application.
Each NewtonScript-callable C++ function must use the following format:

Ref MyCplusFunction(RefArg receiver,
 RefArg arg0,
 RefArg arg1,
 ...

 RefArg argn);

receiver A reference to the receiver frame for the C++ function.

arg0 The first argument to your function.

arg1 The second argument to your function.

...

argn The final argument to your function.

C H A P T E R 6

NewtonScript Reference

6-16 Calling C++ Functions from NewtonScript

Assuming that the above function is declared in a C++ module named “mymodule,” you
would use the following NewtonScript expression to call the function (with two
arguments):

call myModule.MyCplusFunction with (arg1, arg2);

Note

The NewtonScript caller does not supply a value for the receiver
parameter. The Newton system software manages this automatically. ◆

Your C++ function must always include the receiver as its first parameter. You can define
your function with anywhere from zero to five additional parameters. The Newton
system software automatically fills this value in when a NewtonScript application calls
your C++ function.

Your C++ function always returns a reference as its return value.

C H A P T E R 6

NewtonScript Reference

Calling C++ Functions from NewtonScript 6-17

Summary of NewtonScript Interpreter Functions 6

Functions for Calling NewtonScript Functions From C++ 6

NSCall

Ref NSCall(RefArg fcn);

Ref NSCall(RefArg fcn, RefArg arg0);

Ref NSCall(RefArg fcn, RefArg arg0, RefArg arg1);

Ref NSCall(RefArg fcn, RefArg arg0, RefArg arg1, RefArg arg2);

Ref NSCall(RefArg fcn, RefArg arg0, RefArg arg1, RefArg arg2,
RefArg arg3);

Ref NSCall(RefArg fcn, RefArg arg0, RefArg arg1, RefArg arg2,
RefArg arg3, RefArg arg4);

Ref NSCall(RefArg fcn, RefArg arg0, RefArg arg1, RefArg arg2,
RefArg arg3, RefArg arg4, RefArg arg5);

Ref NSCallWithArgArray(RefArg fcn, RefArg argArray);

NSCallGlobalFn

Ref NSCallGlobalFn(RefArg sym);

Ref NSCallGlobalFn(RefArg sym, RefArg arg0);

Ref NSCallGlobalFn(RefArg sym, RefArg arg0, RefArg arg1);

Ref NSCallGlobalFn(RefArg sym, RefArg arg0, RefArg arg1, RefArg arg2);

Ref NSCallGlobalFn(RefArg sym, RefArg arg0, RefArg arg1, RefArg arg2,
RefArg arg3);

Ref NSCallGlobalFn(RefArg sym, RefArg arg0, RefArg arg1, RefArg arg2,
RefArg arg3, RefArg arg4);

Ref NSCallGlobalFn(RefArg sym, RefArg arg0, RefArg arg1, RefArg arg2,
RefArg arg3, RefArg arg4, RefArg arg5);

Ref NSCallGlobalFnWithArgArray(RefArg sym, RefArg argArray);

NSSend

Ref NSSend(RefArg receiver, RefArg sym);

Ref NSSend(RefArg receiver, RefArg sym, RefArg arg0);

Ref NSSend(RefArg receiver, RefArg sym, RefArg arg0, RefArg arg1);

C H A P T E R 6

NewtonScript Reference

6-18 Calling C++ Functions from NewtonScript

Ref NSSend(RefArg receiver, RefArg sym, RefArg arg0, RefArg arg1,
RefArg arg2);

Ref NSSend(RefArg receiver, RefArg sym, RefArg arg0, RefArg arg1,
RefArg arg2, RefArg arg3);

Ref NSSend(RefArg receiver, RefArg sym, RefArg arg0, RefArg arg1,
RefArg arg2, RefArg arg3, RefArg arg4);

Ref NSSend(RefArg receiver, RefArg sym, RefArg arg0, RefArg arg1,
RefArg arg2, RefArg arg3, RefArg arg4, RefArg arg5);

Ref NSSendWithArgArray(RefArg receiver, RefArg sym, RefArg argArray);

NSSendIfDefined

Ref NSSendIfDefined(RefArg receiver, RefArg sym);

Ref NSSendIfDefined(RefArg receiver, RefArg sym, RefArg arg0);

Ref NSSendIfDefined(RefArg receiver, RefArg sym, RefArg arg0,
RefArg arg1);

Ref NSSendIfDefined(RefArg receiver, RefArg sym, RefArg arg0,
RefArg arg1, RefArg arg2);

Ref NSSendIfDefined(RefArg receiver, RefArg sym, RefArg arg0,
RefArg arg1, RefArg arg2, RefArg arg3);

Ref NSSendIfDefined(RefArg receiver, RefArg sym, RefArg arg0,
RefArg arg1, RefArg arg2, RefArg arg3, RefArg arg4);

Ref NSSendIfDefined(RefArg receiver, RefArg sym, RefArg arg0,
RefArg arg1, RefArg arg2, RefArg arg3, RefArg arg4, RefArg arg5);

Ref NSSendIfDefinedWithArgArray(RefArg receiver, RefArg sym,
RefArg argArray);

NSSendProto

Ref NSSendProto(RefArg receiver, RefArg sym);

Ref NSSendProto(RefArg receiver, RefArg sym, RefArg arg0);

Ref NSSendProto(RefArg receiver, RefArg sym, RefArg arg0, RefArg arg1);

Ref NSSendProto(RefArg receiver, RefArg sym, RefArg arg0, RefArg arg1,
RefArg arg2);

Ref NSSendProto(RefArg receiver, RefArg sym, RefArg arg0, RefArg arg1,
RefArg arg2, RefArg arg3);

Ref NSSendProto(RefArg receiver, RefArg sym, RefArg arg0, RefArg arg1,
RefArg arg2, RefArg arg3, RefArg arg4);

Ref NSSendProto(RefArg receiver, RefArg sym, RefArg arg0, RefArg arg1,
RefArg arg2, RefArg arg3, RefArg arg4, RefArg arg5);

C H A P T E R 6

NewtonScript Reference

Calling C++ Functions from NewtonScript 6-19

Ref NSSendProtoWithArgArray(RefArg receiver, RefArg sym,
RefArg argArray);

NSSendProtoIfDefined

Ref NSSendProtoIfDefined(RefArg receiver, RefArg sym);

Ref NSSendProtoIfDefined(RefArg receiver, RefArg sym, RefArg arg0);

Ref NSSendProtoIfDefined(RefArg receiver, RefArg sym, RefArg arg0,
RefArg arg1);

Ref NSSendProtoIfDefined(RefArg receiver, RefArg sym, RefArg arg0,
RefArg arg1, RefArg arg2);

Ref NSSendProtoIfDefined(RefArg receiver, RefArg sym, RefArg arg0,
RefArg arg1, RefArg arg2, RefArg arg3);

Ref NSSendProtoIfDefined(RefArg receiver, RefArg sym, RefArg arg0,
RefArg arg1, RefArg arg2, RefArg arg3, RefArg arg4);

Ref NSSendProtoIfDefined(RefArg receiver, RefArg sym, RefArg arg0,
RefArg arg1, RefArg arg2, RefArg arg3, RefArg arg4, RefArg arg5);

Ref NSSendProtoIfDefinedWithArgArray(RefArg receiver, RefArg sym,
RefArg argArray);

Functions for Accessing NewtonScript Slot Values from C++ 6
Ref GetVariable(RefArg frame, RefArg varName, long* found = 0);
void SetVariable(RefArg contextFrame, RefArg varName, RefArg value);

C H A P T E R 6

NewtonScript Reference

6-20 Calling C++ Functions from NewtonScript

C H A P T E R 7

.Unicode Constants and Data Types 7-1

Newton Unicode Reference 7

This chapter describes the constants, data types, and classes that you use to manipulate
Unicode strings.

.Unicode Constants and Data Types 7

This section describes the constants and data types that you use with the Unicode
functions that are described in this chapter.

The UniChar Type 7
The Newton System Software defines the UniChar type for Unicode characters.

typedef unsigned short UniChar;

Encoding Type Constants 7
You use the encoding type constants to specify the kind of encoding to use for the
various Unicode conversion functions.

#define kMacRomanEncoding 1

#define kASCIIEncoding 2

#define kWizardEncoding 4

#define kShiftJISEncoding 5

#define kMacKanjiEncoding 6

Figure 7-0
Table 7-0
Listing 7-0

C H A P T E R 7

Newton Unicode Reference

7-2 Unicode Functions

Constant Descriptions

kMacRomanEncoding Macintosh Roman character encoding.
kASCIIEncoding 7-bit ASCII character encoding.
kWizardEncoding English Wizards character encoding.
kShiftJISEncoding Japanese character encoding.
kMacKanjiEncoding Macintosh KanjiTalk 7 character encoding.

Note

The system software automatically sets the value of the constant
kDefaultEncoding to the character set of the current desktop
platform.

Unicode Character and String Constants 7
The Unicode functions use these constants to indicate values in strings.

const UChar kNoTranslationChar 1

const UChar kEndOfCharString 2

const UniChar kEndOfUnicodeString 2

Constant Descriptions

kNoTranslationChar Stored in the string destination string to indicate that there
was no translation for the character in the source string.

kEndOfCharString The string termination character for a string resulting from the
conversion of a Unicode string.

kEndOfUnicodeStringThe string termination character for a string resulting from the
conversion of a string to a Unicode string.

Unicode Functions 7

This section describes the functions that you can use with Unicode strings.

ConvertFromUnicode 7

void ConvertFromUnicode(const UniChar* source,
void* dest,
FastInt destEncoding = kDefaultEncoding,

C H A P T E R 7

Newton Unicode Reference

Unicode Functions 7-3

long length = 0x7FFFFFFF);

source The Unicode character string to be converted.

dest A pointer to the destination string.

destEncoding The encoding method to use for the conversion. Use one of the
constants shown in the section “Encoding Type Constants” on
page 7-1.

length The maximum number of characters to convert.

The ConvertFromUnicode function converts the characters in the source string from
Unicode character encoding into another encoding. The output of the conversion is
written to the destination string, which is pointed to by dest.

The destination string is always terminated by the kEndOfCharString character
constant.

The ConvertFromUnicode function converts up to length characters or until the string
termination character is encountered in the source string. You must ensure that adequate
memory has been allocated for dest to contain all of the converted characters.

ConvertToUnicode 7

void ConvertToUnicode(const void* source,
UniChar* dest,
FastInt srcEncoding = kDefaultEncoding,
long length = 0x7FFFFFFF);

source The character string to be converted.

dest A pointer to the destination (Unicode) string.

destEncoding The encoding method to use for the conversion. Use one of the
constants shown in the section “Encoding Type Constants” on
page 7-1.

length The maximum number of characters to convert.

The ConvertToUnicode function converts the characters in the source string into
Unicode characters. The output of the conversion (the Unicode characters) is written to
the destination string, which is pointed to by dest.

The destination string is always terminated by the kEndOfUnicodeString character
constant.

The ConvertToUnicode function converts up to length characters or until the string
termination character is encountered in the source string. You must ensure that adequate
memory has been allocated for dest to contain all of the converted characters.

ConvertUnicodeChar 7

long ConvertUnicodeChar(UniChar* c,
Ptr b,

C H A P T E R 7

Newton Unicode Reference

7-4 Unicode Functions

FastInt conversionType);

c A pointer to a Unicode character.

b A pointer to the destination string.

conversionType The encoding method to use for the conversion. Use one of the
constants shown in the section “Encoding Type Constants” on
page 7-1.

The ConvertUnicodeChar function converts the Unicode character pointed to by c
and stores the output of the conversion into the buffer b. The ConvertUnicodeChar
function is a convenience function that makes the following call:

ConvertFromUnicode(c, b, conversionType, 1);

The ConvertUnicodeChar function returns the length, in bytes, of the character (c)
that was converted.

ConvertUnicodeCharacters 7

void ConvertUnicodeCharacters(UniChar* array,
Ptr buffer,
FastInt conversionType,
long len);

array The source array of characters.

buffer The destination buffer.

conversionType The encoding method to use for the conversion. Use one of the
constants shown in the section “Encoding Type Constants” on
page 7-1.

len The number of characters to convert.

The ConvertUnicodeCharacters function converts the characters in the source array
from Unicode character encoding into another encoding. The output of the conversion is
written to the destination buffer, which is pointed to by buffer.

The ConvertUnicodeCharacters function converts len characters. The
ConvertUnicodeCharacters function does apply any special handling to string
terminators, which are treated just like any other character.

You must ensure that array contains at least the specified number (len) of characters. You
must also ensure that adequate memory has been allocated for buffer to contain all of the
converted characters.

HasChars 7

Boolean HasChars(UniChar* c);

c A pointer to a Unicode string.

C H A P T E R 7

Newton Unicode Reference

Unicode Functions 7-5

The HasChars function examines the string referenced by c to determine if it contains
any alphabetic characters. An alphabetic character is any lowercase character between
'a'and 'z', inclusively, or any uppercase character between 'A' and 'Z', inclusively.

If the string referenced by c contains at least one alphabetic character, HasChars returns
true; otherwise, HasChars returns false.

HasDigits 7

Boolean HasDigits(UniChar* c);

c A pointer to a Unicode string.

The HasDigits function examines the string referenced by c to determine if it contains
any numeric characters. A numeric character is any character between '0'and '9',
inclusively.

If the string referenced by c contains at least one numeric character, HasDigits returns
true; otherwise, HasDigits returns false.

HasSpaces 7

Boolean HasSpaces(UniChar* c);

c A pointer to a Unicode string.

The HasSpaces function examines the string referenced by c to determine if it contains
any space (' ') characters.

If the string referenced by c contains at least one space character, HasSpaces returns
true; otherwise, HasSpaces returns false.

IsPunctSymbol 7

Boolean IsPunctSymbol(UniChar *word,
FastInt index);

word A pointer to a Unicode string.

index The index in word of the character to be tested.

The IsPunctSymbol function examines the character specified by word[index] to
determine if it is a punctuation symbol. The IsPunctSymbol function returns true if
the specified character is a punctuation symbol and false if not.

The character is not considered a punctuation symbol if it is preceded by 's’' or 'S’'.

The IsPunctSymbol function considers the characters shown in Table 7-1 on page 7-6
to be punctuation symbols.

StripPunctSymbols 7

void StripPunctSymbols(UniChar* word);

word A pointer to a Unicode string.

C H A P T E R 7

Newton Unicode Reference

7-6 Unicode Functions

The StripPunctSymbols function strips any leading and trailing punctuation symbols
from the string word. Any of the characters shown in Table 7-1 are considered to be
punctuation symbols.

WARNING

The StripPunctSymbols function modifies the string word. ▲

Umemset 7

void* Umemset(void* str,
 UniChar ch,

ULong numChars);

str A pointer to a buffer in memory.

ch A character.

numChars The number of characters to set.

The Umemset function initializes the block of memory pointed to by str. It copies the
value of the character ch into each of the first numChars characters of str.

The Umemset function returns a pointer to str.

Table 7-1 Unicode punctuation symbols

Character Character Name Hexadecimal Value

! exclamation mark 0x21L

" quotation mark 0x22L

' single quote 0x27L

(left parenthesis 0x28L

) right parenthesis 0x29L

, comma 0x2CL

. period 0x2EL

: colon 0x3AL

; semicolon 0x3BL

? question mark 0x3FL

“ left double quotation 0x2018L

” right double quotation 0x2019L

‘ left single quote 0x201CL

’ right single quote 0x201DL

C H A P T E R 7

Newton Unicode Reference

Unicode Functions 7-7

Ustrcat 7

UniChar* Ustrcat(UniChar* destStr,
const UniChar* sourceStr);

destStr TheUnicode string on which to concatenate characters.

sourceStr The Unicode string to be copied.

The Ustrcat function concatenates the Unicode string sourceStr onto the end of the
Unicode string destStr. This is done by copying each character of sourceStr to the end of
the destStr. You must ensure that adequate memory has been allocated for destStr to
contain the additional characters from sourceStr.

Ustrchr 7

UniChar* Ustrchr(const UniChar *str,
UniChar ch);

str A pointer to a Unicode string.

ch A character.

The Ustrchr function finds the first occurrence of the character ch in the string str and
returns a pointer to that character. If the character it not found in the string, Ustrchr
returns 0.

Ustrcmp 7

FastInt Ustrcmp(const UniChar* str1,
const UniChar* str2);

str1 A pointer to a Unicode string.

str2 A pointer to a Unicode string.

The Ustrcmp function compares two strings according to the Unicode collating
sequence.

The Ustrcmp function returns 0 if the two strings are equal.

The Ustrcmp function returns a negative number if str1 is less than str2.

The Ustrcmp function returns a positive number if str1 is greater than str2.

Ustrcpy 7

UniChar* Ustrcpy(UniChar* destStr,
const UniChar* sourceStr);

destStr The Unicode string into which to copy. On exit, this is the string
copy.

sourceStr The Unicode string to be copied.

C H A P T E R 7

Newton Unicode Reference

7-8 Unicode Functions

The Ustrcpy function copies the Unicode string sourceStr to destStr. You must ensure
that adequate memory has been allocated for destStr to hold all of the characters in
sourceStr.

Ustrlen 7

ULong Ustrlen(const UniChar* str);

str A Unicode string.

The Ustrlen function returns the length of the Unicode string str.

Ustrncat 7

UniChar* Ustrncat(UniChar* destStr,
const UniChar* sourceStr,
ULong n);

destStr The Unicode string on which to concatenate characters.

sourceStr The Unicode string to be copied.

n The number of characters to copy.

The Ustrncat function concatenates n characters of the Unicode string sourceStr onto
the end of the Unicode string destStr. This is done by copying each character of sourceStr
to the end of the destStr. You must ensure that adequate memory has been allocated for
destStr to contain the additional characters from sourceStr. The Ustrncat function stops
copying (concatenating) if it encounters the string termination character in sourceStr.

Ustrncpy 7

UniChar* Ustrncpy(UniChar* destStr,
const UniChar* sourceStr,
ULong n);

destStr The Unicode string into which to copy. On exit, this is the string
copy.

sourceStr The Unicode string to be copied.

n The number of characters to copy.

The Ustrncpy function copies n characters of the Unicode string sourceStr to destStr. You
must be certain that adequate memory has been allocated for destStr to hold n characters.
The Ustrncpy function stops copying if it encounters the string termination character in
sourceStr.

The Ustrncpy function always writes a string termination character at the end of destStr.

C H A P T E R 7

Newton Unicode Reference

Unicode Functions 7-9

Summary of Unicode Reference 7

Unicode Data Types

typedef unsigned short UniChar;

Encoding Type Constants

#define kMacRomanEncoding 1

#define kASCIIEncoding 2

#define kWizardEncoding 4

#define kShiftJISEncoding 5

#define kMacKanjiEncoding 6

Unicode Character and String Constants

const UChar kNoTranslationChar 1

const UChar kEndOfCharString 2

const UniChar kEndOfUnicodeString 2

Unicode Functions

void ConvertFromUnicode(const UniChar* source,void* dest,
FastInt destEncoding = kDefaultEncoding,
long length = 0x7FFFFFFF);

void ConvertToUnicode(const UniChar* source, void* dest,
FastInt srcEncoding = kDefaultEncoding,
long length = 0x7FFFFFFF);

long ConvertUnicodeChar(UniChar* c,
Ptr b,
FastInt conversionType);

void ConvertUnicodeCharacters(
UniChar* array,
Ptr buffer,
FastInt conversionType,
long len);

Boolean HasChars(UniChar* c);

Boolean HasDigits(UniChar* c);

Boolean HasSpaces(UniChar* c);

C H A P T E R 7

Newton Unicode Reference

7-10 Unicode Functions

Boolean IsPunctSymbol(UniChar* word, FastInt index);

void StripPunctSymbols(UniChar* word);

void* Umemset(void* str, UniChar ch, ULong numChars);

UniChar* Ustrcat(UniChar* destStr, const UniChar* sourceStr);

UniChar* Ustrchr(const UniChar* str, UniChar ch);

FastInt Ustrcmp(const UniChar* str1, const UniChar* str2);

UniChar* Ustrcpy(UniChar* destStr, const UniChar* sourceStr);

ULong Ustrlen(const UniChar* str);

UniChar* Ustrncat(UniChar* destStr, const UniChar* sourceStr,
ULong n);

UniChar* Ustrncpy(UniChar* destStr, const UniChar* sourceStr,
ULong n);

C H A P T E R 8

C Library Constants and Data Types 8-1

Newton C Library Reference 8

This chapter describes the constants, data types, and functions from the C Library that
you can use with your Newton programs.

IMPORTANT

With a few exceptions, all of the functions described in this chapter are
part of the C Library that is supplied with most C and C++ compilers.

The description for many of these functions states that “this function is
part of the standard ANSI-C library.” This means that you need to read
about the function in the C library documentation that accompanied
your compiler.

The description for some of these functions states that “the Newton
implementation of this function is described in the Utility Functions
chapter of Newton Programmer’s Guide”. This means that you need to
read about the function in the Newton Programmer’s Guide.

Finally, a few of the functions are only found in the Newton C++ Toolkit.
These functions—asctime_newton, ctime_newton, and
localtime_newton—are variations of their analogs in the C library
and are described in this chapter. ▲

C Library Constants and Data Types 8

This section describes the data types that you use with the Newton C Library functions.

C Library Constants 8
This section describes the constants that you can use with the C Library functions.

Figure 8-0
Table 8-0
Listing 8-0

C H A P T E R 8

Newton C Library Reference

8-2 C Library Constants and Data Types

The NULL Pointer 8

The NULL pointer is used as the value of a pointer that does not point to anything.

#define NULL 0

The HUGE_VAL Constant 8

The HUGE_VAL constant is used to approximate infinity. This value is returned by several
of the math functions when certain conditions exist.

#define HUGE_VAL _inf();

The Maximum Random Number Value 8

The maximum random number value constant, RAND_MAX, defines the largest number
that the rand function can return.

#define RAND_MAX 0x7fffffff

Standard Library Types 8
This section describes the data types that you use with the standard C Library functions.

The Size Type 8

You use the size type, of type size_t, to define the sizes of objects used in various of the
C Library functions.

typedef unsigned int size_t;

The Wide Char Type 8

You use the wide character type, of type wchar_t, for characters that require more than
one byte.

typedef int wchar_t;

The Division Result Type 8

You use the division result type, of type div_t, to hold the results of the div function.

typedef struct div_t {

int quot;

int rem;

} div_t;

C H A P T E R 8

Newton C Library Reference

C Library Constants and Data Types 8-3

Field descriptions

quot The quotient for the division.
rem The remainder for the division.

The Long Division Result Type 8

You use the long division result type, of type ldiv_t, to hold the results of the ldiv
function.

typedef struct ldiv_t {

long int quot;

long int rem;

} ldiv_t;

Field descriptions

quot The quotient for the division.
rem The remainder for the division.

Math Types 8
This section describes the data types that you use with the math functions.

Double-precision Value Type 8

The double-precision value type, of type double_t, is used for double-precision values.
It is exactly equivalent to the C++ double type.

Relational Operator Type 8

The relational operator type, of type relop, describes the relationship between two
numbers.

typedef short relop;

enum {

GREATERTHAN = ((relop) (0)),

LESSTHAN,

EQUALTO,

UNORDERED

};

Constant descriptions

GREATERTHAN The first operand is greater than the second operand.
LESSTHAN The first operand is less than the second operand.
EQUALTO The first operand is equal to the second operand.
UNORDERED At least one of the two operands is not a number.

C H A P T E R 8

Newton C Library Reference

8-4 C Library Constants and Data Types

Time Types 8
This section describes the data types that you use with the time functions.

Clock Time Type 8

The C Library functions use the clock time type, of type clock_t, to represent the cpu
time type, which is the number of ticks per second in the value that is returned by the
clock function. The clock function is described on page 8-31.

typedef unsigned int clock_t;

Calendar Time Type 8

The C Library functions use the calendar time type, of type time_t, to represent the
current calendar time in a single, integer value. The internal representation of this value
is not specified.

typedef unsigned int time_t;

Calendar Clock Time Structure 8

The C Library time functions use the calendar clock time structure, of type tm, to hold
the components of a calendar clock reading.

struct tm {

int tm_sec;

int tm_min;

int tm_hour;

int tm_mday;

int tm_mon;

int tm_year;

int tm_wday;

int tm_yday;

int tm_isdst;

};

C H A P T E R 8

Newton C Library Reference

C Library Functions 8-5

Field descriptions

tm_sec The number of seconds after the minute. This is a value between 0
and 59.

tm_min The number of minutes after the hour. This is a value between 0 and
59.

tm_hour The number of hours since midnight. This is a value between 0 and
23.

tm_mday The day of the month. This is a value between 1and 31.
tm_mon The number of months since January. This is a value between 0 and

11.
tm_year The number of years since 1900.
tm_wday The number of days since Sunday. This is a value between 0 and 6.
tm_yday The number of days since January 1. This is a value between 0 and

365.
tm_isdst A flag indicating whether Daylight Savings Time is in effect. This

value is positive if Daylight Savings Time is in effect, zero if
Daylight savings time is not in effect, and negative if the
information is not available.

C Library Functions 8

This section describes the C Library functions that you can use in your Newton
programs.

Character Conversion Functions 8
This section describes the C Library functions that convert a single character.

tolower 8

int tolower(int c);

c A single character.

The tolower function is part of the standard ANSI-C library.

toupper 8

int toupper(int c);

c A single character.

The toupper function is part of the standard ANSI-C library.

C H A P T E R 8

Newton C Library Reference

8-6 C Library Functions

Floating-point Math Functions 8
This section describes the C Library functions for working with floating-point math
values.

WARNING

The functions in this section, which are declared in the fp.h include file,
cannot be used in p-classes. This might be of concern to you if you are
using the C++ library functions to develop a Newton driver; however,
this is not a concern for developers who are using C++ code with a
NewtonScript application. ▲

acos 8

double_t acos(double_t x);

x A double-precision value.

The acos function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

acosh 8

double_t acosh(double_t x);

x A double-precision value.

The acosh function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

asin 8

double_t asin(double_t x);

x A double-precision value.

The asin function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

asinh 8

double_t asinh(double_t x);

x A double-precision value.

The asinh function is part of the standard ANSI-C library. The Newton
implementation of this function is documented in the “Utility Functions” chapter of
Newton Programmer’s Guide.

C H A P T E R 8

Newton C Library Reference

C Library Functions 8-7

atan 8

double_t atan(double_t x);

x A double-precision value.

The atan function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

atan2 8

double_t atan2(double_t x,
 double_t y);

x A double-precision value.

y A double-precision value.

The atan2 function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

atanh 8

double_t atanh(double_t x);

x A double-precision value.

The atanh function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

ceil 8

double_t ceil(double_t x);

x A double-precision value.

The ceil function is part of the standard ANSI-C library.

copysign 8

double_t copysign(double_t x,
 double_t y);

x A double-precision value.

y A double-precision value.

The copysign function is part of the standard ANSI-C library. The Newton
implementation of this function is documented in the “Utility Functions” chapter of
Newton Programmer’s Guide.

C H A P T E R 8

Newton C Library Reference

8-8 C Library Functions

copysignf 8

float copysign(float x,
float y);

x A floating-point value.

y A floating-point value.

The copysignf function is part of the standard ANSI-C library. This function is the
same as the copysign function, except that copysignf takes floating-point values for
arguments and returns a floating-point value. The Newton implementation of this
function is documented as the copysign function in the “Utility Functions” chapter of
Newton Programmer’s Guide.

cos 8

double_t cos(double_t x);

x A double-precision value.

The cos function is part of the standard ANSI-C library. The Newton implementation of
this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

cosh 8

double_t cosh(double_t x);

x A double-precision value.

The cosh function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

erf 8

double_t erf(double_t x);

x A double-precision value.

The erf function is part of the standard ANSI-C library. The Newton implementation of
this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

erfc 8

double_t erfc(double_t x);

x A double-precision value.

The erfc function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

C H A P T E R 8

Newton C Library Reference

C Library Functions 8-9

exp 8

double_t exp(double_t x);

x A double-precision value.

The exp function is part of the standard ANSI-C library. The Newton implementation of
this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

exp2 8

double_t exp2(double_t x);

x A double-precision value.

The exp2 function is part of the standard ANSI-C library.

expm1 8

double_t expm1(double_t x);

x A double-precision value.

The expm1 function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

fabs 8

double_t fabs(double_t x);

x A double-precision value.

The fabs function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

fdim 8

double_t fdim(double_t x,
double_t y);

x A double-precision value.

y A double-precision value.

The fdim function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

floor 8

double_t floor(double_t x);

x A double-precision value.

C H A P T E R 8

Newton C Library Reference

8-10 C Library Functions

The floor function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

fmax 8

double_t fmax(double_t x,
double_t y);

x A double-precision value.

y A double-precision value.

The fmax function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

fmin 8

double_t fmin(double_t x,
double_t y);

x A double-precision value.

y A double-precision value.

The fmax function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

fmod 8

double_t fmod(double_t x,
double_t y);

x A double-precision value to be divided (the dividend).

y The double-precision divisor.

The fmod function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

frexp 8

double_t frexp(double_t x,
int *exponent);

x A double-precision value.

exponent On exit, the exponent of x.

The frexp function is part of the standard ANSI-C library.

C H A P T E R 8

Newton C Library Reference

C Library Functions 8-11

hypot 8

double_t hypot(double_t x,
 double_t y);

x A double-precision value.

y A double-precision value.

The hypot function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

isfinite 8

int isfinite(long double x);

x A long double-precision value.

The isfinite function is documented in the “Utility Functions” chapter of Newton
Programmer’s Guide.

isnan 8

int isnan(long double x);

x A long double-precision value.

The isnan function is documented in the “Utility Functions” chapter of Newton
Programmer’s Guide.

isnormal 8

int isnormal(long double x);

x A long double-precision value.

The isnormal function is documented in the “Utility Functions” chapter of Newton
Programmer’s Guide.

ldexp 8

double_t ldexp(double_t x,
 int n);

x The double-precision mantissa value.

n The exponent value.

The ldexp function is part of the standard ANSI-C library.

log 8

double_t log(double_t x);

x A double-precision value.

C H A P T E R 8

Newton C Library Reference

8-12 C Library Functions

The log function is part of the standard ANSI-C library. The Newton implementation of
this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

logb 8

double_t logb(double_t x);

x A double-precision value.

The logb function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

log1p 8

double_t log1p(double_t x);

x A double-precision value.

The log1p function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

log10 8

double_t log10(double_t x);

x A double-precision value.

The log10 function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

log2 8

double_t log2(double_t x);

x A double-precision value.

The log function is part of the standard ANSI-C library.

modf 8

double modf(double x,
double *iptr);

x A double-precision value.

iptr On exit, the integral part of x.

The modf function is part of the standard ANSI-C library.

C H A P T E R 8

Newton C Library Reference

C Library Functions 8-13

modff 8

float modff(float x,
 float *iptrf);

x A floating-point value.

iptr On exit, the integral part of x, stored as a floating point value.

The modff function is part of the standard ANSI-C library.

nearbyint 8

double_t nearbyint(double_t x);

x A double-precision value.

The nearbyint function is part of the standard ANSI-C library. The Newton
implementation of this function is documented in the “Utility Functions” chapter of
Newton Programmer’s Guide.

nextafterd 8

double nextafterd(double x,
 double y);

x A double-precision value.

y A double-precision value.

The nextafterd function is part of the standard ANSI-C library. The Newton
implementation of this function is documented in the “Utility Functions” chapter of
Newton Programmer’s Guide.

nextafterf 8

float nextafterf(float x,
float y);

x A double-precision value.

y A double-precision value.

The nextafterf function is part of the standard ANSI-C library.

pow 8

double_t pow(double_t x,
double_t y);

x A double-precision value.

y A double-precision number representing the power.

C H A P T E R 8

Newton C Library Reference

8-14 C Library Functions

The pow function is part of the standard ANSI-C library. The Newton implementation of
this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

randomx 8

double_t randomx(double_t* x);

x On entry, the seed value. On exit, the new seed value.

The randomx function is part of the standard ANSI-C library. The Newton
implementation of this function is documented in the “Utility Functions” chapter of
Newton Programmer’s Guide.

relation 8

relop relation(double_t x,
 double_t y);

x A double-precision value.

y A double-precision value.

The relation function is part of the standard ANSI-C library.

remainder 8

double_t remainder(double_t x,
double_t y);

x A double-precision value to be divided (the dividend).

y The double-precision divisor.

The remainder function is part of the standard ANSI-C library. The Newton
implementation of this function is documented in the “Utility Functions” chapter of
Newton Programmer’s Guide.

remquo 8

double_t remquo(double_t x,
double_t y,
int* quo);

x A double-precision value to be divided (the dividend).

y The double-precision divisor.

quo On exit, the seven low-order bits of x divided by y as a value
between -127 and 127.

The remquo function is part of the standard ANSI-C library. The Newton
implementation of this function is documented in the “Utility Functions” chapter of
Newton Programmer’s Guide.

C H A P T E R 8

Newton C Library Reference

C Library Functions 8-15

rint 8

double_t rint(double_t x);

x A double-precision value.

The rint function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

rinttol 8

long int rinttol(double_t x);

x A double-precision value.

The rinttol function is part of the standard ANSI-C library. The Newton
implementation of this function is documented in the “Utility Functions” chapter of
Newton Programmer’s Guide.

round 8

double_t round(double_t x);

x A double-precision value.

The round function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

roundtol 8

long int roundtol(double_t round);

x A double-precision value.

The roundtol function is part of the standard ANSI-C library.

scalb 8

double_t scalb(double_t x,
 long int n);

x A double-precision value.

n A double-precision value.

The scalb function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

signbit 8

int signbit(long double x);

x A long double-precision value.

C H A P T E R 8

Newton C Library Reference

8-16 C Library Functions

The signbit function is documented in the “Utility Functions” chapter of Newton
Programmer’s Guide.

sin 8

double_t sin(double_t x);

x A double-precision value.

The sin function is part of the standard ANSI-C library. The Newton implementation of
this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

sinh 8

double_t sinh(double_t x);

x A double-precision value.

The sinh function returns is part of the standard ANSI-C library. The Newton
implementation of this function is documented in the “Utility Functions” chapter of
Newton Programmer’s Guide.

sqrt 8

double_t sqrt(double_t x);

x A double-precision value.

The sqrt function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

tan 8

double_t tan(double_t x);

x A double-precision value. The Newton implementation of this
function is documented in the “Utility Functions” chapter of Newton
Programmer’s Guide.

The tan function is part of the standard ANSI-C library.

tanh 8

double_t tanh(double_t x);

x A double-precision value.

The tanh function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

C H A P T E R 8

Newton C Library Reference

C Library Functions 8-17

trunc 8

double_t trunc(double_t x);

x A double-precision value.

The trunc function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

Financial Functions 8
This section describes the C Library functions that you can use to compute financial
values.

annuity 8

double_t annuity(double_t rate,
double_t periods);

rate The interest rate per period.

periods The number of periods for which to compound interest.

The annuity function calculates the present value factor of an annuity at the specified
interest rate over the specified number of periods. The Newton implementation of this
function is documented in the “Utility Functions” chapter of Newton Programmer’s Guide.

compound 8

double_t compound(double_t rate,
double_t periods);

rate The interest rate per period.

periods The number of periods for which to compound interest.

The compound function calculates the compounded interest factor for the specified
interest rate over the specified number of periods. The Newton implementation of this
function is documented in the “Utility Functions” chapter of Newton Programmer’s Guide.

Variable Argument List Macros 8
This section describes the C Library macros you can use to define functions that take a
variable number of arguments..

C H A P T E R 8

Newton C Library Reference

8-18 C Library Functions

va_start 8

void va_start(va_list ap,
parmN);

ap A va_list object that you have declared.

parmN A buffer in which to save the current program environment.

The va_start macro is part of the standard ANSI-C library.

va_arg 8

type va_arg(va_list ap,
type);

ap A va_list object that has been initialized by the va_start macro.

type The type of the object that you are retrieving from the variable
argument list.

The va_arg macro is part of the standard ANSI-C library.

va_end 8

void va_end(va_list ap);

ap A va_list object that has been initialized by the va_start macro.

The va_end macro is part of the standard ANSI-C library.

Standard Input and Output Functions 8
This section describes the C Library functions for standard input and output processing.

sprintf 8

int sprintf(char* s,

 const char* format,

 ...);

s The string into which you want to write. See the warning below for
special considerations regarding floating-point strings.

format The format specification string, which tells sprintf how to convert
its arguments and write them into s.

... The data arguments. A variable number of objects, each of which is
a pointer to an object that is to be converted into a string. The first
argument points to the first value to convert, the second pointer
points to the second value to convert, and so on.

The sprintf function is part of the standard ANSI-C library.

C H A P T E R 8

Newton C Library Reference

C Library Functions 8-19

WARNING

The Newton implementation of sprintf has problems with conversion
of floating-point values that have out-or-range exponents. If you supply
a string representation of a float that is too large (one that evaluates to
INF), sprintf hangs up, forcing you to reboot the system. You can get
around this problem by following one of these rules:

1. Convert floating-point strings from ASCII to double before calling
sprintf, and avoid using single-precision floating-point values.

2. Perform your own range checking on doubles to ensure that INF
values do not get passed to sprintf.

▲

IMPORTANT

The Newton implementation of sprintf adds the '%U' directive for
Unicode strings. The '%U' directive converts the Unicode string to the
Macintosh Roman character set and prints it. ▲

sscanf 8

int sscanf(char* s,

 const char* format,

 ...);

s The string that you want converted.

format The format specification string, which tells sscanf how to convert
the contents of s.

... The data arguments. A variable number of objects, each of which is
a pointer to the object that is to receive the converted value. The
first pointer receives the first converted value, the second pointer
receives the second converted value, and so on.

The sscanf function is part of the standard ANSI-C library.

vsprintf 8

int vsprintf(char* s,

const char* format,

_va_list arg);

s The string into which you want to write.

format The format specification string, which tells vsprintf how to convert
its arguments and write them into s.

arg A pointer to an argument list, which contains the objects that you
want converted into strings.

The vsprintf function is part of the standard ANSI-C library.

C H A P T E R 8

Newton C Library Reference

8-20 C Library Functions

The vsprintf function is the same as the sprintf function, except that vsprintf
takes a pointer to an argument list as its third and final parameter. The sprintf
function is described in the section “sprintf” beginning on page 8-18.

IMPORTANT

The Newton implementation of vsprintf adds the '%U' directive for
Unicode strings. The '%U' directive converts the Unicode string to the
Macintosh Roman character set and prints it. ▲

Standard C Library Functions 8
This section describes the C Library functions that are part of the standard ANSI C
Library definition.

_ANSI_rand 8

int _ANSI_rand(void);

The _ANSI_rand function is part of the standard ANSI-C library.

_ANSI_srand 8

void _ANSI_srand(unsigned int seed);

seed An unsigned integer value.

abs 8

int abs(int j);

j An integer value.

The abs function is part of the standard ANSI-C library.

atof 8

double atof(const char* nptr);

nptr A character string.

The atof function is part of the standard ANSI-C library.

atoi 8

int atoi(const char* nptr);

nptr A character string.

The atoi function is part of the standard ANSI-C library

C H A P T E R 8

Newton C Library Reference

C Library Functions 8-21

atol 8

long int atol(const char* nptr);

nptr A character string.

The atol function is part of the standard ANSI-C library

bsearch 8

void* bsearch(const void* key,
const void* base,
size_t nmemb,
size_t size,
int (* compar)(const void *key,

const void *data));

key A pointer to the object that you want to be matched in the array.

base A pointer to the initial element in the array to be searched.

nmemb The number of objects in the array.

size The size, in bytes, of each array element.

compar A pointer to a comparison function. This is a function that compares
a key value with a data value (from the array) and returns a value
that describes the comparison.

The bsearch function is part of the standard ANSI-C library.

div 8

div_t div(int numer,
int denom);

numer The numerator value.

denom The denominator value.

The div function is part of the standard ANSI-C library. It fills in the fields of a div_t
structure with the results. The div_t structure is described in the section “The Division
Result Type” on page 2.

Note

The Newton implementation of the div function does not generate an
exception if the value of denom is 0. The div function returns 0 as its
result without generating an exception. ◆

labs 8

long int labs(long int j);

j A long integer value.

C H A P T E R 8

Newton C Library Reference

8-22 C Library Functions

The labs function is part of the standard ANSI-C library.

ldiv 8

ldiv_t ldiv(long int numer,
long int denom);

numer The numerator value.

denom The denominator value.

The ldiv function is part of the standard ANSI-C library. It fills in the fields of an
ldiv_t structure with the results. The ldiv_t structure is described in the section “The
Long Division Result Type” on page 3.

Note

The Newton implementation of the ldiv function does not generate an
exception if the value of denom is 0. The ldiv function returns 0 as its
result without generating an exception. ◆

qsort 8

void* qsort(const void* base,
size_t nmemb,
size_t size,
int (* compar)(const void* e1,

const void* e2));

base A pointer to the initial element in the array to be sorted.

nmemb The number of objects in the array.

size The size, in bytes, of each array element.

compar A pointer to a comparison function. This is a function that compares
two elements of the array and returns a value that describes the
comparison.

The qsort function is part of the standard ANSI-C library.

rand 8

int rand(void);

The rand function is part of the standard ANSI-C library.

srand 8

void srand(unsigned int seed);

seed An unsigned integer value.

The srand function is part of the standard ANSI-C library.

C H A P T E R 8

Newton C Library Reference

C Library Functions 8-23

strtod 8

double strtod(const char* nptr,
char** endptr);

nptr A pointer to a string.

endptr On exit, a pointer to the remainder of the string.

The strtod function is part of the standard ANSI-C library

strtol 8

long int strtol(const char* nptr,
char** endptr,
int base);

nptr A pointer to a string.

endptr On exit, a pointer to the remainder of the string.

base The number base of the value.

The strtol function is part of the standard ANSI-C library.

strtoul 8

unsigned long int strtoul(const char* nptr,
char** endptr,
int base);

nptr A pointer to a string.

endptr On exit, a pointer to the remainder of the string.

base The number base of the value.

The strtoul function is part of the standard ANSI-C library.

Heap Functions 8
This section describes the C Library functions that you can use to allocate and free
memory in the heap.

calloc 8

void* calloc(size_t nmemb,
size_t size);

nmemb The number of array members in the block that you want allocated.

size The size, in bytes, of each array member.

The calloc function is part of the standard ANSI-C library.

C H A P T E R 8

Newton C Library Reference

8-24 C Library Functions

free 8

void free(void* ptr);

ptr A pointer to a block of memory in the heap.

The free function is part of the standard ANSI-C library.

Note

The free function is the same as the Newton Memory Manager
function DisposePtr. ◆

malloc 8

void* malloc(size_t size);

size The size, in bytes, of the block of memory that you want allocated.

The malloc function is part of the standard ANSI-C library.

WARNING

The Newton implementation of the malloc function does not protect
against negative or extremely large size values. It attempts to allocate the
specified amount of memory, even though such values can cause
disastrous results in your program. You must ensure that your calls to
malloc supply appropriate size values. ▲

Note

The malloc function is the same as the Newton Memory Manager
function NewPtr. ◆

realloc 8

void* realloc(void* ptr,
size_t size);

ptr A pointer to a block of memory in the heap.

size The new size for the object, in bytes.

The realloc function is part of the standard ANSI-C library.

Note

The realloc function behaves differently than the standard, ANSI C
library implementation in one case. If the value of size is 0, realloc
does not free ptr; instead, it sets the size of the buffer pointed to by ptr to
0, which indicates that the Newton System Software can free the pointer
at a later time. ◆

Note

The realloc function is the same as the Newton Memory Manager
function ReallocPtr. ◆

C H A P T E R 8

Newton C Library Reference

C Library Functions 8-25

Memory Block Manipulation Functions 8
This section describes the C Library functions that you can use to work with memory
blocks.

memchr 8

void* memchr(const void* s,
int c,

size_t n);

s A pointer to the string to be searched.

c A character to search for in s.

n The number of characters to search in s.

The memchr function is part of the standard ANSI-C library.

memcmp 8

int memcmp(const void* s1,
const void* s2,

size_t n);

s1 A pointer to a block of memory.

s2 A pointer to a block of memory.

n The number of characters to compare.

The memcmp function is part of the standard ANSI-C library.

memcpy 8

void* memcpy(void* s1,
const void* s2,

size_t n);

s1 A pointer to a block of memory.

s2 A pointer to a block of memory.

n The number of characters to copy.

The memcpy function is part of the standard ANSI-C library.

memmove 8

void* memmove(void* s1,
const void* s2,

C H A P T E R 8

Newton C Library Reference

8-26 C Library Functions

size_t n);

s1 A pointer to a block of memory.

s2 A pointer to a block of memory.

n The number of characters to copy.

The memmove function is part of the standard ANSI-C library.

Note

The memmove function is the same as the Newton Memory Manager
function BlockMove. ◆

memset 8

void* memset(void* s,
int c,

size_t n);

s A pointer to a block of memory.

c A character.

n The number of characters to initialize.

The memset function is part of the standard ANSI-C library.

WARNING

The memset function does not protect against negative or extremely
large n values. It attempts to allocate the specified amount of memory,
even though such values can cause disastrous results in your program.
You must ensure that your calls to FillBytes supply appropriate n
values. ▲

Note

The memset function is the same as the Newton Memory Manager
function FillBytes. ◆

String Manipulation Functions 8
This section describes the C Library functions that you can use to work with strings.

strcat 8

char* strcat(char* s1,
const char* s2);

s1 A pointer to a null-terminated string.

s2 A pointer to a null-terminated string.

The strcat function is part of the standard ANSI-C library.

C H A P T E R 8

Newton C Library Reference

C Library Functions 8-27

strchr 8

char* strchr(const char* s,
int c);

s A pointer to a null-terminated string.

c A character.

The strchr function is part of the standard ANSI-C library

strcmp 8

int strcmp(const char* s1,
const char* s2);

s1 A pointer to a null-terminated string.

s2 A pointer to a null-terminated string.

The strcmp function is part of the standard ANSI-C library.

strcoll 8

int strcoll(const char* s1,
const char* s2);

s1 A pointer to a null-terminated string.

s2 A pointer to a null-terminated string.

The strcoll function is part of the standard ANSI-C library.

strcpy 8

char* strcpy(char* s1,
const char* s2);

s1 A pointer to a null-terminated string.

s2 A pointer to a null-terminated string.

The strcpy function is part of the standard ANSI-C library.

strcspn 8

size_t strcspn(const char* s1,
const char* s2);

s1 A pointer to a null-terminated string.

s2 A pointer to a null-terminated string.

The strcspn function is part of the standard ANSI-C library.

C H A P T E R 8

Newton C Library Reference

8-28 C Library Functions

strlen 8

size_t strlen(const char* s);

s A pointer to a null-terminated string.

The strlen function is part of the standard ANSI-C library.

strncat 8

char* strncat(char* s1,
const char* s2,

size_t n);

s1 A pointer to a null-terminated string.

s2 A pointer to a null-terminated string.

n The maximum number of characters to copy.

The strncat functionis part of the standard ANSI-C library.

strncmp 8

int strncmp(const char* s1,
const char* s2,

size_t n);

s1 A pointer to a null-terminated string.

s2 A pointer to a null-terminated string.

n The number of characters to compare.

The strncmp function is part of the standard ANSI-C library.

strncpy 8

char* strncpy(char* s1,
const char* s2,

size_t n);

s1 A pointer to a null-terminated string.

s2 A pointer to a null-terminated string.

n The maximum number of characters to copy.

The strncpy function is part of the standard ANSI-C library.

C H A P T E R 8

Newton C Library Reference

C Library Functions 8-29

strpbrk 8

char* strpbrk(const char* s1,
const char* s2);

s1 A pointer to a null-terminated string.

s2 A pointer to a null-terminated string.

The strpbrk function is part of the standard ANSI-C library.

strrchr 8

char* strrchr(const char* s,
int c);

s A pointer to a null-terminated string.

c A character.

The strrchr function is part of the standard ANSI-C library.

strspn 8

size_t strspn(const char* s1,
const char* s2);

s1 A pointer to a null-terminated string.

s2 A pointer to a null-terminated string.

The strspn function is part of the standard ANSI-C library.

strstr 8

char* strstr(const char* s1,
const char* s2);

s1 A pointer to a null-terminated string.

s2 A pointer to a null-terminated string.

The strstr function is part of the standard ANSI-C library.

strtok 8

char* strtok(char* s1,
const char* s2);

s1 A pointer to null-terminated string.

s2 A pointer to a null-terminated string.

The strtok function is part of the standard ANSI-C library.

C H A P T E R 8

Newton C Library Reference

8-30 C Library Functions

strxfrm 8

size_t strxfrm(char* s1,
const char* s2,

size_t n);

s1 A pointer to a string into which characters are copied. This string
must be long enough to contain n+1 characters.

s2 A pointer to a string to be copied.

n The number of characters to copy.

The strxfrm function is part of the standard ANSI-C library.

Time Functions 8
This section describes the C Library functions that you can use to work with clock and
processor time values.

asctime 8

char* asctime(const struct tm* timeptr);

The asctime function is not available for use on the Newton. Use the
asctime_newton function instead. The asctime_newton function is described in the
next section.

asctime_newton 8

char* asctime_newton(const struct tm* timeptr,
char* timebuf);

timeptr A pointer to a calendar clock time structure. The calendar clock time
structure is described on page 8-4.

timebuf A character buffer. You must allocate at least 70 bytes for this buffer.

The asctime function is a Newton C++ Toolkit variation of the standard C library
function asctime.

The asctime_newton function differs from the asctime function in that you must
preallocate the output buffer timebuf.

The asctime_newton function returns timebuf as its function value.

WARNING

You must allocate timebuf by calling either the NewPtr function or the
malloc function, or you can declare timebuf as a local variable within a
function. You cannot declare timebuf as a static global variable. ▲

C H A P T E R 8

Newton C Library Reference

C Library Functions 8-31

clock 8

clock_t clock(void);

The clock function is part of the standard ANSI-C library.

WARNING

You cannot use the clock function on the Newton in the same way as
you can on many other computing devices. This is because your
application is sharing task space with other applications, which means
that the concept of “CPU task time” is distorted on the Newton. You
thus cannot use the difference between two calls to clock to determine
how long it took your application to perform an operation. ▲

ctime 8

char* ctime(const time_t* timer);

The ctime function is not available for use on the Newton. Use the ctime_newton
function instead. The ctime_newton function is described in the next section.

ctime_newton 8

char* ctime_newton(const time_t* timer,
char* timebuf);

timer A pointer to a time_t value. The time_t type is described on page
8-4.

timebuf A character buffer. You must allocate at least 70 bytes for this buffer.

The ctime function is a Newton C++ Toolkit variation of the standard C library function
ctime.

The ctime_newton function differs from the ctime function in that you must
preallocate the output buffer timebuf.

The ctime_newton function returns timebuf as its function value.

WARNING

You must allocate timebuf by calling either the NewPtr function or the
malloc function, or you can declare timebuf as a local variable within a
function. You cannot declare timebuf as a static global variable. ▲

difftime 8

double difftime(time_t time1,
time_t time0);

time1 The second calendar clock time reading value.

time0 The first calendar clock time reading value.

The difftime function is part of the standard ANSI-C library.

C H A P T E R 8

Newton C Library Reference

8-32 C Library Functions

gmtime 8

struct tm* gmtime(const time_t* timer);

timer A pointer to a time_t value. The time_t type is described on
page 8-4.

The gmtime function is part of the standard ANSI-C library. The Newton
implementation of this function does not perform any computation and returns NIL.

WARNING

The Newton implementation of gmtime simply returns NIL. ▲

localtime 8

struct tm* localtime(const time_t* timer);

The localtime function is not available for use on the Newton. Use the
localtime_newton function instead. The localtime_newton function is described
in the next section.

localtime_newton 8

struct tm* localtime_newton(const time_t* timer,
tm* tms);

timer A pointer to a time_t value. The time_t type is described on
page 8-4.

tms A pointer to a calendar clock time structure that you have allocated
in your application. The calendar clock time structure is described
on page 8-4.

The localtime function is a Newton C++ Toolkit variation of the standard C library
function localtime.

The localtime_newton function differs from the localtime function in that you
must preallocate the output calendar clock time structure.

The localtime_newton function returns tms as its function value.

WARNING

You must allocate the output calendar clock structure by calling either
the NewPtr function or the malloc function, or you can declare a tm
structure within a function in your application and pass in a pointer to
that structure as the value of tms. You cannot declare the structure as a
static global variable. ▲

mktime 8

time_t mktime(struct tm* timeptr);

timeptr A pointer to a calendar clock time structure. The calendar clock time
structure is described on page 8-4.

C H A P T E R 8

Newton C Library Reference

C Library Functions 8-33

The mktime function is part of the standard ANSI-C library.

strftime 8

size_t strftime(char* s,
size_t maxsize,

const char* format,

const struct tm* timeptr);

s A pointer to a string. On exit, this is the formatted, string
representation of the time.

maxsize The maximum number of characters to store into s.

format A format specification.

timeptr A pointer to a calendar clock time structure that contains the time
you want formatted.

The strftime function is part of the standard ANSI-C library.

time 8

time_t time(time_t* timer);

timer A pointer to a time structure that you want filled in with the current
time. On exit, this is filled in with the current time. You can specify
NULL as the value of timer if you don’t want a structure to be filled
in.

The time function is part of the standard ANSI-C library.

C H A P T E R 8

Newton C Library Reference

8-34 C Library Functions

Summary of C Library Reference 8

C Library Constants and Types 8

#define NULL 0

#define HUGE_VAL _inf();

#define RAND_MAX 0x7fffffff

Standard Library Types

typedef unsigned int size_t;

typedef int wchar_t;

typedef struct div_t {
int quot;

int rem;

} div_t;

typedef struct ldiv_t {
long int quot;

long int rem;

} ldiv_t;

Math Types

typedef short relop;

enum {
GREATERTHAN = ((relop) (0)),

LESSTHAN,

EQUALTO,

UNORDERED

};

Time Types

typedef unsigned int clock_t;

typedef unsigned int time_t;

C H A P T E R 8

Newton C Library Reference

C Library Functions 8-35

struct tm {
int tm_sec;

int tm_min;

int tm_hour;

int tm_mday;

int tm_mon;

int tm_year;

int tm_wday;

int tm_yday;

int tm_isdst;

};

C Library Functions 8

Character Conversion Functions

int tolower(int c);

int toupper(int c);

Floating-point Math Functions

double_t acos(double_t x);

double_t acosh(double_t x);

double_t asin(double_t x);

double_t asinh(double_t x);

double_t atan(double_t x);

double_t atan2(double_t x, double_t y);

double_t atanh(double_t x);

double_t ceil(double_t x);

double_t copysign(double_t x, double_t y);

float copysignf(float x, float y);

double_t cos(double_t x);

double_t cosh(double_t x);

double_t erf(double_t x);

double_t erfc(double_t x);

long double
erfcl(long double x);

long double
erfl(long double x);

double_t exp(double_t x);

C H A P T E R 8

Newton C Library Reference

8-36 C Library Functions

double_t exp2(double_t x);

double_t expm1(double_t x);

double_t fabs(double_t x);

double_t fdim(double_t x, double_t y);

double_t floor(double_t x);

double_t fmax(double_t x, double_t y);

double_t fmin(double_t x, double_t y);

double_t fmod(double_t x, double_t y);

double_t frexp(double_t x, int* exponent,

double_t hypot(double_t x, double_t y);

int isfinite(long double x);

int isnormal(long double x);

int isnan(long double x);

double_t ldexp(double_t x, int n);

double_t lgamma(double_t x);

double_t log(double_t x);

double_t logb(double_t x);

double_t log1p(double_t x);

double_t log10(double_t x);

double_t log2(double_t x);

double modf(double x, double* iptr);

float modff(float x, float* iptr);

double_t nearbyint(double_t x);

double nextafterd(double x, double y);
float nextafterf(float x, float y);

double_t pow(double_t x, double_t y);

double_t randomx(double_t* x);

relop relation(double_t x, double_t y);

double_t remainder(double_t x, double_t y);

double_t remquo(double_t x, double_t y, int* quo);

double_t rint(double_t x);

long int rinttol(double_t x);

double_t round(double_t x);

long int roundtol(double_t round);

double_t scalb(double_t x, long int n);

int signbit(long double x);

C H A P T E R 8

Newton C Library Reference

C Library Functions 8-37

double_t sin(double_t x);

double_t sinh(double_t x);

double_t sqrt(double_t x);

double_t tan(double_t x);

double_t tanh(double_t x);

double_t trunc(double_t x);

Financial Functions

double_t annuity(double_t rate, double_t periods);

double_t compound(double_t rate, double_t periods);

Variable Argument List Macros

void va_start(va_list ap, parmN);

type va_arg(va_list ap, type);

void va_end(va_list ap);

Standard Input and Output Functions

int sprintf(char* s, const char* format, ...);

int sscanf(char* s, const char* format, ...);

int vsprintf(char* s, const char* format, _va_list arg);

Standard C Library Functions

int _ANSI_rand(void);

void _ANSI_srand(unsigned int seed);

int abs(int j);

double atof(const char* nptr);

int atoi(const char* nptr);

long int atol(const char* nptr);

void* bsearch(const void* key, const void* base, size_t nmemb,
size_t size,
int(* compar)(const void *key, const void *data));

div_t div(int numer, int denom);

long int labs(long int j);

ldiv_t ldiv(long int numer, long int denom);

void* qsort(const void* base, size_t nmemb, size_t size,
int(* compar)(const void *e1, const void *e2));

int rand(void);

C H A P T E R 8

Newton C Library Reference

8-38 C Library Functions

void srand(unsigned int seed);

double strtod(const char* nptr, char** endptr);

long int strtol(const char* nptr, char** endptr, int base);

unsigned long int
strtoul(const char* nptr, char** endptr, int base);

Heap Functions

void* calloc(size_t nmemb, size_t size);

void free(void* ptr);

void* malloc(size_t size);

void* realloc(void* ptr, size_t size);

Memory Block Manipulation Functions

void* memchr(const void* s, int c, size_t n);

int memcmp(const void* s1, const void* s2, size_t n);

void* memcpy(void* s1, const void* s2, size_t n);

void* memmove(void* s1, const void* s2, size_t n);

void* memset(void* s, int c, size_t n);

String Manipulation Functions

char* strcat(char* s1, const char* s2);

char* strchr(const char* s, int c);

int strcmp(const char* s1, const char* s2);

int strcoll(const char* s1, const char* s2);

char* strcpy(char* s1, const char* s2);

size_t strcspn(const char* s1, const char* s2);

size_t strlen(const char* s);

char* strncat(char* s1, const char* s2, size_t n);

int strncmp(const char* s1, const char* s2, size_t n);

char* strncpy(char* s1, const char* s2, size_t n);

char* strpbrk(const char* s1, const char* s2);

char* strrchr(const char* s, int c);

size_t strspn(const char* s1, const char* s2);

char* strstr(const char* s1, const char* s2);

char* strtok(char* s1, const char* s2);

size_t strxfrm(char* s1, const char* s2, size_t n);

C H A P T E R 8

Newton C Library Reference

C Library Functions 8-39

Time Functions

char* asctime_newton(const struct tm* timeptr, char* timebuf);

clock_t clock(void);

char* ctime_newton(const time_t* timer, tm* tms);

double difftime(time_t time1, time_t time0);

struct tm* gmtime(const time_t* timer);

struct tm* localtime_newton(const time_t* timer, char* timebuf);

time_t mktime(struct tm* timeptr);

size_t strftime(char* s, size_t maxsize, const char* format,
const struct tm* timeptr);

time_t time(time_t* timer);

C H A P T E R 8

Newton C Library Reference

8-40 C Library Functions

A P P E N D I X A

Functions and Macros for Using C++ With NewtonScript A-1

C++ Function Tables A

This appendix presents the name of each function in the C++ Toolkit and specifies where
to find the description of that function. Some of the function descriptions are provided in
this book, while others are located in other books.

The declaration (function header and parameter descriptions) for each function is given
in this book.

Functions and Macros for Using C++ With NewtonScript A

Table A-1 summarizes the functions and macros described in Chapter 2, “C++ and
NewtonScript Conversion Reference.”.

Table A-1 C++ and NewtonScript conversion functions and macros

Function Name Page number

Debugger 2-6

DebugStr 2-6

DebugCStr 2-6

EQ 2-5

IsChar 2-4

ISFALSE 2-5

IsInt 2-4

IsMagicPtr 2-4

IsNIL 2-5

IsPtr 2-4

IsRealPtr 2-4

ISTRUE 2-5

MakeBoolean 2-2

MakeChar 2-2

MakeInt 2-2

MakeReal 2-2

MakeString 2-2

Figure A-0
Table A-0

A P P E N D I X A

C++ Function Tables

A-2 Newton Object System Functions

Newton Object System Functions A

Table A-2 shows the location of the description for each of the Newton Object System
functions in the C++ Toolkit. The declaration for each of these functions is provided in
Chapter 3, “Newton Object System Reference.”

MakeSymbol 2-3

NOTNIL 2-5

RefToInt 2-3

RefToUniChar 2-3

SYM 2-3

Table A-2 C++ Toolkit Object System functions

Function Name Location of function description

Function
header page
in C++ book

AddArraySlot The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-5

AllocateArray In Chapter 3, “Newton Object
System Reference.”

3-6

AllocateBinary In Chapter 3, “Newton Object
System Reference.”

3-6

AllocateFrame In Chapter 3, “Newton Object
System Reference.”

3-6

ArrayMunger The “Utility Functions” chapter
of Newton Programmer’s Guide. †

3-6

ArrayPosition As ArrayPos in the “Utility
Functions” chapter of Newton
Programmer’s Guide.

3-7

ArrayRemove In Chapter 3, “Newton Object
System Reference.”

3-7

ArrayRemoveCount The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-8

ASCIIString In Chapter 3, “Newton Object
System Reference.”

3-8

Table A-1 C++ and NewtonScript conversion functions and macros (continued)

Function Name Page number

A P P E N D I X A

C++ Function Tables

Newton Object System Functions A-3

BinaryMunger The “Utility Functions” chapter
of Newton Programmer’s Guide. †

3-8

ClassOf The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-9

Clone The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-9

CoerceToDouble In Chapter 3, “Newton Object
System Reference.”

3-9

CoerceToInt In Chapter 3, “Newton Object
System Reference.”

3-10

DeepClone The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-10

DeleteTObjectIterator In Chapter 3, “Newton Object
System Reference.”

3-5

Done In Chapter 3, “Newton Object
System Reference.”

3-4

EnsureInternal The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-10

FrameHasPath The HasPath function in The
“Utility Functions” chapter of
Newton Programmer’s Guide.

3-10

FrameHasSlot The HasSlot function in The
“Utility Functions” chapter of
Newton Programmer’s Guide.

3-10

GC In Chapter 3, “Newton Object
System Reference.”

3-11

GetArraySlot In Chapter 3, “Newton Object
System Reference.”

3-11

GetFramePath In Chapter 3, “Newton Object
System Reference.”

3-11

GetFrameSlot The GetSlot method in The
“Utility Functions” chapter of
Newton Programmer’s Guide.

3-12

IsArray The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-12

IsBinary The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-12

IsFrame The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-12

Table A-2 C++ Toolkit Object System functions (continued)

Function Name Location of function description

Function
header page
in C++ book

A P P E N D I X A

C++ Function Tables

A-4 Newton Object System Functions

IsFunction In Chapter 3, “Newton Object
System Reference.”

3-12

IsInstance The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-13

IsNumber The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-13

IsReadOnly In Chapter 3, “Newton Object
System Reference.”

3-13

IsReal In Chapter 3, “Newton Object
System Reference.”

3-13

IsString The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-13

IsSubclass The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-13

IsSymbol The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-14

Length The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-14

NewTObjectIterator In Chapter 3, “Newton Object
System Reference.”

3-5

Next In Chapter 3, “Newton Object
System Reference.”

3-4

RemoveSlot The “Utility Functions” chapter
of Newton Programmer’s Guide. †

3-14

ReplaceObject The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-14

Reset In Chapter 3, “Newton Object
System Reference.”

3-4

SetArraySlot In Chapter 3, “Newton Object
System Reference.”

3-14

SetClass The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-15

SetFramePath In Chapter 3, “Newton Object
System Reference.”

3-15

SetFrameSlot In Chapter 3, “Newton Object
System Reference.”

3-16

SetLength The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-16

Table A-2 C++ Toolkit Object System functions (continued)

Function Name Location of function description

Function
header page
in C++ book

A P P E N D I X A

C++ Function Tables

Newton Object System Functions A-5

SortArray The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-16

Statistics In Chapter 3, “Newton Object
System Reference.”

3-17

StrBeginsWith The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-17

StrCapitalize The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-17

StrCapitalizeWords The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-17

StrDowncase The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-17

StrEndsWith The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-18

StrMunger The “Utility Functions” chapter
of Newton Programmer’s Guide. †

3-18

StrPosition The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-18

StrReplace The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-19

StrUpcase The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-19

Substring The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-19

SymbolCompareLex In Chapter 3, “Newton Object
System Reference.”

3-20

symcmp In Chapter 3, “Newton Object
System Reference.”

3-20

Tag In Chapter 3, “Newton Object
System Reference.”

3-4

ThrowBadTypeWithFrameData In Chapter 3, “Newton Object
System Reference.”

3-20

ThrowRefException In Chapter 3, “Newton Object
System Reference.”

3-21

TotalClone The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-21

Table A-2 C++ Toolkit Object System functions (continued)

Function Name Location of function description

Function
header page
in C++ book

A P P E N D I X A

C++ Function Tables

A-6 C++ Toolkit Memory Manager Functions

C++ Toolkit Memory Manager Functions A

Table A-3 shows the location of the description for each of the Newton Memory Manager
functions in the C++ Toolkit. The declaration for each of these functions is provided in
Chapter 4, “Newton Memory Manager Reference.”

TrimString The “Utility Functions” chapter
of Newton Programmer’s Guide.

3-21

Value In Chapter 3, “Newton Object
System Reference.”

3-5

 † Although this C++ function is a wrapper for a NewtonScript method, there are some slight differences in parameter usage
and/or return value semantics. These differences are described with the function declaration in this book.

Table A-3 C++ Toolkit Memory Manager functions

Function Name Location of function description

Function
header page
in C++ book

BlockMove In Chapter 4, “Newton Memory Manager
Reference.”

4-1

CountFreeBlocks In Chapter 4, “Newton Memory Manager
Reference.”

4-2

DisposPtr In Chapter 4, “Newton Memory Manager
Reference.”

4-2

EqualBytes In Chapter 4, “Newton Memory Manager
Reference.”

4-2

FillBytes In Chapter 4, “Newton Memory Manager
Reference.”

4-3

FillLongs In Chapter 4, “Newton Memory Manager
Reference.”

4-3

GetPtrName In Chapter 4, “Newton Memory Manager
Reference.”

4-4

GetPtrSize In Chapter 4, “Newton Memory Manager
Reference.”

4-4

LargestFreeInHeap In Chapter 4, “Newton Memory Manager
Reference.”

4-4

Table A-2 C++ Toolkit Object System functions (continued)

Function Name Location of function description

Function
header page
in C++ book

A P P E N D I X A

C++ Function Tables

C++ Toolkit Memory Manager Functions A-7

MaxHeapSize In Chapter 4, “Newton Memory Manager
Reference.”

4-4

MemError In Chapter 4, “Newton Memory Manager
Reference.”

4-4

NewNamedPtr In Chapter 4, “Newton Memory Manager
Reference.”

4-5

NewPtr In Chapter 4, “Newton Memory Manager
Reference.”

4-5

NewPtrClear In Chapter 4, “Newton Memory Manager
Reference.”

4-5

ReallocPtr In Chapter 4, “Newton Memory Manager
Reference.”

4-6

SetPtrName In Chapter 4, “Newton Memory Manager
Reference.”

4-7

SystemRAMSize In Chapter 4, “Newton Memory Manager
Reference.”

4-7

TotalFreeInHeap In Chapter 4, “Newton Memory Manager
Reference.”

4-7

TotalUsedInHeap In Chapter 4, “Newton Memory Manager
Reference.”

4-7

XORBytes In Chapter 4, “Newton Memory Manager
Reference.”

4-8

ZeroBytes In Chapter 4, “Newton Memory Manager
Reference.”

4-8

Table A-3 C++ Toolkit Memory Manager functions (continued)

Function Name Location of function description

Function
header page
in C++ book

A P P E N D I X A

C++ Function Tables

A-8 C++ Toolkit Exception-Handling Functions

C++ Toolkit Exception-Handling Functions A

Table A-4 shows the location of the description of the Newton exception-handling
functions in the C++ Toolkit. The declaration for each of these functions is provided in
Chapter 5, “Newton Exceptions Reference.”

Table A-4 C++ Toolkit exception-handling functions

Function Name Location of function description

Function
header page in
C++ book

cleanup In Chapter 5, “Newton Exceptions
Reference.”

5-9

CurrentException In Chapter 5, “Newton Exceptions
Reference.”

5-6

end_try In Chapter 5, “Newton Exceptions
Reference.”

5-10

end_unwind In Chapter 5, “Newton Exceptions
Reference.”

5-10

newton_catch In Chapter 5, “Newton Exceptions
Reference.”

5-10

newton_catch_all In Chapter 5, “Newton Exceptions
Reference.”

5-10

newton_try In Chapter 5, “Newton Exceptions
Reference.”

5-11

on_unwind In Chapter 5, “Newton Exceptions
Reference.”

5-11

rethrow In Chapter 5, “Newton Exceptions
Reference.”

5-7

Subexception In Chapter 5, “Newton Exceptions
Reference.”

5-8

Throw In Chapter 5, “Newton Exceptions
Reference.”

5-8

ThrowMsg In Chapter 5, “Newton Exceptions
Reference.”

5-8

unwind_failed In Chapter 5, “Newton Exceptions
Reference.”

5-12

unwind_protect In Chapter 5, “Newton Exceptions
Reference.”

5-12

A P P E N D I X A

C++ Function Tables

C++ NewtonScript Functions A-9

C++ NewtonScript Functions A

Table A-5 shows the location of the description of the NewtonScript functions in the C++
Toolkit. The declaration for each of these functions is provided in Chapter 6,
“NewtonScript Reference.”

Table A-5 C++ Toolkit NewtonScript functions

Function Name
Location of function
description

Function
 header
page in
C++
book

GetVariable In Chapter 6,
“NewtonScript Reference.”

6-14

NSCall In Chapter 6,
“NewtonScript Reference.”

6-2

NSCallWithArgArray In Chapter 6,
“NewtonScript Reference.”

6-3

NSCallGlobalFn In Chapter 6,
“NewtonScript Reference.”

6-4

NSCallGlobalFnWithArgArray In Chapter 6,
“NewtonScript Reference.”

6-5

NSSend In Chapter 6,
“NewtonScript Reference.”

6-6

NSSendWithArgArray In Chapter 6,
“NewtonScript Reference.”

6-7

NSSendIfDefined In Chapter 6,
“NewtonScript Reference.”

6-8

NSSendIfDefinedWithArgArray In Chapter 6,
“NewtonScript Reference.”

6-10

NSSendProto In Chapter 6,
“NewtonScript Reference.”

6-10

NSSendProtoWithArgArray In Chapter 6,
“NewtonScript Reference.”

6-12

NSSendProtoIfDefined In Chapter 6,
“NewtonScript Reference.”

6-12

NSSendProtoIfDefinedWithArgArray In Chapter 6,
“NewtonScript Reference.”

6-14

SetVariable In Chapter 6,
“NewtonScript Reference.”

6-15

A P P E N D I X A

C++ Function Tables

A-10 C++ Toolkit Unicode Functions

C++ Toolkit Unicode Functions A

Table A-6 shows the location of the description of the Unicode functions in the C++
Toolkit. The declaration for each of these functions is provided in Chapter 7, “Newton
Unicode Reference.”

Table A-6 C++ Toolkit Unicode functions

Function Name Location of function description

Function
header page in
C++ book

ConvertFromUnicode In Chapter 7, “Newton Unicode
Reference.”

7-2

ConvertUnicodeChar In Chapter 7, “Newton Unicode
Reference.”

7-3

ConvertUnicodeCharacters In Chapter 7, “Newton Unicode
Reference.”

7-4

ConvertToUnicode In Chapter 7, “Newton Unicode
Reference.”

7-3

HasChars In Chapter 7, “Newton Unicode
Reference.”

7-4

HasDigits In Chapter 7, “Newton Unicode
Reference.”

7-5

HasSpaces In Chapter 7, “Newton Unicode
Reference.”

7-5

IsPunctSymbol In Chapter 7, “Newton Unicode
Reference.”

7-5

StripPunctSymbols In Chapter 7, “Newton Unicode
Reference.”

7-5

Umemset In Chapter 7, “Newton Unicode
Reference.”

7-6

Ustrcat In Chapter 7, “Newton Unicode
Reference.”

7-7

Ustrchr In Chapter 7, “Newton Unicode
Reference.”

7-7

Ustrcmp In Chapter 7, “Newton Unicode
Reference.”

7-7

Ustrcpy In Chapter 7, “Newton Unicode
Reference.”

7-7

A P P E N D I X A

C++ Function Tables

C++ Toolkit ANSI-C Functions A-11

C++ Toolkit ANSI-C Functions A

Table A-7 shows the location of the description of the ANSI-C Library functions in the
C++ Toolkit. The declaration for each of these functions is provided in Chapter 8,
“Newton C Library Reference.”

Note

Many of the C Library functions are described in the Newton
Programmer’s Guide; however, the NewtonScript function names are
capitalized. You need to take this into consideration when reading the
description of the Newton implementation of a C Library function. For
example, to read about the C Library function acos, you need to look
up the Acos function in the Newton Programmer’s Guide. ◆

Ustrlen In Chapter 7, “Newton Unicode
Reference.”

7-8

Ustrncat In Chapter 7, “Newton Unicode
Reference.”

7-8

Ustrncpy In Chapter 7, “Newton Unicode
Reference.”

7-8

Table A-7 C++ Library ANSI-C Library functions

Function Name Location of function description

Function
header page
in C++ book

abs Refer to ANSI-C library documentation.. 8-20

acos The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-6

acosh The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-6

annuity The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-17

asctime Not available. Use asctime_newton
instead.

asctime_newton In Chapter 8, “Newton C Library
Reference.”

8-30

Table A-6 C++ Toolkit Unicode functions (continued)

Function Name Location of function description

Function
header page in
C++ book

A P P E N D I X A

C++ Function Tables

A-12 C++ Toolkit ANSI-C Functions

asin The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-6

asinh The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-6

atan The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-7

atan2 The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-7

atanh The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-7

atof Refer to ANSI-C library documentation. 8-20

atoi Refer to ANSI-C library documentation. 8-20

atol Refer to ANSI-C library documentation. 8-21

bsearch Refer to ANSI-C library documentation. 8-21

calloc Refer to ANSI-C library documentation. 8-23

ceil Refer to ANSI-C library documentation. 8-7

clock Refer to ANSI-C library documentation. 8-31

compound The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-17

copysign The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-7

copysignf As the copysign function in the “Utility
Functions” chapter of Newton Programmer’s
Guide.

8-8

cos The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-8

cosh The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-8

ctime Not available. Use ctime_newton instead.

ctime_newton In Chapter 8, “Newton C Library
Reference.”

8-31

difftime Refer to ANSI-C library documentation. 8-31

div Refer to ANSI-C library documentation. 8-21

erf The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-8

Table A-7 C++ Library ANSI-C Library functions (continued)

Function Name Location of function description

Function
header page
in C++ book

A P P E N D I X A

C++ Function Tables

C++ Toolkit ANSI-C Functions A-13

erfc The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-8

exp The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-9

exp2 Refer to ANSI-C library documentation. 8-9

expm1 The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-9

fabs The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-9

fdim The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-9

floor The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-9

fmax The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-10

fmin The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-10

fmod The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-10

free Refer to ANSI-C library documentation. 8-24

frexp Refer to ANSI-C library documentation. 8-10

gmtime Refer to ANSI-C library documentation. 8-32

hypot The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-11

isfinite The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-11

isnan The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-11

isnormal The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-11

labs Refer to ANSI-C library documentation. 8-21

ldexp Refer to ANSI-C library documentation. 8-11

ldiv Refer to ANSI-C library documentation. 8-22

localtime Not available. Use localtime_newton
instead.

Table A-7 C++ Library ANSI-C Library functions (continued)

Function Name Location of function description

Function
header page
in C++ book

A P P E N D I X A

C++ Function Tables

A-14 C++ Toolkit ANSI-C Functions

localtime_newton In Chapter 8, “Newton C Library
Reference.”

8-32

log The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-11

log10 The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-12

log1p The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-12

log2 Refer to ANSI-C library documentation. 8-12

logb The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-12

malloc Refer to ANSI-C library documentation. 8-24

memchr Refer to ANSI-C library documentation. 8-25

memcmp Refer to ANSI-C library documentation. 8-25

memcpy Refer to ANSI-C library documentation. 8-25

memmove Refer to ANSI-C library documentation. 8-25

memset Refer to ANSI-C library documentation. 8-26

mktime Refer to ANSI-C library documentation. 8-32

modf Refer to ANSI-C library documentation. 8-12

modff Refer to ANSI-C library documentation. 8-13

nearbyint The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-13

nextafterd The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-13

nextafterf Refer to ANSI-C library documentation. 8-13

pow The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-13

qsort Refer to ANSI-C library documentation. 8-22

rand Refer to ANSI-C library documentation. 8-22

randomx The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-14

realloc Refer to ANSI-C library documentation. 8-24

relation Refer to ANSI-C library documentation. 8-14

Table A-7 C++ Library ANSI-C Library functions (continued)

Function Name Location of function description

Function
header page
in C++ book

A P P E N D I X A

C++ Function Tables

C++ Toolkit ANSI-C Functions A-15

remainder The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-14

remquo The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-14

rint The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-15

rinttol The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-15

round The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-15

roundtol Refer to ANSI-C library documentation. 8-15

scalb The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-15

signbit The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-15

sin The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-16

sinh The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-16

sprintf Refer to ANSI-C library documentation. † 8-18

sqrt The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-16

srand Refer to ANSI-C library documentation. 8-22

sscanf Refer to ANSI-C library documentation. 8-19

strcat Refer to ANSI-C library documentation. 8-26

strchr Refer to ANSI-C library documentation. 8-27

strcmp Refer to ANSI-C library documentation. 8-27

strcoll Refer to ANSI-C library documentation. 8-27

strcpy Refer to ANSI-C library documentation. 8-27

strcspn Refer to ANSI-C library documentation. 8-27

strftime Refer to ANSI-C library documentation. 8-33

strlen Refer to ANSI-C library documentation. 8-28

strncat Refer to ANSI-C library documentation. 8-28

strncmp Refer to ANSI-C library documentation. 8-28

Table A-7 C++ Library ANSI-C Library functions (continued)

Function Name Location of function description

Function
header page
in C++ book

A P P E N D I X A

C++ Function Tables

A-16 C++ Toolkit ANSI-C Functions

strncpy Refer to ANSI-C library documentation. 8-28

strpbrk Refer to ANSI-C library documentation. 8-29

strrchr Refer to ANSI-C library documentation. 8-29

strspn Refer to ANSI-C library documentation. 8-29

strstr Refer to ANSI-C library documentation. 8-29

strtod Refer to ANSI-C library documentation. 8-23

strtok Refer to ANSI-C library documentation. 8-29

strtol Refer to ANSI-C library documentation. 8-23

strtoul Refer to ANSI-C library documentation. 8-23

strxfrm Refer to ANSI-C library documentation. 8-30

tan The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-16

tanh The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-16

time Refer to ANSI-C library documentation. 8-33

tolower Refer to ANSI-C library documentation. 8-5

toupper Refer to ANSI-C library documentation. 8-5

trunc The “Utility Functions” chapter of Newton
Programmer’s Guide.

8-17

va_arg Refer to ANSI-C library documentation. 8-18

va_end Refer to ANSI-C library documentation. 8-18

va_start Refer to ANSI-C library documentation. 8-18

vsprintf Refer to ANSI-C library documentation. † 8-19

_ANSI_rand Refer to ANSI-C library documentation. 8-20

_ANSI_srand Refer to ANSI-C library documentation. 8-20
 † This implementation of the C library function may be slightly different than the standard implementation. Any variances are
described with the function declaration in this book.

Table A-7 C++ Library ANSI-C Library functions (continued)

Function Name Location of function description

Function
header page
in C++ book

A P P E N D I X A

C++ Function Tables

C++ Toolkit ANSI-C Functions A-17

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter Pro 630 printer. Final page
negatives were output directly from the
text and graphics files. Line art was
created using Adobe™ Illustrator.
PostScript™, the page-description
language for the LaserWriter, was
developed by Adobe Systems
Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

WRITER
Gary Hillerson

ILLUSTRATOR
Peggy Kunz

EDITOR
David Schneider

PRODUCTION EDITOR
Rex Wolf

PROJECT MANAGER
Gerry Kane

Special thanks to Tom Waits and
Bob Dylan

.

IN-1

Index

Symbols

_ANSI_RAND 8-20
_ANSI_srand 8-20

A

abs 8-20
acos 8-6
acosh 8-6
AddArraySlot 3-5
AllocateArray 3-6
AllocateBinary 3-6
AllocateFrame 3-6
allocating memory 1-18
annuity 8-17
ArrayMunger 3-6
array objects 1-7
ArrayPosition 3-7
ArrayRemove 3-7
ArrayRemoveCount 3-8
ASCIIString 3-8
asctime 8-30
asctime_newton 8-30
asin 8-6
asinh 8-6
atan 8-7
atan2 8-7
atanh 8-7
atof 8-20
atoi 8-20
atol 8-21

B

BinaryMunger 3-8
binary objects 1-7

accessing data in 1-10 to 1-11, 1-18
access warnings 1-11

BlockMove 4-1
bsearch 8-21

C

C++ arrays 1-16
C++ functions

accessing slot values from 6-14 to 6-15
and memory management 1-2
and the Newton screen 1-2
arguments to 1-6
as wrapper functions 1-6
calling from NewtonScript 1-3, 6-15
calling NewtonScript functions from 6-1 to 6-14
code restrictions 1-2, 1-3 to 1-6
memory allocation and deallocation 1-4
name-mangling 1-4
return values 1-6
static variables 1-5

calendar clock time type 8-4
calendar time type 8-4
calling C++ from NewtonScript 1-3
calling NewtonScript from C++ 1-2
calloc 8-23
catch blocks 5-4
ceil 8-7
ClassOf 3-9
cleanup 5-9
C library constants
HUGE_VAL 8-2
NULL 8-2
RAND_MAX 8-2

C library constants and data types 8-1 to 8-5
C library functions and macros 8-5 to 8-33
_ANSI_RAND 8-20
_ANSI_srand 8-20
abs 8-20
acos 8-6
acosh 8-6
annuity 8-17
asctime 8-30
asctime_newton 8-30
asin 8-6
asinh 8-6
atan 8-7
atan2 8-7
atanh 8-7
atof 8-20
atoi 8-20
atol 8-21
bsearch 8-21
calloc 8-23

I N D E X

IN-2

ceil 8-7
character conversion functions 8-5
clock 8-31
compound 8-17
copysign 8-7
copysignf 8-8
cos 8-8
cosh 8-8
ctime 8-31
ctime_newton 8-31
difftime 8-31
div 8-21
erf 8-8
erfc 8-8
exp 8-9
exp2 8-9
expm1 8-9
fabs 8-9
fdim 8-9
financial functions 8-17
floating-point math functions 8-6 to 8-17
floor 8-9
fmax 8-10
fmin 8-10
fmod 8-10
free 8-24
frexp 8-10
gmtime 8-32
heap functions 8-23 to 8-24
hypot 8-11
isfinite 8-11
isnan 8-11
isnormal 8-11
labs 8-21
ldexp 8-11
ldiv 8-22
localtime 8-32
localtime_newton 8-32
log 8-11
log10 8-12
log1p 8-12
log2 8-12
logb 8-12
malloc 8-24
memchr 8-25
memcmp 8-25
memcpy 8-25
memmove 8-25
memory block manipulation functions 8-25 to 8-26
memset 8-26
mktime 8-32
modf 8-12
modff 8-13
nearbyint 8-13
nextafterd 8-13

nextafterf 8-13
pow 8-13
qsort 8-22
rand 8-22
randomx 8-14
realloc 8-24
relation 8-14
remainder 8-14
remquo 8-14
rint 8-15
rinttol 8-15
round 8-15
roundtol 8-15
scalb 8-15
signbit 8-15
sin 8-16
sinh 8-16
sprintf 8-18
sqrt 8-16
srand 8-22
sscanf 8-19
standard C functions 8-20 to 8-23
standard input and output functions 8-18 to 8-20
strcat 8-26
strchr 8-27
strcmp 8-27
strcoll 8-27
strcpy 8-27
strcspn 8-27
strftime 8-33
string manipulation functions 8-26 to 8-30
strlen 8-28
strncat 8-28
strncmp 8-28
strncpy 8-28
strpbrk 8-29
strrchr 8-29
strspn 8-29
strstr 8-29
strtod 8-23
strtok 8-29
strtol 8-23
strtoul 8-23
strxfrm 8-30
summary of 8-34 to 8-39
tan 8-16
tanh 8-16
time 8-33
time functions 8-30 to 8-33
tolower 8-5
toupper 8-5
trunc 8-17
va_arg 8-18
va_end 8-18
va_start 8-18

I N D E X

IN-3

variable argument list functions 8-17 to 8-18
vsprintf 8-19

C library types
clock_t 8-4
div_t 8-2
double_t 8-3
ldiv_t 8-3
math types 8-3
relop 8-3
size_t 8-2
standard types 8-2 to 8-3
time_t 8-4
time types 8-4 to 8-5
tm 8-4
wchar_t 8-2

clock 8-31
clock time type 8-4
Clone 3-9
code restrictions 1-2, 1-3 to 1-6
CoerceToDouble 3-9
CoerceToInt 3-10
compound 8-17
constants
FALSEREF 2-1
HUGE_VAL 8-2
kASCIIEncoding 7-1
kEndOfCharString 7-2, 7-9
kEndOfUnicodeString 7-2, 7-9
kMacKanjiEncoding 7-1
kMacRomanEncoding 7-1
kNoTranslationChar 7-2, 7-9
kShiftJISEncoding 7-1
kWizardEncoding 7-1
NILREF 2-1
NULL 8-2
RAND_MAX 8-2
TRUEREF 2-1

ConvertFromUnicode 7-2
ConvertToUnicode 7-3
ConvertUnicodeChar 7-3
ConvertUnicodeCharacters 7-4
copysign 8-7
copysignf 8-8
cos 8-8
cosh 8-8
CountFreeBlocks 4-2
ctime 8-31
ctime_newton 8-31
CurrentException 5-6

D

data access functions and macros

END_WITH_LOCKED_BINARY 1-10
warnings about use 1-11
WITH_LOCKED_BINARY 1-10

DebugCStr 2-6
Debugger 2-6
DebugStr 2-6
DeepClone 3-10
DefineException 5-7
DeleteTObjectIterator 3-5
difftime 8-31
DisposPtr 4-2
div 8-21
division result type 8-2
Done 3-4
double precision value type 8-3

E

END_FOREACH 3-3
end_try 5-10
end_unwind 5-10
END_WITH_LOCKED_BINARY 1-10
EnsureInternal 3-10
EQ 2-5
EqualBytes 4-2
erf 8-8
erfc 8-8
exAbort exception 5-5
exAlignment exception 5-5
exBusError exception 5-5
exception blocks 5-4 to 5-5
exception data 5-3
exception destructor type 5-6
exception functions and macros 5-6 to 5-12
cleanup 5-9
CurrentException 5-6
DefineException 5-7
end_try 5-10
end_unwind 5-10
newton_catch 5-10
newton_catch_all 5-10
newton_try 5-11
on_unwind 5-11
rethrow 5-7
Subexception 5-8
summary of 5-13
Throw 5-8
ThrowMsg 5-8
unwind_failed 5-12
unwind_protect 5-12

exceptions
about 5-1 to 5-6
blocks 5-4 to 5-5

I N D E X

IN-4

catch blocks 5-4
class of 5-6
data 5-3
defining 5-1 to 5-3
destructor 5-6
exAbort 5-5
exAlignment 5-5
exBusError 5-5
exDivideByZero 5-5
exIllegalInstr 5-5
exMsgException 5-5
exOutOfStack 5-5
exPermissionViolation 5-5
exRootException 5-5
exSkia 5-5
exWriteProtected 5-5
functions and macros 5-6 to 5-12
Newton system 5-5
types 5-6
volatile values in 5-5

exception structure type 5-6
exception types 5-6
exDivideByZero exception 5-5
exIllegalInstr exception 5-5
exMsgException exception 5-5
exOutOfStack exception 5-5
exp 8-9
exp2 8-9
exPermissionViolation exception 5-5
expm1 8-9
exRootException exception 5-5
exSkia exception 5-5
exWriteProtected exception 5-5

F

fabs 8-9
FALSEREF 2-1
fdim 8-9
FillBytes 4-3
FillLongs 4-3
floor 8-9
fmax 8-10
fmin 8-10
fmod 8-10
FOREACH 3-2
FOREACH_WITH_TAG 3-3
FrameHasPath 3-10
FrameHasSlot 3-10
frames 1-7
free 8-24
frexp 8-10
functions and macros

_ANSI_RAND 8-20
_ANSI_srand 8-20
abs 8-20
acos 8-6
acosh 8-6
AddArraySlot 3-5
AllocateArray 3-6
AllocateBinary 3-6
AllocateFrame 3-6
annuity 8-17
ArrayMunger 3-6
ArrayPosition 3-7
ArrayRemove 3-7
ArrayRemoveCount 3-8
ASCIIString 3-8
asctime 8-30
asctime_newton 8-30
asin 8-6
asinh 8-6
atan 8-7
atan2 8-7
atanh 8-7
atof 8-20
atoi 8-20
atol 8-21
BinaryMunger 3-8
BlockMove 4-1
bsearch 8-21
calloc 8-23
ceil 8-7
ClassOf 3-9
cleanup 5-9
clock 8-31
Clone 3-9
CoerceToDouble 3-9
CoerceToInt 3-10
compound 8-17
ConvertFromUnicode 7-2
ConvertToUnicode 7-3
ConvertUnicodeChar 7-3
ConvertUnicodeCharacters 7-4
copysign 8-7
copysignf 8-8
cos 8-8
cosh 8-8
CountFreeBlocks 4-2
ctime 8-31
ctime_newton 8-31
CurrentException 5-6
DebugCStr 2-6
Debugger 2-6
DebugStr 2-6
DeepClone 3-10
DefineException 5-7
DeleteTObjectIterator 3-5

I N D E X

IN-5

difftime 8-31
DisposPtr 4-2
div 8-21
Done 3-4
END_FOREACH 3-3
end_try 5-10
end_unwind 5-10
END_WITH_LOCKED_BINARY 1-10
EnsureInternal 3-10
EQ 2-5
EqualBytes 4-2
erf 8-8
erfc 8-8
exp 8-9
exp2 8-9
expm1 8-9
fabs 8-9
fdim 8-9
FillBytes 4-3
FillLongs 4-3
floor 8-9
fmax 8-10
fmin 8-10
fmod 8-10
FOREACH 3-2
FOREACH_WITH_TAG 3-3
FrameHasPath 3-10
FrameHasSlot 3-10
free 8-24
frexp 8-10
GC 3-11
GetArraySlot 3-11
GetFramePath 3-11
GetFrameSlot 3-12
GetPtrName 4-4
GetPtrSize 4-4
GetVariable 6-14
gmtime 8-32
HasChars 7-4
HasDigits 7-5
HasSpaces 7-5
hypot 8-11
IsArray 3-12
IsBinary 3-12
IsChar 2-4
ISFALSE 2-5
isfinite 8-11
IsFrame 3-12
IsFunction 3-12
IsInstance 3-13
IsInt 2-4
IsMagicPtr 1-11, 2-4
isnan 8-11
ISNIL 2-5
isnormal 8-11

IsNumber 3-13
IsPtr 2-4
IsPunctSymbol 7-5
IsReadOnly 3-13
IsReal 3-13
IsRealPtr 1-11, 2-4
IsString 3-13
IsSubclass 3-13
IsSymbol 3-14
ISTRUE 2-5
labs 8-21
LargestFreeInHeap 4-4
ldexp 8-11
ldiv 8-22
Length 3-14
localtime 8-32
localtime_newton 8-32
log 8-11
log10 8-12
log1p 8-12
log2 8-12
logb 8-12
MakeBoolean 2-2
MakeChar 2-2
MakeInt 2-2
MakeReal 2-2
MakeString 2-2
MakeSymbol 2-3
malloc 8-24
MaxHeapSize 4-4
memchr 8-25
memcmp 8-25
memcpy 8-25
MemError 4-4
memmove 8-25
memset 8-26
mktime 8-32
modf 8-12
modff 8-13
nearbyint 8-13
NewNamedPtr 4-5
NewPtr 4-5
NewPtrClear 4-5
NewTObjectIterator 3-5
newton_catch 5-10
newton_catch_all 5-10
newton_try 5-11
Next 3-4
nextafterd 8-13
nextafterf 8-13
NOTNIL 2-5
NSCall 6-2
NSCallGlobalFn 6-4
NSCallGlobalFnWithArgArray 6-5
NSCallWithArgArray 6-3

I N D E X

IN-6

NSSend 6-6
NSSendIfDefined 6-8
NSSendIfDefinedWithArgArray 6-10
NSSendProto 6-10
NSSendProtoIfDefined 6-12
NSSendProtoIfDefinedWithArgArray 6-14
NSSendProtoWithArgArray 6-12
NSSendWithArgArray 6-7
on_unwind 5-11
pow 8-13
qsort 8-22
rand 8-22
randomx 8-14
realloc 8-24
ReallocPtr 4-6
RefToInt 2-3
RefToUniChar 2-3
relation 8-14
remainder 8-14
RemoveSlot 3-14
remquo 8-14
ReplaceObject 3-14
Reset 3-4
rethrow 5-7
rint 8-15
rinttol 8-15
round 8-15
roundtol 8-15
scalb 8-15
SetArraySlot 3-14
SetClass 3-15
SetFramePath 3-15
SetFrameSlot 3-16
SetLength 3-16
SetPtrName 4-7
SetVariable 6-15
signbit 8-15
sin 8-16
sinh 8-16
SortArray 3-16
sprintf 8-18
sqrt 8-16
srand 8-22
sscanf 8-19
Statistics 3-17
StrBeginsWith 3-17
StrCapitalize 3-17
StrCapitalizeWords 3-17
strcat 8-26
strchr 8-27
strcmp 8-27
strcoll 8-27
strcpy 8-27
strcspn 8-27
StrDowncase 3-17

StrEndsWith 3-18
strftime 8-33
StripPunctSymbols 7-5
strlen 8-28
StrMunger 3-18
strncat 8-28
strncmp 8-28
strncpy 8-28
strpbrk 8-29
StrPosition 3-18
strrchr 8-29
StrReplace 3-19
strspn 8-29
strstr 8-29
strtod 8-23
strtok 8-29
strtol 8-23
strtoul 8-23
StrUpcase 3-19
strxfrm 8-30
Subexception 5-8
Substring 3-19
SYM 2-3
SymbolCompareLex 3-20
syncmp 3-20
SystemRAMSize 4-7
Tag 3-4
tan 8-16
tanh 8-16
Throw 5-8
ThrowBadTypeWithFrameData 3-20
ThrowMsg 5-8
ThrowRefException 3-21
time 8-33
tolower 8-5
TotalClone 3-21
TotalFreeInHeap 4-7
TotalUsedInHeap 4-7
toupper 8-5
TrimString 3-21
trunc 8-17
Umemset 7-6
unwind_failed 5-12
unwind_protect 5-12
Ustrcat 7-7
Ustrchr 7-7
Ustrcmp 7-7
Ustrcpy 7-7
Ustrlen 7-8
Ustrncat 7-8
Ustrncpy 7-8
va_arg 8-18
va_end 8-18
va_start 8-18
Value 3-5

I N D E X

IN-7

vsprintf 8-19
WITH_LOCKED_BINARY 1-10
XORBytes 4-8
ZeroBytes 4-8

functions and macros for using C++ with NewtonScript
DebugCStr 2-6
Debugger 2-6
DebugStr 2-6
EQ 2-5
IsChar 2-4
ISFALSE 2-5
IsInt 2-4
IsMagicPtr 2-4
ISNIL 2-5
IsPtr 2-4
IsRealPtr 2-4
ISTRUE 2-5
MakeBoolean 2-2
MakeChar 2-2
MakeInt 2-2
MakeReal 2-2
MakeString 2-2
MakeSymbol 2-3
NOTNIL 2-5
RefToInt 2-3
RefToUniChar 2-3
summary of 2-7 to 2-8
SYM 2-3

G

GC 3-11
GetArraySlot 3-11
GetFramePath 3-11
GetFrameSlot 3-12
GetPtrName 4-4
GetPtrSize 4-4
GetVariable 6-14
global data 1-5
gmtime 8-32

H

HasChars 7-4
HasDigits 7-5
HasSpaces 7-5
HUGE_VAL 8-2
hypot 8-11

I

immediate objects 1-7
IsArray 3-12
IsBinary 3-12
IsChar 2-4
ISFALSE 2-5
isfinite 8-11
IsFrame 3-12
IsFunction 3-12
IsInstance 3-13
IsInt 2-4
IsMagicPtr 1-11, 2-4
isnan 8-11
ISNIL 2-5
isnormal 8-11
IsNumber 3-13
IsPtr 2-4
IsPunctSymbol 7-5
IsReadOnly 3-13
IsReal 3-13
IsRealPtr 1-11, 2-4
IsString 3-13
IsSubclass 3-13
IsSymbol 3-14
ISTRUE 2-5

L

labs 8-21
LargestFreeInHeap 4-4
ldexp 8-11
ldiv 8-22
Length 3-14
localtime 8-32
localtime_newton 8-32
log 8-11
log10 8-12
log1p 8-12
log2 8-12
logb 8-12
long division result type 8-3

M

magic pointers 1-11
MakeBoolean 2-2
MakeChar 2-2
MakeInt 2-2
MakeReal 2-2
MakeString 2-2

I N D E X

IN-8

MakeSymbol 2-3
malloc 8-24
MaxHeapSize 4-4
memchr 8-25
memcmp 8-25
memcpy 8-25
MemError 4-4
memmove 8-25
memory allocation and deallocation 1-4
memory management functions and macros 4-1 to 4-8
BlockMove 4-1
CountFreeBlocks 4-2
DisposPtr 4-2
EqualBytes 4-2
FillBytes 4-3
FillLongs 4-3
GetPtrName 4-4
GetPtrSize 4-4
LargestFreeInHeap 4-4
MaxHeapSize 4-4
MemError 4-4
NewNamedPtr 4-5
NewPtr 4-5
NewPtrClear 4-5
ReallocPtr 4-6
SetPtrName 4-7
summary of 4-9
SystemRAMSize 4-7
TotalFreeInHeap 4-7
TotalUsedInHeap 4-7
XORBytes 4-8
ZeroBytes 4-8

memset 8-26
mktime 8-32
modf 8-12
modff 8-13

N

name-mangling 1-4
nearbyint 8-13
NewNamedPtr 4-5
NewPtr 4-5
NewPtrClear 4-5
NewTObjectIterator 3-5
newton_catch 5-10
newton_catch_all 5-10
newton_try 5-11
Newton object system

about 1-6 to ??
array objects 1-7
binary objects 1-7, 1-10 to 1-11, 1-18
frames 1-7

immediate objects 1-7
object classes 3-1 to 3-5
object system functions 3-5 to 3-21
object types 1-6 to 1-7
path expressions 1-12
primitive object classes 1-7
reference objects 1-7
reference types 1-7 to 1-8
Ref 1-7
RefStruct 1-8
RefVar 1-8

symbols 1-6 to 1-7, 1-12
NewtonScript

accessing slot values 6-14 to 6-15
calling C++ functions from 6-15
calling from C++ 1-2, 6-1 to 6-14
magic pointers 1-11
object types 1-6 to 1-7
symbols 1-6 to 1-7, 1-12

NewtonScript interpreter functions and macros 6-1 to
6-16

GetVariable 6-14
NSCall 6-2
NSCallGlobalFn 6-4
NSCallGlobalFnWithArgArray 6-5
NSCallWithArgArray 6-3
NSSend 6-6
NSSendIfDefined 6-8
NSSendIfDefinedWithArgArray 6-10
NSSendProto 6-10
NSSendProtoIfDefined 6-12
NSSendProtoIfDefinedWithArgArray 6-14
NSSendProtoWithArgArray 6-12
NSSendWithArgArray 6-7
SetVariable 6-15
summary of 6-17 to 6-19

Newton system exceptions 5-5
Next 3-4
nextafterd 8-13
nextafterf 8-13
NILREF 2-1
NOTNIL 2-5
NSCall 6-2
NSCallGlobalFn 6-4
NSCallGlobalFnWithArgArray 6-5
NSCallWithArgArray 6-3
NSSend 6-6
NSSendIfDefined 6-8
NSSendIfDefinedWithArgArray 6-10
NSSendProto 6-10
NSSendProtoIfDefined 6-12
NSSendProtoIfDefinedWithArgArray 6-14
NSSendProtoWithArgArray 6-12
NSSendWithArgArray 6-7
NULL 8-2

I N D E X

IN-9

O

object iterator class 3-4 to 3-5
object iterator class functions and macros
DeleteTObjectIterator 3-5
Done 3-4
END_FOREACH 3-3
FOREACH 3-2
FOREACH_WITH_TAG 3-3
NewTObjectIterator 3-5
Next 3-4
Reset 3-4
Tag 3-4
Value 3-5

object references 1-7 to 1-8
object system functions and macros 3-5 to 3-21
AddArraySlot 3-5
AllocateArray 3-6
AllocateBinary 3-6
AllocateFrame 3-6
ArrayMunger 3-6
ArrayPosition 3-7
ArrayRemove 3-7
ArrayRemoveCount 3-8
ASCIIString 3-8
BinaryMunger 3-8
ClassOf 3-9
Clone 3-9
CoerceToDouble 3-9
CoerceToInt 3-10
DeepClone 3-10
EnsureInternal 3-10
FrameHasPath 3-10
FrameHasSlot 3-10
GC 3-11
GetArraySlot 3-11
GetFramePath 3-11
GetFrameSlot 3-12
IsArray 3-12
IsBinary 3-12
IsFrame 3-12
IsFunction 3-12
IsInstance 3-13
IsNumber 3-13
IsReadOnly 3-13
IsReal 3-13
IsString 3-13
IsSubclass 3-13
IsSymbol 3-14
Length 3-14
RemoveSlot 3-14
ReplaceObject 3-14
SetArraySlot 3-14
SetClass 3-15
SetFramePath 3-15

SetFrameSlot 3-16
SetLength 3-16
SortArray 3-16
Statistics 3-17
StrBeginsWith 3-17
StrCapitalize 3-17
StrCapitalizeWords 3-17
StrDowncase 3-17
StrEndsWith 3-18
StrMunger 3-18
StrPosition 3-18
StrReplace 3-19
StrUpcase 3-19
Substring 3-19
summary of 3-22 to 3-24
SymbolCompareLex 3-20
syncmp 3-20
ThrowBadTypeWithFrameData 3-20
ThrowRefException 3-21
TotalClone 3-21
TrimString 3-21

object types 1-6 to 1-7
on_unwind 5-11

P

path expressions 1-12
persistent storage 1-18
pow 8-13
primitive object classes 1-7

Q

qsort 8-22

R

rand 8-22
RAND_MAX 8-2
randomx 8-14
realloc 8-24
ReallocPtr 4-6
Ref 1-7
RefArg type 1-8
reference objects 1-7
reference types 1-7 to 1-8
Ref 1-7
RefStruct 1-8
RefVar 1-8

I N D E X

IN-10

RefStruct 1-8
RefStruct type 1-8
RefToInt 2-3
RefToUniChar 2-3
Ref type 1-8
RefVar 1-8
RefVar type 1-8
relation 8-14
relational operator type 8-3
remainder 8-14
RemoveSlot 3-14
remquo 8-14
ReplaceObject 3-14
Reset 3-4
rethrow 5-7
rint 8-15
rinttol 8-15
round 8-15
roundtol 8-15

S

scalb 8-15
SetArraySlot 3-14
SetClass 3-15
SetFramePath 3-15
SetFrameSlot 3-16
SetLength 3-16
SetPtrName 4-7
SetVariable 6-15
signbit 8-15
sin 8-16
sinh 8-16
size type 8-2
SortArray 3-16
sprintf 8-18
sqrt 8-16
srand 8-22
sscanf 8-19
static variables 1-5
Statistics 3-17
StrBeginsWith 3-17
StrCapitalize 3-17
StrCapitalizeWords 3-17
strcat 8-26
strchr 8-27
strcmp 8-27
strcoll 8-27
strcpy 8-27
strcspn 8-27
StrDowncase 3-17
StrEndsWith 3-18
strftime 8-33

StripPunctSymbols 7-5
strlen 8-28
StrMunger 3-18
strncat 8-28
strncmp 8-28
strncpy 8-28
strpbrk 8-29
StrPosition 3-18
strrchr 8-29
StrReplace 3-19
strspn 8-29
strstr 8-29
strtod 8-23
strtok 8-29
strtol 8-23
strtoul 8-23
StrUpcase 3-19
strxfrm 8-30
Subexception 5-8
Substring 3-19
SYM 2-3
SymbolCompareLex 3-20
symbols 1-6 to 1-7, 1-12
syncmp 3-20
system exceptions
exAbort 5-5
exAlignment 5-5
exBusError 5-5
exDivideByZero 5-5
exIllegalInstr 5-5
exMsgException 5-5
exOutOfStack 5-5
exPermissionViolation 5-5
exRootException 5-5
exSkia 5-5
exWriteProtected 5-5

SystemRAMSize 4-7

T

Tag 3-4
tan 8-16
tanh 8-16
Throw 5-8
ThrowBadTypeWithFrameData 3-20
ThrowMsg 5-8
ThrowRefException 3-21
time 8-33
TObjectIterator class 3-4
tolower 8-5
TotalClone 3-21
TotalFreeInHeap 4-7
TotalUsedInHeap 4-7

I N D E X

IN-11

toupper 8-5
TrimString 3-21
TRUEREF 2-1
trunc 8-17
type-checking functions and macros
IsMagicPtr 1-11
IsRealPtr 1-11

types
clock_t 8-4
div_t 8-2
double_t 8-3
ldiv_t 8-3
relop 8-3
size_t 8-2
time_t 8-4
tm 8-4
UniChar 7-1
wchar_t 8-2

U

Umemset 7-6
UniChar type 7-1
Unicode constants and data type 7-1 to 7-2
Unicode encoding types 7-1
Unicode functions and macros 7-2 to 7-8
ConvertFromUnicode 7-2
ConvertToUnicode 7-3
ConvertUnicodeChar 7-3
ConvertUnicodeCharacters 7-4
HasChars 7-4
HasDigits 7-5
HasSpaces 7-5
IsPunctSymbol 7-5
StripPunctSymbols 7-5
summary of 7-9 to 7-10
Umemset 7-6
Ustrcat 7-7
Ustrchr 7-7
Ustrcmp 7-7
Ustrcpy 7-7
Ustrlen 7-8
Ustrncat 7-8
Ustrncpy 7-8

unwind_failed 5-12
unwind_protect 5-12
using C++ with NewtonScript

constants 2-1
debugging functions and macros 2-6 to ??
functions and macros 2-1 to ??
overview 1-1 to 1-6
type-checking functions and macros 2-4
type-conversion functions and macros 2-1 to 2-3

value-checking functions and macros 2-5
Ustrcat 7-7
Ustrchr 7-7
Ustrcmp 7-7
Ustrcpy 7-7
Ustrlen 7-8
Ustrncat 7-8
Ustrncpy 7-8

V

va_arg 8-18
va_end 8-18
va_start 8-18
Value 3-5
vsprintf 8-19

W

wide char type 8-2
WITH_LOCKED_BINARY 1-10
wrapper functions 1-16

X

XORBytes 4-8

Z

ZeroBytes 4-8

	Contents
	Figures, Tables, and Listings
	About This Book
	How to Use This Book
	Related Books
	Conventions
	Developer Products and Support

	C++ Toolkit Introduction
	Using C++ With NewtonScript
	Calling NewtonScript from C++
	Calling C++ from NewtonScript
	C++ Modules

	C++ Code Restrictions
	Methods, Functions, and Name-Mangling
	Memory Allocation
	Static Variables
	Global Data
	Allocating Persistent Storage

	Function Arguments and Return Values

	The Newton Object System
	Newton Symbols and Object Types
	Table�1-1 Newton object types

	Object References
	Table�1-2 Summary of C++ Toolkit reference types
	Using Ref as The Function Return Type
	Table of Object Reference Use
	Table�1-3 Examples of object reference use

	Accessing Data In a Binary Object
	NewtonScript Magic Pointers
	Path Expressions
	Table�1-4 Path expressions
	Specifying Symbols

	Newton Exceptions and C++

	NewtonScript and C++ Equivalences and Examples
	Table�1-5 NewtonScript expressions and their C++ e...
	A Simple Example in NewtonScript and C++
	An Example of Defining and Calling Several C++ Fun...
	An Example of a Wrapper Function
	An Example of Converting a C++ Array into NewtonSc...
	An Example of Automatic Allocation of RefArgs
	An Example of Allocating Persistent Storage
	An Example of Accessing Binary Data

	C++ and NewtonScript Conversion Reference
	Constants for Using C++ With NewtonScript
	Type Conversion Functions
	MakeBoolean
	MakeChar
	MakeInt
	MakeReal
	MakeString
	MakeSymbol
	RefToUniChar
	RefToInt
	SYM

	Type Checking Functions
	IsChar
	IsInt
	IsMagicPtr
	IsPtr
	IsRealPtr

	Value Checking Functions and Macros
	EQ
	ISNIL
	ISFALSE
	ISTRUE
	NOTNIL

	Debugging Macros
	Debugger
	DebugStr
	DebugCStr

	Newton Object System Reference
	Object System Classes
	Iteration Macros
	FOREACH
	FOREACH_WITH_TAG
	END_FOREACH

	Object Iterator Class
	Reset
	Next
	Done
	Tag
	Value

	Iterator Functions
	NewTObjectIterator
	DeleteTObjectIterator

	C++ Object System Functions
	AddArraySlot
	AllocateArray
	AllocateBinary
	AllocateFrame
	ArrayMunger
	ArrayPosition
	ArrayRemove
	ArrayRemoveCount
	ASCIIString
	BinaryMunger
	ClassOf
	Clone
	CoerceToDouble
	CoerceToInt
	DeepClone
	EnsureInternal
	FrameHasPath
	FrameHasSlot
	GC
	GetArraySlot
	GetFramePath
	GetFrameSlot
	IsArray
	IsBinary
	IsFrame
	IsFunction
	IsInstance
	IsNumber
	IsReadOnly
	IsReal
	IsString
	IsSubclass
	IsSymbol
	Length
	RemoveSlot
	ReplaceObject
	SetArraySlot
	SetClass
	SetFramePath
	SetFrameSlot
	SetLength
	SortArray
	Statistics
	StrBeginsWith
	StrCapitalize
	StrCapitalizeWords
	StrDowncase
	StrEndsWith
	StrMunger
	StrPosition
	StrReplace
	StrUpcase
	Substring
	SymbolCompareLex
	symcmp
	ThrowBadTypeWithFrameData
	ThrowRefException
	TotalClone
	TrimString

	Newton Memory Manager Reference
	About the Newton Memory Manager
	Memory Manager Functions
	BlockMove
	CountFreeBlocks
	DisposePtr
	EqualBytes
	FillBytes
	FillLongs
	GetPtrName
	GetPtrSize
	LargestFreeInHeap
	MaxHeapSize
	MemError
	NewNamedPtr
	NewPtr
	NewPtrClear
	ReallocPtr
	SetPtrName
	SystemRAMSize
	TotalFreeInHeap
	TotalUsedInHeap
	XORBytes
	ZeroBytes

	Newton Exceptions Reference
	About Newton Exceptions
	Defining Exceptions
	Table�5-1 An exception-handling hierarchy

	Exception Data
	Exception Blocks
	Catch Blocks
	Other Exception-handling Blocks

	Volatile Values
	Newton System Software Exceptions
	Table�5-2 Newton system software exceptions�

	Exception Types
	The Exception Structure Type
	The Exception Destructor Type

	Exception Functions and Macros
	CurrentException
	DefineException
	rethrow
	Subexception
	Throw
	ThrowMsg

	Exception-Handling Macros
	cleanup
	end_unwind
	end_try
	newton_catch
	newton_catch_all
	newton_try
	on_unwind
	unwind_failed
	unwind_protect

	NewtonScript Reference
	NewtonScript Interpreter Functions
	Functions for Calling NewtonScript Functions From ...
	NSCall
	NSCallWithArgArray
	NSCallGlobalFn
	NSCallGlobalFnWithArgArray
	NSSend
	NSSendWithArgArray
	NSSendIfDefined
	NSSendIfDefinedWithArgArray
	NSSendProto
	NSSendProtoWithArgArray
	NSSendProtoIfDefined
	NSSendProtoIfDefinedWithArgArray

	Functions for Accessing NewtonScript Slot Values f...
	GetVariable
	SetVariable

	Calling C++ Functions from NewtonScript

	Newton Unicode Reference
	.Unicode Constants and Data Types
	The UniChar Type
	Encoding Type Constants
	Unicode Character and String Constants

	Unicode Functions
	ConvertFromUnicode
	ConvertToUnicode
	ConvertUnicodeChar
	ConvertUnicodeCharacters
	HasChars
	HasDigits
	HasSpaces
	IsPunctSymbol
	StripPunctSymbols
	Table�7-1 Unicode punctuation symbols

	Umemset
	Ustrcat
	Ustrchr
	Ustrcmp
	Ustrcpy
	Ustrlen
	Ustrncat
	Ustrncpy

	Newton C Library Reference
	C Library Constants and Data Types
	C Library Constants
	The NULL Pointer
	The HUGE_VAL Constant
	The Maximum Random Number Value

	Standard Library Types
	The Size Type
	The Wide Char Type
	The Division Result Type
	The Long Division Result Type

	Math Types
	Double-precision Value Type
	Relational Operator Type

	Time Types
	Clock Time Type
	Calendar Time Type
	Calendar Clock Time Structure

	C Library Functions
	Character Conversion Functions
	tolower
	toupper

	Floating-point Math Functions
	acos
	acosh
	asin
	asinh
	atan
	atan2
	atanh
	ceil
	copysign
	copysignf
	cos
	cosh
	erf
	erfc
	exp
	exp2
	expm1
	fabs
	fdim
	floor
	fmax
	fmin
	fmod
	frexp
	hypot
	isfinite
	isnan
	isnormal
	ldexp
	log
	logb
	log1p
	log10
	log2
	modf
	modff
	nearbyint
	nextafterd
	nextafterf
	pow
	randomx
	relation
	remainder
	remquo
	rint
	rinttol
	round
	roundtol
	scalb
	signbit
	sin
	sinh
	sqrt
	tan
	tanh
	trunc

	Financial Functions
	annuity
	compound

	Variable Argument List Macros
	va_start
	va_arg
	va_end

	Standard Input and Output Functions
	sprintf
	sscanf
	vsprintf

	Standard C Library Functions
	_ANSI_rand
	_ANSI_srand
	abs
	atof
	atoi
	atol
	bsearch
	div
	labs
	ldiv
	qsort
	rand
	srand
	strtod
	strtol
	strtoul

	Heap Functions
	calloc
	free
	malloc
	realloc

	Memory Block Manipulation Functions
	memchr
	memcmp
	memcpy
	memmove
	memset

	String Manipulation Functions
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtok
	strxfrm

	Time Functions
	asctime
	asctime_newton
	clock
	ctime
	ctime_newton
	difftime
	gmtime
	localtime
	localtime_newton
	mktime
	strftime
	time

	C++ Function Tables
	Functions and Macros for Using C++ With NewtonScri...
	Table A-1 C++ and NewtonScript conversion function...

	Newton Object System Functions
	Table A-2 C++ Toolkit Object System functions (con...

	C++ Toolkit Memory Manager Functions
	Table A-3 C++ Toolkit Memory Manager functions (co...

	C++ Toolkit Exception-Handling Functions
	Table A-4 C++ Toolkit exception-handling functions...

	C++ NewtonScript Functions
	Table A-5 C++ Toolkit NewtonScript functions�

	C++ Toolkit Unicode Functions
	Table A-6 C++ Toolkit Unicode functions (continued...

	C++ Toolkit ANSI-C Functions
	Table A-7 C++ Library ANSI-C Library functions (co...

