Newton Developer
Tools

Newton C++ Tools
Programmer’s Reference

o

May 16, 1996
© Apple Computer, Inc. 1996

" Apple Computer, Inc.

© 1996x, Apple Computer, Inc.
All rights reserved.

No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying,
recording, or otherwise, without
prior written permission of Apple
Computer, Inc., except in the normal
use of the software or to make a
backup copy of the software. The
same proprietary and copyright
notices must be affixed to any
permitted copies as were affixed to
the original. This exception does not
allow copies to be made for others,
whether or not sold, but all of the
material purchased (with all
backup copies) may be sold, given,
or loaned to another person. Under
the law, copying includes
translating into another language or
format. You may use the software on
any computer owned by you, but
extra copies cannot be made for this
purpose.

Printed in the United States of
America.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for licensed
Newton platforms.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, LaserWriter,
Macintosh, and Newton are
trademarks of Apple Computer,
Inc., registered in the United States
and other countries.

The light bulb logo, MessagePad,
NewtonScript, and Newton Toolkit
are trademarks of Apple Computer,
Inc.

FrameMaker is a registered
trademark of Frame Technology
Corporation.

Helvetica and Palatino are
registered trademarks of Linotype
Company.

ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, APDA
will replace the media or manual at no
charge to you provided you return the
item to be replaced with proof of
purchase to APDA.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
“AS1S,” AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Figures, Tables, and Listings vii

Preface About This Book ix
How to Use This Book ix
Related Books X
Conventions xi
Developer Products and Support xi
Chapter 1 C++ Toolkit Introduction 11
Using C++ With NewtonScript ~ 1-1
Calling NewtonScript from C++ 1-2
Calling C++ from NewtonScript 1-3
C++ Code Restrictions 1-4
Methods, Functions, and Name-Mangling 1-4
Memory Allocation 1-4
Function Arguments and Return Values 1-6
The Newton Object System 1-6
Newton Symbols and Object Types 1-6
Object References 1-7
Accessing Data In a Binary Object 1-10
NewtonScript Magic Pointers 1-11
Path Expressions 1-12
Newton Exceptions and C++ 1-12
NewtonScript and C++ Equivalences and Examples 1-13
A Simple Example in NewtonScript and C++ 1-14
An Example of Defining and Calling Several C++ Functions 1-15
An Example of a Wrapper Function 1-16
An Example of Converting a C++ Array into NewtonScript 1-16
An Example of Automatic Allocation of RefArgs 1-17
An Example of Allocating Persistent Storage 1-18
An Example of Accessing Binary Data 1-19
Chapter 2 C++ and NewtonScript Conversion Reference 21

Constants for Using C++ With NewtonScript 2-1
Type Conversion Functions 2-1

Type Checking Functions ~ 2-4

Value Checking Functions and Macros 2-5

iii

Debugging Macros 2-6
Summary of C++ and NewtonScript Conversion Reference 2-7
Constants for Using C++ With NewtonScript 2-7
Type Conversion Functions and Macros 2-7
Type Checking Functions 2-7
Value Checking Functions and Macros 2-7
Debugging Functions and Macros 2-8

Chapter 3 Newton Object System Reference 31

Object System Classes 3-1
Iteration Macros 3-1
Object Iterator Class 3-4
Iterator Functions 3-5
C++ Object System Functions 3-5
Summary of Object System Reference 3-22
Object System Classes 3-22
Object Iterator Class 3-22
Newton Object System Functions and Macros 3-22
Iterator Functions 3-22
Iteration Macros 3-22
C++ Newton Object Functions 3-22

Chapter 4 Newton Memory Manager Reference 41

About the Newton Memory Manager 4-1

Memory Manager Functions 4-1

Summary of Memory Manager Reference 4-9
Memory Manager C++ Functions 4-9

Chapter 5 Newton Exceptions Reference 51

About Newton Exceptions ~ 5-1
Defining Exceptions 5-1
Exception Data 5-3
Exception Blocks 5-4
Volatile Values 5-5
Newton System Software Exceptions 5-5

Exception Types 5-6

Exception Functions and Macros 5-6

Exception-Handling Macros 5-9

Summary of Exceptions Reference 5-13
Exception C++ Functions 5-13

iv

Chapter 6

Functions and Macros to Define and Throw Exceptions 5-13
Exception-Handling Macros 5-13

NewtonScript Reference 6-1

Chapter 7

NewtonScript Interpreter Functions 6-1
Functions for Calling NewtonScript Functions From C++ 6-1
Functions for Accessing NewtonScript Slot Values from C++ 6-14
Calling C++ Functions from NewtonScript ~ 6-15
Summary of NewtonScript Interpreter Functions 6-17
Functions for Calling NewtonScript Functions From C++ 6-17
NSCall 6-17
NSCallGlobalFn 6-17
NSSend 6-17
NSSendIfDefined 6-18
NSSendProto 6-18
NSSendProtolfDefined 6-19
Functions for Accessing NewtonScript Slot Values from C++ 6-19

Newton Unicode Reference 71

Chapter 8

.Unicode Constants and Data Types 7-1
The UniChar Type 7-1
Encoding Type Constants 7-1
Unicode Character and String Constants 7-2
Unicode Functions 7-2
Summary of Unicode Reference 7-9
Unicode Data Types 7-9
Encoding Type Constants 7-9
Unicode Character and String Constants 7-9
Unicode Functions 7-9

Newton C Library Reference s8-1

C Library Constants and Data Types 8-1
C Library Constants 8-1
Standard Library Types 8-2
Math Types ~ 8-3
Time Types 8-4

C Library Functions 8-5
Character Conversion Functions 8-5
Floating-point Math Functions 8-6
Financial Functions 8-17

Appendix A

Variable Argument List Macros 8-17
Standard Input and Output Functions 8-18
Standard C Library Functions 8-20
Heap Functions 8-23
Memory Block Manipulation Functions 8-25
String Manipulation Functions ~ 8-26
Time Functions 8-30
Summary of C Library Reference 8-34
C Library Constants and Types 8-34
Standard Library Types 8-34
Math Types 8-34
Time Types 8-34
C Library Functions 8-35
Character Conversion Functions 8-35
Floating-point Math Functions 8-35
Financial Functions 8-37
Variable Argument List Macros 8-37
Standard Input and Output Functions 8-37
Standard C Library Functions 8-37
Heap Functions 8-38
Memory Block Manipulation Functions 8-38
String Manipulation Functions 8-38
Time Functions 8-39

C++ Function Tables a-1

vi

Functions and Macros for Using C++ With NewtonScript
Newton Object System Functions A-2

C++ Toolkit Memory Manager Functions A-6

C++ Toolkit Exception-Handling Functions A-8

C++ NewtonScript Functions A-9

C++ Toolkit Unicode Functions A-10

C++ Toolkit ANSI-C Functions A-11

A-1

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Figures, Tables, and Listings

C++ Toolkit Introduction 1-1

Table 1-1 Newton object types 1-7
Table 1-2 Summary of C++ Toolkit reference types 1-8
Table 1-3 Examples of object reference use 1-9
Listing 1-1 Using a locked pointer to access a binary object 1-10
Table 1-4 Path expressions 1-12
Listing 1-2 Working with a C++ object in an exception block 1-13
Table 1-5 NewtonScript expressions and their C++ equivalences 1-13
Listing 1-3 A NewtonScript sear ch function 1-14
Listing 1-4 C++ version of the sear ch function 1-14
Listing 1-5 Defining a C++ function in a module 1-15
Listing 1-6 Calling a C++ function from NewtonScript 1-16
Listing 1-7 A wrapper function for a C++ function callable from
NewtonScript 1-16
Listing 1-8 Converting a C++ array into a NewtonScript object 1-16
Listing 1-9 An example of inefficient automatic allocation of Ref Ar gs 1-17
Listing 1-10 An example of a more efficient Ref Ar g loop 1-17
Listing 1-11 NewtonScript code for using a binary object as persistent storage
for C++ 1-18
Listing 1-12 C++ code for using a binary object as persistent storage 1-18
Listing 1-13 Accessing binary data 1-19

C++ and NewtonScript Conversion Reference 2-1

Newton Object System Reference 3-1

Listing 3-1 An example of using the FOREACH macro 3-2
Listing 3-2 An example of using the FOREACH_WITH_TAG macro 3-3

Newton Memory Manager Reference 4-1

Newton Exceptions Reference 5-1

Table 5-1 An exception-handling hierarchy 5-3

Table 5-2 Newton system software exceptions 5-5

Listing 5-1 Using the newt on_t ry, newt on_cat ch, and end_try
macros 5-9

Listing 5-2 Using the newt on_cat ch_al | macro 5-11

Listing 5-3 Using the unwi nd_pr ot ect, on_unwi nd , and unwi nd_end

macros 5-12

vii

Chapter 6

Chapter 7

Chapter 8

Appendix A

viii

NewtonScript Reference 6-1

Newton Unicode Reference 7-1

Table 7-1 Unicode punctuation symbols 7-6

Newton C Library Reference 8-1

C++ Function Tables A-1

Table A-1 C++ and NewtonScript conversion functions and macros
Table A-2 C++ Toolkit Object System functions A-2

Table A-3 C++ Toolkit Memory Manager functions A-6

Table A-4 C++ Toolkit exception-handling functions A-8

Table A-5 C++ Toolkit NewtonScript functions A-9

Table A-6 C++ Toolkit Unicode functions A-10

Table A-7 C++ Library ANSI-C Library functions A-11

A-1

PREFAUCE

About This Book

This book describes the C++ Toolkit, which allows you to develop code in the
C++ language that can be included in a NewtonScript application. This book

documents the collection of C++ functions and data types that you can use to
interface with the Newton.

IMPORTANT

The C++ Toolkit software allows you to use C++ code in a NewtonScript
application. You must understand the Newton progamming
environment before using the C++ Toolkit. If you have never written a
Newton application, you need to read the Newton Programmer’s Guide:
System Software and The NewtonScript Programming Language. This book
only explains those parts of the Newton programming environment that
are unique for C++ programming. a

How to Use This Book

This book is a reference guide to the functions, data types, and constants that
the C++ Toolkit provides. Many of the functions of the C++ Toolkit provide
the same functionality as the functions of the NewtonScript programming
language.

To learn about specific tools, menu choices, and options in the programming
environment for including C++ code in your NewtonScript application, refer
to the Getting Started with C++ Tools document.

The NewtonScript documentation describes the Newton programming
environment and provides a wealth of how-to information for developing
Newton applications. To learn more about programming the Newton, refer to
the Newton Programmer’s Guide: System Software.

This book contains eight chapters and one appendix:

s Chapter 1, “Introduction,” provides an overview of how C++ programs
interact with the NewtonScript world.

s Chapter 2, “C++ and NewtonScript Conversion Reference,” describes the
constants, data types, and functions that you can use to convert objects
between NewtonScript and C++.

s Chapter 3, “Object System Reference,” describes the C++ functions that
you use to manipulate Newton objects.

» Chapter 4, “Memory Manager Reference,” the C++ functions that you use
to work with the Newton memory manager.

ix

Related Books

PRETFAUCE

» Chapter 5, “Exceptions Reference,” describes the C++ functions that you
can use to raise and handle exceptions during the execution of your
Newton applications.

» Chapter 6, “NewtonScript Reference,” describes the programming interface
that you can use from your C++ programs to call into the NewtonScript
interpreter. It also explains how to structure your C++ functions to allow
NewtonScript applications to call them.

s Chapter 7, “Unicode Reference,” describes the C++ constants, data types,
and classes that you use to manipulate Unicode strings.

s Chapter 8, “C Library Reference,” describes the constants, data types, and
functions from the C Library that you can use with your Newton programs.

» Appendix A, “C++ Function Tables,” provides tables that show the location
of the header and description for each function in the C++ Toolkit.

This book is a standalone book that describes the C++ functions that you can
use with your NewtonScript applications for the Newton. For more
information about the Newton programming environment, refer to:

» Newton C++ Tools for the Mac OS User Guide. This book describes the
development environment and tools that you use to implement C++ code
for the Newton.

» Newton Programmer’s Guide. This book is the definitive guide and reference
for Newton programming. It explains how to write Newton programs and
describes the system software routines that you can use to do so.

» The NewtonScript Programming Language. This book describes the
NewtonScript programming language.

PRETFAUCE

Conventions

This book uses the following font and syntax conventions:

Couri er The Courier font represents material that is typed
exactly as shown. Code listings, code snippets,
and special identifiers in the text such as
predefined system frame names, slot names,
function names, method names, symbols, and
constants are shown in the Courier typeface to
distinguish them from regular body text.

italics Text in italics represents replacable elements, such
as function parameters, which you must replace
with your own values.

boldface Key terms and concepts are printed in boldface
where they’re defined. Words defined in this book
appear in the glossary in the An Introduction to
Newton Driver Development Kits.

An ellipsis in a syntax description means that
the preceding element can be repeated one or
more times.

An ellipsis in a code example represents
code not shown.

[] Square brackets enclose optional elements in
syntax descriptions.

Developer Products and Support

APDA is Apple’s worldwide source for a large number of develop-

ment tools, technical resources, training products, and information for anyone
interested in developing applications on Apple platforms. Every four months,

customers receive the APDA Tools Catalog featuring current versions of
Apple’s development tools and the most popular third-party development
tools. Ordering is easy; there are no membership fees, and application forms
are not required for most products. APDA offers convenient payment and
shipping options including site licensing.

To order product or to request a complimentary copy of the APDA Tools
Catalog:

APDA
Apple Computer, Inc.

xi

xii

PREFAUCE

P.O. Box 319

Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDA

CompuServe 76666,2405

Internet APDA@applelink.apple.com

If you provide commercial products and services, call 408-974-4897
for information on the developer support programs available from Apple.

CHAPTER 1

C++ Toolkit Introduction

This chapter introduces the C++ Toolkit, which allows you to use C++ code in
NewtonScript applications. This chapter describes the details of interfacing your C++
code into the NewtonScript world. The remainder of this book provides reference
descriptions of the data types and functions that you can use in your C++ code to
interface with the NewtonScript world.

This chapter begins with an overview of using C++ and NewtonScript together. It then
describes the Newton object system from the C++ developer’s perspective and discusses
the restrictions that you face in your C++ code when using the C++ Toolkit. Finally, this
chapter presents a table of NewtonScript and C++ code equivalencies and provides a
number of examples of using C++ with NewtonScript.

IMPORTANT

The C++ Toolkit software allows you to use C++ code in a NewtonScript
application. You must understand the Newton progamming
environment before using the C++ Toolkit. This book only explains
those parts of the Newton programming environment that are unique
for C++ programming. If you have never written a Newton application,
you need to read the Newton Programmer’s Guide and The NewtonScript
Programming Language. You should also understand the development
environment that you need to use for implementing your C++ code,
which is described in C++ Tools for the Mac OS User Guide. a

Using C++ With NewtonScript

The purpose of the C++ Toolkit is to allow you to mix C++ code with NewtonScript code
to create applications for the Newton. While you can manipulate objects and perform
computations in C++, the user interface and main body of your Newton applications
must be written in NewtonScript.

Using C++ With NewtonScript 1-1

1-2

CHAPTER 1

C++ Toolkit Introduction

Writing C++ code for the Newton is the same as writing C++ for other computing
devices; however, you do face the following important restrictions:

» The Newton does not have a file system, which means that your C++ code cannot
make file system calls.

» Memory management capability is limited, as described in the section “C++ Code
Restrictions” beginning on page 1-4.

» You cannot modify the Newton screen from your C++ code. You must use
NewtonScript or call into NewtonScript from C++ to “talk” to the screen.

This book describes the C++ functions that you can use to manipulate objects in the
Newton object system and mechanisms that you can use to call NewtonScript functions
from C++. To use the C++ Toolkit, you need to understand the NewtonScript language,
the Newton object system, and how to build Newton programs using the Newton
Toolkit. To learn about Newton programming, read the Newton Programmer’s Guide. To
learn about the NewtonScript language, read the NewtonScript Programming Language. To
learn about the Newton Toolkit, read the Newton Toolkit User’s Guide.

To use C++ with NewtonScript, you need to utilize two mechanisms: calling C++ from
NewtonScript, and calling NewtonScript from C++. You also need to understand how
the representation of certain objects in NewtonScript is different from their
representation in your C++ programs. This chapter describes those differences.

Chapter 2, “C++ and NewtonScript Conversion Reference,” describes the C++ functions
that you can use to convert between these two representations.

IMPORTANT

This section provides information that you need to understand when
you mix C++ code with NewtonScript code. Read this section
carefully. a

Calling NewtonScript from C++

To call into NewtonScript from C++, you can use the NSCal | function or one of its
variants, which are described in Chapter 6, “NewtonScript Reference.”

Some NewtonScript functions are implemented as C++ functions to improve their
performance. You call these functions directly in C++ without using NSCal | or its
variants. All of the functions that you can call in this manner are documented in this
book and are listed in the tables in Appendix A, “C++ Function Tables.”.

If you want to call a NewtonScript function from your C++ code, you should first
determine if a C++ implementation exists for the function, using either this book’s index
or the tables in Appendix A, “C++ Function Tables.”. If the function is described in this
book, use that function as documented. If a C++ version does not exist, call the
NewtonScript function using NSCal | or one of its variations, which are described in
Chapter 6, “NewtonScript Reference.”

Using C++ With NewtonScript

CHAPTER 1

C++ Toolkit Introduction

Note

This book shows the declaration for each function implemented in the
C-++ Toolkit and provides descriptions for functions that are unique to
the C++ Toolkit. This book does not provide descriptions for C++
Toolkit functions that are equivalent to NewtonScript functions. You will
need to refer to the Newton Programmer’s Guide for descriptions of these
functions, as noted with the declaration of each. O

Calling C++ from NewtonScript

You can call a C++ function from NewtonScript just like you would call any other
function in NewtonScript. However, the your usage of C++ functions is restricted in the
following ways:

= You must preface the function name with its module designator, as described in the
next section, “C++ Modules.”

s The first parameter to the C++ function must be a reference to the receiver frame for
the function. Note that the NewtonScript caller does not see supply this parameter.

s The C++ function can take from zero to six arguments; each argument must be
delcared as type Ref Ar g.

s The C++ function must return a Ref as its function result.
s The C++ function must be a standalone function (not a method of a class).
s The C++ function must be declared as extern "C"'.

The restrictions listed above are explained in more detail in the next section, “C++ Code
Restrictions.”

The following is an example of a C++ function that can be called from NewtonScript:

extern "C' Ref MyCplusFunction(RefArg receiver,
Ref Arg firstArg,
Ref Ar g secondArg) ;

The following is an example of a NewtonScript expression for calling the C++ function
in the above example:

call myModul e. MyCpl usFunction with (firstarg, secondArg);

C++ Modules

For NewtonScript to access your C++ functions, you must use a module designator
when you call the C++ function. The module designator consists of the module name for
the function, followed by a period.

You must define the module name in your MPW project exports (" . exp") file. The
default name of the module, which is set by MPW when you create the project, is your
project name.

Using C++ With NewtonScript 1-3

CHAPTER 1

C++ Toolkit Introduction

For example, to call a C++ function named nmyFcn that is defined in the project

myPr oj ect, your NewtonScript code would call myPr oj ect . nyFcn. The section “An
Example of Defining and Calling Several C++ Functions” beginning on page 1-15 shows
a C++ module that defines several functions and NewtonScript code for calling those
functions.

C++ Code Restrictions

This section describes the limitations that you face when developing C++ code for use
with NewtonScript.

Methods, Functions, and Name-Mangling

The C++ language allows you to create classes that include methods. You can also define
overloaded methods, which means that a single method name can be used for different
declaration forms. For example, a single method can be declared to take different
numbers or combinations of parameters or to return different value types.

Many C++ compilers implement this language feature using a technique that is
commonly known as name-mangling. With name-mangling, the compiler builds an
internal name for each declaration form of a method. The internal (mangled) name
includes the method’s class name and a representation of its parameter and return types.
This makes it possible for a method to be called in various forms while retaining the
type-checking capabilities of the C++ language.

Unfortunately, calling a C++ method whose name has been mangled by a compiler is not
supported from NewtonScript. Due to this restriction, you cannot call a C++ method
from NewtonScript; you can only call a standalone function. Furthermore, you must
declare the function as ext ern " C", which tells the compiler to not mangle the function
name.

IMPORTANT

You can only call standalone C++ functions (not methods of a class)
from NewtonScript. These functions must be declared as ext ern " C".
For example:

extern "C' Ref Returnlt(RefArg rcvr)

A

Memory Allocation

You are limited to a subset of the standard C library memory allocation and deallocation
functions.

You need to know that the Newton system software uses two heaps: one for
NewtonScript objects and another for system storage and C++ usage. Whenever you

C++ Code Restrictions

CHAPTER 1

C++ Toolkit Introduction

perform an allocation from C++ (by calling a function such as mal | oc or NewPt r),
storage is allocated in the system heap. This means that if your C++ code runs out of
heap space, the entire system software heap is out of space. You must be diligent about
explicitly disposing of any storage that you allocate in your C++ code.

WARNING

The heap that you use to allocate storage in your C++ code is the same
heap that the Newton system software uses for system-related objects. If
you corrupt the heap, the Newton will need to be restarted. a

Storage for an object in the NewtonScript heap is automatically reclaimed by the Newton
garbage collector when there are no longer any references to the object. If you are
referring to a NewtonScript object from C++, the Newton garbage collector needs to
know about your references. You accomplish this by using the object reference classes
and types, which are described in the section “Object References” beginning on page 1-7.

For more information about using memory allocation and deallocation functions in your
C++ code, refer to Chapter 4, “Newton Memory Manager Reference.”

Static Variables

You cannot declare any static C variables. You cannot have any C++ static class variables.

WARNING

Although MPW generates an error if your code contains a static variable
declaration, neither the C++ compiler nor the linker will tell you where
in your code the problem exists. a

Global Data

Any global data that you reference in your C++ functions must be read-only data. You
must reference this data with a constant pointer to constant data, which you can declare
as follows:

const *const gl obPtr;

Allocating Persistent Storage

You sometimes need to allocate memory for use in your C++ code that is like global data.
Since you cannot use non-constant global data in your C++ code, you need to utilize a
coordinated effort between your NewtonScript and C++ code to achieve this.

The preferred method for allocating memory that you can use in this way is to create a
binary object for the memory in your NewtonScript code. You then access the memory as
a binary object from C++. By using this method, you don’t need to concern yourself with
deallocating the memory—the NewtonScript garbage collector will automatically collect
the storage when there are no longer any references to the binary object.

C++ Code Restrictions 1-5

CHAPTER 1

C++ Toolkit Introduction

The section “An Example of Allocating Persistent Storage” beginning on page 1-18
shows sample code in NewtonScript and C++ for using a binary object to create
persistent storage for use in C++.

Function Arguments and Return Values

All arguments to your C++ functions that can be called from NewtonScript must be of
type Ref Ar g. The return value from each of your C++ functions that can be called from
NewtonScript must be of type Ref . This means that the return value and each of the
arguments must be NewtonScript objects.

Typically, you will need to implement a “wrapper” function for any C++ function that
you want to call from NewtonScript. Your wrapper function can call the Newton
conversion functions to convert data types. These functions are described in the section
“Type Checking Functions” beginning on page 2-4.

The section “An Example of a Wrapper Function” beginning on page 1-16 shows sample
code for creating a wrapper function for a C++ function that you want to call from
NewtonScript.

If you need to convert a C++ array structure into a NewtonScript object, you can call
functions to create a NewtonScript array or a NewtonScript frame. You can then add
objects to the array or frame with other calls. These functions are described in Chapter 3,
“Newton Object System Reference.”

The section “An Example of Converting a C++ Array into NewtonScript” beginning on
page 1-16 shows sample code for converting a C++ array into a NewtonScript object.

The Newton Object System

1-6

The Newton Object System is the name for the component of the Newton system
software that manages the objects that Newton applications manipulate and store. The
Newton Object System allows you to access objects from both NewtonScript and C++.

Newton Symbols and Object Types

Newton uses symbols as identifiers for variables, classes, messages, and frame slots.
Symbol names can contain up to 254 characters, including any printable ASCII character.

Note

NewtonScript applications sometimes define symbols enclosed between
vertical bars. You should never use vertical bars when defining symbols
in C++ programs. a

The Newton Object System

CHAPTER 1

C++ Toolkit Introduction

The Newton Object System supports four primitive object classes, which are shown in
Table 1-1.

Table 1-1 Newton object types

Object type Description

Immediate A constant value such as an integer or a character. Immediate values
are signed, 30-bit, twos complement integers.

Binary A sequence of bytes.

Array An array of object references.

Frame A collection of slots, each of which is a tag/value pair. The tag is a
NewtonScript symbol.

The primitive object classes divide into two types: immediates and reference objects.
Each object value is stored in 32 bits. Two of the bits are used to store class information.
Immediate objects contain their values within the remaining 30 bits, and reference
objects contain a pointer to the actual data in the remaining 30 bits.

Immediate objects can be integers, characters, and booleans.

Reference objects can be binaries, arrays, and frames. Object references are described in
the next section, “Object References.”

See The NewtonScript Programming Language for a full explanation and examples of
Newton symbols and the Newton object classes.

Object References

Newton objects are referenced by object references, of type Ref . An object reference is a
32-bit value that can represent an immediate object or a pointer to a binary object, array
object, or frame object.

Note that Ref s are similar to handles in other object-oriented programming systems.
One significant implication of this is that you often need to lock Ref s before using them,
as described later in this chapter.

The Newton garbage collector automatically collects the storage allocated for objects to
which there are no longer any references. When you use Newton objects in your C++
code, you need to maintain references to those objects appropriately; otherwise, the
garbage collector might collect the objects at the wrong time.

The Newton Object System 1-7

1-8

CHAPTER 1

C++ Toolkit Introduction

The C++ Toolkit provides four object reference types that make it safe for you to refer to
NewtonScript objects in C++, as shown in Table 1-2.

Table 1-2 Summary of C++ Toolkit reference types
Type Description
Ref Use only as the return value of a function. The receiving function must

immediately store the returned Ref value into one of the other
reference types.

Ref Var A C++ class used to create a local (automatic) reference variable.
Ref St ruct A C++ class used to store an object reference in a structure.
Ref Ar g A C++ typedef (const Ref Var &) used to pass an object reference as

an argument to a function.

Any reference that is not stored in a Ref Var or Ref St r uct object can become invalid
after any call to the object system (which may provoke a call to the garbage collector).

The following rules apply to the use of the object reference types:

you can only use the Ref type as the return type for functions. You must never
declare a variable of type Ref in your C++ code. If you write a function that receives a
Ref as the return value of another function, you must immediately store that value
into a protected structure. This is because Ref s are highly volatile and can be garbage
collected at any time.

to keep a reference in a local variable, use a Ref Var. You can only allocate Ref Var s
on the stack; it is incorrect to allocate a Ref Var with the newoperator.

to pass a reference to a function, use a Ref Ar g, which is simply a typedef for " const
Ref Var &". The effect of this is to reuse the caller’s Ref Var as a read-only value,
which reduces the number of Ref Var allocations. This means that you cannot assign
anew value to a Ref Ar g parameter; if you need to do so, you must copy the value
into a local Ref Var.

when you pass the return value of a function (a Ref) as a function argument, the
Ref Ar g declaration of that parameter causes the automatic allocation of a temporary
Ref Var.

you allocate and deallocate Ref St r uct objects like other C++ objects, which means
that the Ref St r uct class constructor creates and initializes a Ref St r uct value for
you, and the Ref St r uct destructor deallocates the memory used by the object.

When an exception occurs in your application, the Newton system software will
automatically clean up reference variables on the stack (Ref Var s). The system
software does not automatically clean up non-stack-based reference variables; thus, if
you want a reference maintained after an exception is handled, you need to store the
reference in a Ref St r uct .

The Newton Object System

CHAPTER 1

C++ Toolkit Introduction

IMPORTANT

Any Ref can become invalid after any call to the object system. Calls to
construct a Ref Var or Ref St ruct object are part of the object system
and are thus subject to this warning too. a

Using Ref as The Function Return Type

You must use Ref as the return type of any C++ function that can be called from
NewtonScript. There are two important issues to be aware of regarding Ref :

NewtonScript object references are 32-bit values. In C++, Ref has been defined as a
| ong value for compatibility. Since Ref is declared as a | ong, the compiler cannot
distinguish between | ong and Ref . This means that you can mistakenly return an
integer (I ong) value as the function result rather than returning a reference to a
NewtonScript object (a Ref). If you want to return an integer value as the result of a
function that returns an object reference, you must use the Makel nt function. For
example, to return the value 1, use the following statement in your C++ function:

return(Makelnt(1));

Listing 1-1 on page 1-10 shows an example of a function that uses Makel nt to return
an integer value.

Values of type Ref are highly volatile, which means that their location can change at
any time. Because of this, the function that calls your Ref function must immediately
store the result into a Ref Var or Ref St r uct . You can also use the function value as a
parameter. In this case, C++ automatically creates a temporary Ref Ar g to hold the
value.

Table of Object Reference Use

Table 1-3 shows several examples of declarations involving object references and
explains which examples are valid and which could lead to erroneous results.

Table 1-3 Examples of object reference use

Example Validity Explanation

void foo(Ref x)... Doesn’t work Function parameters must be
Ref Ar gs

void foo(RefStruct x)... Doesn’t work Function parameters must be
Ref Ar gs

voi d foo(RefVar x)... Could be bad Function parameters must be
Ref Ar gs

voi d foo(Ref Arg Xx) ... CORRECT

Ref x = ... Doesn’t work Only use Ref as the return type

of a function.

The Newton Object System 1-9

1-10

CHAPTER 1

C++ Toolkit Introduction

Table 1-3 Examples of object reference use

Example Validity Explanation

Ref Struct x = ... Doesn’t work Do not allocate Ref St r uct s on
the stack.

Ref Var x = ... CORRECT

Ref * Doesn’t work Only use Ref as the return type
of a function.

Ref Var * Could be bad Ref Var s are for local,
stack-based references only.

Ref St ruct * CORRECT

new Ref Var Doesn’t work Ref Var s are for local,
stack-based references only.

new Ref Struct CORRECT

Accessing Data In a Binary Object

When you need to access the data in a binary object, you need to use a locked pointer.
The C++ Toolkit provides two macros for using locked pointers.

You start a block of code with the W TH_LOCKED_BI NARY macro and end that block of
code with the END W TH_LOCKED_BI NARY macro.

The W TH_LOCKED_BI NARY macro takes a reference to a binary object and a pointer
variable; it makes the pointer variable work as a pointer to the binary object within the
block. The END_W TH_LOCKED_BI NARY macro terminates the locked pointer block and
unlocks the object.

The W TH_LOCKED_BI NARY macro declares the pointer variable (of type voi d*) for
you. Note that the pointer is no longer valid once you exit the locked pointer block of
code. Within the locked pointer block of code, you can access the binary object with the
pointer. For example, the code segment in Listing 1-1 makes the variable t hePtr a
pointer to the binary object bi nQbj .

Listing 1-1 Using a locked pointer to access a binary object
Ref Var bi nQoj ;
W TH_LOCKED BI NARY(bi nObj, thePtr)

/1 use thePtr to access data in the binary object
END_ W TH_LOCKED_BI NARY(bi nObj)

The Newton Object System

CHAPTER 1

C++ Toolkit Introduction

WARNINGS

There are several key points that you must keep in mind when working
with locked pointers:

» If you assign something to the binary object (bi nQbj in Listing 1-1),
the object could be destroyed.

» The pointer that the W TH_LOCKED_BI NARY macro declares for you
is not valid after the END_W TH_LOCKED_BI NARY macro executes.
You must not attempt to use the pointer after that.

= You must not access locations before the pointer or after the end of
the object (after the location defined by ((char*) thePtr) +
Lengt h(bi nQoj) in Listing 1-1).

= You can use the Set Lengt h function to resize the binary object
within the locked code block; however, attempting to lengthen the
size of the object with the code block will almost always fail.

If you do attempt to use the pointer or access memory outside of the
bounds of the binary object, you can corrupt the Newton frames heap
and cause your program to terminate. a

The section “An Example of Accessing Binary Data” beginning on page 1-19 shows
sample code for accessing a NewtonScript binary object in C++.

Note

You can nest an instance of the W TH_LOCKED_BI NARY macro inside of
another instance of the macro, as long as each instance has a
corresponding call to the END_W TH_LOCKED_BI NARY macro. O

NewtonScript Magic Pointers

NewtonScript uses special references known as magic pointers to access certain objects
that are stored in Newton ROM. Magic pointer references are resolved at run time by the
operating system, which substitutes the actual address of a ROM object for each magic
pointer reference.

You only need to be concerned with magic pointers in your C++ code if you receive a
pointer from NewtonScript and subsequently try to manipulate it as a C++ pointer. In
that case, you have to know that you can’t use the magic pointer like an ordinary
pointer; for example, you would not want to follow the pointer when traversing a list of
objects.

WARNING

If you try to use the W TH_LOCKED_BI NARY macro with a magic

pointer, disastrous results will occur. a

You can use the | sMagi cPt r function, which is described on page page 2-4, to
determine if a pointer is indeed a magic pointer. The | sReal Pt r function, which is
described on page 2-4, determines if a pointer is not a magic pointer.

The Newton Object System 1-11

1-12

CHAPTER 1

C++ Toolkit Introduction

Path Expressions

Some object functions allow you to specify a path expression as the value of a parameter.
A path expression can be specified in three ways, as shown in Table 1-4.

Table 1-4 Path expressions
Path expression type Example
symbol SYM fuzzy)
MakeSynbol ("fuzzy");
integer immediate Makel nt (432) ;
array Al | ocat eArray(SYM pat hexpr), 2);

Specifying Symbols

When an object function uses a symbol as a parameter, you need to use either the
MakeSynbol function or the SYMmacro to specify that symbol. The SYMmacro is the
same as the MakeSynbol function, except that it eliminates the need to quote the
symbol name. SYMis defined as follows:

#def i ne SYM nane) MakeSynbol (#nane)

For example, to specify the NewtonScript symbol ' | f uzzy|, you can use either of the
following expressions in your C++ code:

MakeSynbol ("fuzzy");
SYM fuzzy)

Newton Exceptions and C++

The Newton system software supports the use of exceptions, which allow an application
to break out of the normal flow of control to respond to exceptional conditions. You can
read about C++ exception handling in Chapter 5, “Newton Exceptions Reference,” and
you can read about NewtonScript exception handling in The NewtonScript Programming
Language.

There is one important issue of concern to C++ developers with regard to exceptions.
When an exception occurs, the Newton system software knows to automatically destroy
any NewtonScript objects that were created within the block of code that is handled by
the exception. However, the Newton system software cannot automatically destroy C++
objects when an exception occurs.

This means that you must be sure to call the object destructor function yourself. When
you create a C++ object, you should work with that object within the context of an
exception handling (newt on_t ry) block and include a call to the object’s destructor
function in the cl eanup clause of the exception handler. Listing 1-2 shows the skeleton
code for working with a C++ object.

The Newton Object System

CHAPTER 1

C++ Toolkit Introduction

Listing 1-2 Working with a C++ object in an exception block

TWd ass *nmyj ;
newton_try {
nmyQGbj = new TWyd ass;

}

cl eanup {

del ete nmyQoj ;
}
end_try;

For more information about handling Newton exceptions in C++, including reference
information for the newt on_t ry, cl eanup, and end_t ry calls, see Chapter 5, “Newton
Exceptions Reference.”

NewtonScript and C++ Equivalences and Examples

This section provides several examples of NewtonScript and C++ equivalencies as well
as examples of C++ functions that illustrate some of the restrictions that you must
beware of when writing code for the Newton.

Table 1-5 provides examples of C++ equivalences for common NewtonScript
expressions. This table includes the page number in this book for the description of the
C++ function used in the NewtonScript equivalent.

Table 1-5 NewtonScript expressions and their C++ equivalences

NewtonScript location of C++
expression C++ equivalent Toolkit description
1 Makel nt (1) page 2-2

nil N LREF page 2-1

true TRUEREF page 2-1

$x MakeChar (' x') page 2-2

{} Al | ocat eFr ame page 3-6

[] Al ocateArray(SYMarray), 0) page 3-6
Array(10,nil) Al ocateArray(SYMarray), 10) page 3-6
value := x.y Get FranmeS ot (X, SYMYy)) page 3-11

Xy =2z Set FrameS ot (x, SYMy), z) page 3-16

NewtonScript and C++ Equivalences and Examples 1-13

1-14

CHAPTER 1

C++ Toolkit Introduction

Table 1-5 NewtonScript expressions and their C++ equivalences (continued)
NewtonScript location of C++
expression C++ equivalent Toolkit description
val ue := x. (y) Get FranmePat h(x, y, val ue) page 3-11
x.(y) 1=z Set FramePat h(x, vy, z) page 3-15

Get S ot (X, Y) Get Franes ot (X, y) page 3-12
HasSl ot (X, y) FrameHasSl ot (X, y) page 3-10

X[y] Get ArrayS ot (x,Y) page 3-11
X[y]:=z Set ArraySl ot (X, Y, z) page 3-14

X(a, b) NSCal | A obal Fn(SYM x), a, b) page 6-4

call x with (a,b) NSCal | (x, a, b) page 6-2
f:nsg(a, b) NSSend(f, SYMnsg), a, b) page 6-6
f:?nmsg(a, b) NSSendl f Def i ned(f, SYMnsg), a, b) page 6-8

A Simple Example in NewtonScript and C++

This section presents a NewtonScript function and a C++ function that performs the
same operation.

Listing 1-3 shows a NewtonScript function that searches through an array for a value
and returns the index of that array entry.

Listing 1-3 A NewtonScript sear ch function

{
items: [.],
search: func(val ue) begin
for i:=0 to Length(itens)-1 do
if items[i] = value then
return i;
nil;
end;

}

Listing 1-4 shows the C++ equivalent of the NewtonScript sear ch function that is
shown in Listing 1-3.

Listing 1-4 C++ version of the sear ch function

extern "C'" Ref Search(RefArg rcvr, RefArg val ue)

{
Ref Var itens = GetVariabl e(rcvr, SYMitens));

NewtonScript and C++ Equivalences and Examples

CHAPTER 1

C++ Toolkit Introduction

Ref Var sl ot Val ue;

long Ien = Lengt h(itens);
for (longi =0; i <len; i++) {
slotValue = GetArraySlot(itemns, i);
if (EQslotValue, value))
return(Makelnt (i));

}
return N LREF;

}
The C++ Sear ch function in Listing 1-4 can be called from NewtonScript. The Sear ch

function begins by retrieving a reference to the i t ens array and calling the Lengt h
function to determine the number of entries ini t ens.

The Get Var i abl e function is described on page 6-14.
The Lengt h function is described on page 3-14.

The Get ArraySl ot function is described on page 3-11.
The Makel nt function is described on page 2-2.

Note

The C++ Sear ch function is slightly different than the NewtonScript
sear ch function because the EQfunction does not perform exactly the
same equality testing as does the NewtonScript = operator. Specifically,
EQtests the equality of floating point values differently than does the =
operator. The testing performed by the EQfunction is described on
page 2-5. O

An Example of Defining and Calling Several C++ Functions

This section presents a listing of a C++ file that defines a simple function that is callable
from NewtonScript, and the NewtonScript code for calling that function.

The C++ code in Listing 1-5 is part of a file par a. cp, which is part of a project named
par a.

Listing 1-5 Defining a C++ function in a module
#i ncl ude "objects. h"
extern "C' Ref Returnlt(RefArg rcvr)
{

short x;

X = 23;

Ref theval ue = Makel nt((long) x);

NewtonScript and C++ Equivalences and Examples 1-15

1-16

CHAPTER 1

C++ Toolkit Introduction

return theVal ue;

}
The NewtonScript code in Listing 1-6

Listing 1-6 Calling a C++ function from NewtonScript

func()
begi n
| ocal x;
| ocal xtext;

x:= call para.Returnlt with ();

xtext := NunberStr(x);

staticwi ndow. text := C one(xtext);
end

An Example of a Wrapper Function

Listing 1-7 shows an example of a wrapper function for the EQ function.

Listing 1-7 A wrapper function for a C++ function callable from NewtonScript
extern "C'" Ref WEQ (RefArg rcvr, RefArg a, RefArg b)
{

int result;

result = EQ a, b); /1 actual call

return MakeBool ean(result);

An Example of Converting a C++ Array into NewtonScript

Listing 1-8 shows an example of a function that converts a C++ array into a
NewtonScript array object.

Listing 1-8 Converting a C++ array into a NewtonScript object

extern "C' Ref CArrayToNSArray(long* nyArray, |long arraySize)

{
Ref Var arrayRef = All ocateArray(SYMarray), arraySize);

for (longi =0; i < arraySi ze; i++)

NewtonScript and C++ Equivalences and Examples

CHAPTER 1

C++ Toolkit Introduction

Set ArraySl ot (arrayRef, i, MAKEI NT(myArray[i]));

return(arrayRef);

An Example of Automatic Allocation of RefArgs

C++ will automatically create a temporary Ref Ar g object for you if you pass a Ref as a
parameter value. This is convenient; however, it can be inefficient and can use up a lot of
memory under certain circumstances. For example, the code segment in Listing 1-9
allocates a temporary Ref Ar g for each iteration of the loop.

Listing 1-9 An example of inefficient automatic allocation of Ref Ar gs

Ref MyFcnl(int i)
{

int MyFcn2(Ref Arg arg)
{

for (i=1;, i<1000; i++)
val = MyFcn2(MWFcnl(i));

Each call to MyFcn2 in Listing 1-9 creates a temporary Ref Ar g for the result of the call to
MyFcn1l. Since the C++ language definition does not specify that these objects have to be
deallocated within the loop, you could potentially be allocating 1000 temporary Ref Ar g
objects. Listing 1-10 uses a temporary variable to create a more efficient version of the
loop.

Listing 1-10 An example of a more efficient Ref Ar g loop

Ref Var t enp;

for (i=1; i<1000; i++) {
temp = MyFcnl(i);
val = MyFcn2(tenp);

NewtonScript and C++ Equivalences and Examples 1-17

1-18

CHAPTER 1

C++ Toolkit Introduction

An Example of Allocating Persistent Storage

Listing 1-11 shows the NewtonScript code and Listing 1-12 shows you the C++ code for
using a binary object to allocate persistent storage for use in your C++ code, as described
in the section “Allocating Persistent Storage” beginning on page 1-5.

Listing 1-11 NewtonScript code for using a binary object as persistent storage for C++

{
Vi ewSet upFor nscri pt :

func() begin
cMenory : = MakeBi nary(' nyMemObj, 234);

end,
cMenory:nil,
foo:

func() begin

sel f: DoSoneCThi ng() ;
end,

DoSonmeCThi ng: nyCnodul e. DoSoneCThi ng,
}

The NewtonScript code in Listing 1-11 allocates a binary object named with the symbol
cMenor y and then calls the C++ function DoSoneCThi ng, which is defined in a module
(file) named nmy Crodul e.

Listing 1-12 C++ code for using a binary object as persistent storage

extern "C' Ref DoSomeCThi ng(Ref Arg rcvr)

{
Ref Var cMenory = GetVariabl e(rcvr, SYMcMenory));
W TH_LOCKED_BI NARY(cMenory, nem
/* do sonething with nmem */
END W TH_LOCKED_BI NARY(cMenory)
}

The C++ function DoSormeCThi ng accesses the binary object that represents the memory
area by calling the Get Var i abl e function with SYM cMenory), the symbol that was
used in NewtonScript to create the object. The DoSormeCThi ng function then accesses
the object by using the W TH_LOCKED_BI NARY macro, which is described in the section
“Accessing Data In a Binary Object” beginning on page 1-10.

NewtonScript and C++ Equivalences and Examples

CHAPTER 1

C++ Toolkit Introduction

Note

If you use the method shown in Listing 1-11 and Listing 1-12 to allocate
persistent storage for use in your C++ code, you do not have to be
concerned with deallocating the memory. The NewtonScript garbage
collector will take care of collecting the memory when it is no longer in
use. O

An Example of Accessing Binary Data

Listing 1-13 shows an example of accessing binary data, as described in the section
“Accessing Data In a Binary Object” beginning on page 1-10. In this case, the binary data
is a terminated Unicode string.

Listing 1-13 Accessing binary data

extern "C'" Ref GetStringLength(RefArg rcvr, RefArg str)
{

l ong result;

W TH_LOCKED_BI NARY(str, strPtr)
result = Ustrlen((UniChar*) strPtr);
END_W TH_LOCKED_BI NARY(st r)

return(Makelnt(result));
}

The Ust r | en function is described on page 7-8.
The Makel nt function is described on page 2-2.

NewtonScript and C++ Equivalences and Examples 1-19

CHAPTER 1

C++ Toolkit Introduction

1-20 NewtonScript and C++ Equivalences and Examples

CHAPTER 2

C++ and NewtonScript
Conversion Reference

This chapter describes the constants and functions that you can use in your C++
programs to convert or check the representation of objects for interfacing with
NewtonScript applications. NewtonScript uses a different representation for certain
value types than does the C++ language, which makes it necessary for you to convert
objects of these types when using the objects in a cross-language function call.

Constants for Using C++ With NewtonScript

The C++ Toolkit defines three constants for use with NewtonScript.

const Ref NI LREF = 0x02;
const Ref TRUEREF = Ox1A;
const Ref FALSEREF = NI LREF;

Constant descriptions

NI LREF A reference to the NewtonScript constant NI L.
TRUEREF A reference to the NewtonScript constant TRUE.
FALSEREF A reference to the NewtonScript constant NI L.

Type Conversion Functions

The C++ Toolkit provides a number of type conversion functions to help you pass values
back and forth between C++ and NewtonScript.

Constants for Using C++ With NewtonScript 2-1

2-2

CHAPTER 2

C++ and NewtonScript Conversion Reference

MakeBoolean

Ref MakeBool ean(int i);
i An integer value.

The MakeBool ean function converts the C++ value i into a NewtonScript Boolean
reference. If i is 0, MakeBool ean returns NI LREF; otherwise, MakeBool ean returns
TRUEREF.

MakeChar

Ref MakeChar (unsi gned char c);
c An unsigned character value.

The MakeChar function converts the C++ char value c into a NewtonScript immediate
object with the character value and returns a reference to that object.

Makelnt

Ref Makel nt (1 ong i) ;
i A long integer value.

The Makel nt function converts the C++ long integer value i into a NewtonScript
immediate object with the integer value and returns a reference to that object.

WARNING

NewtonScript integer values are signed, 30-bit two’s complement
values. a

MakeReal

Ref MakeReal (doubl e d);
d A double precision value.

The MakeReal function converts the C++ double precision value d into a NewtonScript
real number object with the value of 4 and returns a reference to that object.

MakeString

Ref MakeString(const char *s);
Ref MakeString(const Uni Char *s);

s A C++ string of 8-bit characters or a C++ string of 16-bit Unicode
characters.

The MakeSt r i ng function converts the C++ string value s into a NewtonScript string
object and returns a reference to that object.

Type Conversion Functions

CHAPTER 2

C++ and NewtonScript Conversion Reference

MakeSymbol
Ref MakeSynbol (char* name) ;

name A C++ string.

The MakeSynbol function converts the C++ string name into a NewtonScript object and
returns a reference to that object.

WARNING

The MakeSynbol function is fairly slow. If you are using a symbol in a
loop, you should consider caching the symbol in a local variable. O

RefToUniChar
UniChar Ref ToUni Char (Ref Arg 7);

4 A reference to a NewtonScript immediate object.

The Ref ToUni Char function converts the NewtonScript character immediate r into the
equivalent Unicode character value and returns the character value.

Note

Unicode characters are 16-bit integer values (t ypedef unsi gned
short). Values of type UniChar contain a single Unicode character. O

RefTolint
long Ref Tol nt (Ref 7);

r A reference to a NewtonScript immediate object.

The Ref Tol nt function converts the NewtonScript integer immediate r into the
equivalent C++ long integer value and returns the integer value.

SYM
Ref SYM name) ;

name A C++ string.

The SYMmacro converts the C++ string name into a NewtonScript symbol and returns a
reference to that symbol.

Note

The SYMmacro is equivalent to the MakeSynbol function, except that
you do not have to quote the name string when supplying it to SYM The
SYM macro is defined as follows:

#defi ne SYM nane) MakeSynbol (#nane)

O

Type Conversion Functions 2-3

CHAPTER 2

C++ and NewtonScript Conversion Reference

Type Checking Functions

The C++ Toolkit provides a number of functions that you can use in C++ to type-check
NewtonScript values.

IsChar

Boolean | sChar (Ref 7r);
r A reference to a NewtonScript immediate object.

The | sChar function returns TRUE if the NewtonScript value referenced by r is an
immediate character value, and FALSE if not.

Isint

Boolean | sl nt (Ref r);
4 A reference to a NewtonScript immediate object.

The I sl nt function returns TRUE if the NewtonScript value referenced by r is an
immediate integer, and FALSE if not.

IsMagicPtr

Boolean |1 sMagi cPtr (Ref 7r);
T A reference to a NewtonScript immediate object.

The | sMagi cPtr function returns TRUE if the NewtonScript value referenced by r is a
magic pointer, and FALSE if not.

IsPtr

Boolean 1 sPtr(Ref r);
r A reference to a NewtonScript immediate object.

The | sPtr function returns TRUE if the NewtonScript value referenced by r is a pointer,
and FALSE if not.

IsRealPtr

Boolean | sReal Pt r(Ref r);
4 A reference to a NewtonScript immediate object.

The | sReal Ptr function returns TRUE if the NewtonScript value referenced by r is a
real pointer (not a magic pointer), and FALSE if not.

Type Checking Functions

CHAPTER 2

C++ and NewtonScript Conversion Reference

Value Checking Functions and Macros

The C++ Toolkit provides several macros that you can use to test the value of
NewtonScript objects.

EQ

Boolean EQ(Ref Arg a, RefArg b);

The EQ function returns TRUE if the NewtonScript object referenced by a is equal to the
NewtonScript object referenced by b; otherwise, EQreturns FALSE.

The EQfunction tests equality as follows:

» If the objects referenced by 4 and b are both immediates, EQreturns TRUE if the
immediate values are equal.

w» If the objects referenced by a and b are not both immediates, EQreturns TRUE if the
object referenced by 4 is the same object as the object referenced by b.

» The EQfunction returns FALSE in all other circumstances.

ISNIL

Boolean | SNI L(Ref 1) ;

The | SNI L macro returns TRUE if the NewtonScript value referenced by r is NI LREF;
otherwise, | SNI L returns FALSE.

ISFALSE
Boolean | SFALSE(Ref 7);

The | SFALSE macro returns TRUE if the NewtonScript value referenced by r is
FALSEREF; otherwise, | SFALSE returns FALSE.

ISTRUE
Boolean | STRUE(Ref 1) ;

The | STRUE macro returns TRUE if the NewtonScript value referenced by r is TRUEREF;
otherwise, | STRUE returns FALSE.

NOTNIL
Boolean NOTNI L(Ref 7);

The NOTNI L macro returns TRUE if the NewtonScript value referenced by r is not
NI LREF; otherwise, NOTNI L returns FALSE.

Value Checking Functions and Macros 2-5

CHAPTER 2

C++ and NewtonScript Conversion Reference

Debugging Macros

2-6

This section describes the macros you can use with the C++ Toolkit to interact with the
debugger. Note that you should conditionally include debugging statements in your
code so that they do not end up in your final versions.

Debugger

Debugger ()
The Debugger macro generates a debugger trap.

DebugStr

DebugSt r (msg)

msg The message you want displayed by the debugger. Note that msg is
a null-terminated C string.

The DebugSt r macro generates a debugger trap and displays the msg string in a
debugger window.

WARNING

The DebugSt r function always displays its output, regardless of the
default st dout setting. a

Note

The DebugSt r and DebugCSt r functions are equivalent on the
Newton. O

DebugCsStr

DebugCSst r (msg)

msg The message you want displayed by the debugger. Note that msg is
a null-terminated C string.

The DebugCSt r macro generates a debugger trap and displays the msg string in a
debugger window.

WARNING

The DebugSt r function always displays its output, regardless of the
default st dout setting. a

Note

The DebugSt r and DebugCSt r functions are equivalent on the
Newton. O

Debugging Macros

CHAPTER 2

C++ and NewtonScript Conversion Reference

Summary of C++ and NewtonScript Conversion Reference

Constants for Using C++ With NewtonScript

const
const

const

Ref NI LREF = 0x02;
Ref TRUEREF = Ox1A;
Ref FALSEREF = NI LREF;

Type Conversion Functions and Macros

Ref
Ref
Ref
Ref
Ref
Ref
Ref
UniChar
long
Ref

MakeBool ean(i nt i);

MakeChar (unsi gned char ¢);
Makel nt (I ong 1) ;

MakeReal (doubl e 4d);

MakeSt ri ng(const char *s);
MakeSt ri ng(const Uni Char *s);
MakeSynbol (char *name) ;

Ref ToUni Char (Ref Arg 7);

Ref Tol nt (Ref 7);

SYM char *name) ;

Type Checking Functions

Boolean
Boolean
Boolean
Boolean

Boolean

| sChar (Ref 7);

I sl nt(Ref r);

| sMagi cPtr(Ref r);
I sPtr(Ref 7r);

| sReal Ptr(Ref 7);

Value Checking Functions and Macros

Boolean
Boolean
Boolean

Boolean

EQ RefArg a, RefArg b);
| SNI L(Ref 7);

| SFALSE(Ref 7);

| STRUE(Ref 1) ;

Debugging Macros

CHAPTER 2

C++ and NewtonScript Conversion Reference
Boolean NOTNI L(Ref 7);

Debugging Functions and Macros

Debugger ()
DebugSt r (msg)
DebugCst r (msg)

Debugging Macros

CHAPTER 3

Newton Object System Reference

This chapter describes the data types and functions that you use to manipulate Newton
objects. This chapter provides the function declaration for each of the Newton Object
System functions that you can use in your C++ applications.

Many of the func tions that you use to manipulate Newton objects are C++ wrappers for
NewtonScript functions. The descriptions of these functions are provided in the Newton
Programmer’s Guide. You call NewtonScript functions using the NewtonScript C++
interface functions, which is described in Chapter 6, “NewtonScript Reference.”

Some Newton Object System functions are implemented directly in C++ (not as
wrappers for NewtonScript functions) to improve their performance. These functions are
described in this chapter.

If you want to use a NewtonScript function in your C++ program, you should first
determine if a C++ implementation exists for the function. If the function is described in
this book, it has a C++ implementation. An easy way to determine that is to look up the
function name in the index or in Appendix A, “C++ Function Tables.” If the function is
described in this book, use it as documented. If a C++ version does not exist, call the
NewtonScript function using one of the NewtonScript C++ interface functions, as
described in Chapter 6, “NewtonScript Reference.”

Object System Classes

This section describes the classes that you can use in your C++ programs to interface
with the Newton object system.

Iteration Macros

This section describes the macros that you can use to iterate through slots in
NewtonScript array and frame objects. The next section, “Object Iterator Class”
beginning on page 3-4, describes the class these macros use.

Object System Classes 3-1

3-2

CHAPTER 3

Newton Object System Reference

FOREACH

FOREACH(obj, wvalue_var)

obj The array or frame object with slots through which you want to
iterate.

value_var The name of a variable into which you want the value of the current

slot in the iteration assigned. The FOREACH macro declares this
variable, a Ref Var, for you.

You use the FOREACH macro when you want to iterate through the slots in a
NewtonScript array or frame obj and perform some action using the value of each slot.
The FOREACH macro creates an iterator for you and traverses the slots, allowing you to
operate on each (the current slot), one at a time. The FOREACH macro assigns the value of
the current slot to value_var, which you can use as shown in Listing 3-1.

Note
The FOREACH macro declares the value_var variable for you. O

Listing 3-1 An example of using the FOREACH macro

EXTERNC
Ref FraneScan(RefArg rcvr, RefArg obj)
{

Ref Var result=0

Ref Var val ue;

FOREACH(obj , val ue)
i f (IsNunber(val ue))
result = result + value

else if (IsFrane(value) || IsArray(val ue))
result = result + FranmeScan(rcvr, value);
END_FOREACH
return result;

}

Object System Classes

CHAPTER 3

Newton Object System Reference

FOREACH_WITH_TAG
FOREACH W TH_TAG(obj, tag_var, wvalue_var);

obj The array or frame object with slot through which you want to
iterate.
tag_var The name of a variable into which you want the tag (name) of the

current slot in the iteration assigned. The FOREACH_ W TH_TAG
macro declares this variable, a Ref Var, for you.

value_var The name of a variable into which you want the value of the current
slot in the iteration assigned. The FOREACH W TH_TAGmacro
declares this variable, a Ref Var, for you.

You use the FOREACH W TH_TAGmacro when you want to iterate through the slots in a
NewtonScript array or frame obj and perform some action using the name and value of
each slot. The FOREACH_W TH_TAGmacro creates an iterator for you and traverses the
slots, allowing you to operate on each (the current slot), one at a time. The

FOREACH W TH_TAGmacro assigns the name of the current slot to tag_var and the value
of the current slot to value_var, which you can use, as shown in Listing 3-2.

Note

The FOREACH W TH_TAGmacro declares the tag_var and value_var
variables for you. O

Listing 3-2 An example of using the FOREACH_WITH_TAG macro

Ref Var obj ;
Ref Var nyTag = SYMf oo. bar);

FOREACH W TH TAG(obj, tag, val ue)

i f (Symnbol ConparelLex(tag, nyTag) == 0)
DoSorret hi ng(val ue) ;

END_FOREACH

END_FOREACH
END_FOREACH

The END_FOREACH macro terminates an iteration started with either the FOREACH or
FOREACH_W TH_TAGmacros. The END_FOREACH macro deletes the iterator that was
created by the other macro.

WARNING

You must call the END_FOREACH macro at the end of an iteration that
you started by calling either the FOREACH or the FOREACH W TH_TAG
macros.

Object System Classes 3-3

CHAPTER 3

Newton Object System Reference

Object Iterator Class

You use objects of the TCbj ect | t er at or class to iterate through the slots in an array or
frame.

Note

You can use the object iteration macros, which are described in the
previous section, for almost all of your iteration needs. Most programs
do not need to make direct use of the TObj ect | t er at or class.

class TObjectlterator : public Singlelject {

voi d Reset (Ref Arg new(hj) ;
i nt Next (voi d);
i nt Done(voi d);
Ref Tag(voi d);
Ref Val ue(voi d);
1
Reset

void Reset (Ref Arg new(bj) ;
newObj A reference to an object with slots over which to iterate.

The Reset method of the TObj ect | t er at or class resets the iteration to the first slot in
the object newGbj .

Next

int Next (void);

The Next method of the TObj ect | t er at or class advances the iteration to the next slot
in the iterator’s object and returns a non-zero value. If there are no more slots in the
object, Next returns 0.

Done

int Done(void);

The Done method of the TObj ect | t er at or class returns a non-zero value if the
iteration is done (if the current slot is the last slot belonging to the object or its siblings),
and returns 0 if the iteration is not done (if there are more entries)

Tag

Ref Tag(void);

The Tag method of the TCbj ect | t er at or class returns a reference to the tag for the
current slot.

Object System Classes

CHAPTER 3

Newton Object System Reference

Value

Ref Val ue(voi d);

The Val ue method of the TObj ect | t er at or class returns a reference to the value of
the current slot.

Iterator Functions

The object creation and object destructor functions for the TObj ect | t er at or class are
private functions. If you want to use a TObj ect | t er at or object, you need to use the
functions described in this section to create and destory that object.

NewTObjectlterator

TChj ectlterator* NewlObjectlterator(RefArg obj);
obj A reference to an object with slots over which to iterate.

Creates a new TObjectlterator object and returns a pointer to that object.

DeleteTODbjectlterator

Del et eTObj ectlterator(TObj ectlterator* iter);

iter A pointer to a TObj ect | t er at or object that was created by
calling the NewTQbj ect | t er at or function.

Deallocates storage for and deletes the TCbj ect | t er at or object iter.

C++ Object System Functions

This section describes the C++ functions that you can call directly to work with the
Newton Object System.

AddArraySlot

void AddArraySl ot (RefArg obj,
Ref Ar g value) ;

obj A reference to an array object.

value A reference to a value object that you want added as a new element
in the array.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

C++ Object System Functions 3-5

3-6

CHAPTER 3

Newton Object System Reference

AllocateArray

Ref Al'l ocateArray(RefArg theClass,

| ong length) ;
theClass A reference to a class object. This is the class of the new array object.
length The number of slots in the array.

The Al | ocat eAr r ay function creates a new array object, with length slots, of class
theClass.

The Al | ocat eAr r ay function returns a reference to the newly created array object.

Note

Calling the Al | ocat eAr r ay function in C++ is the same as using the
following function call in NewtonScript:

Set Cl ass(Array(length, nil), theClass)

AllocateBinary

Ref Al'l ocateBi nary(Ref Arg theClass,

| ong length) ;
theClass A reference to a class object. This is the class of the new object.
length The number of bytes allocated for the object.

The Al | ocat eBi nar y function creates a new binary object, with length bytes, of class
theClass, and returns a reference to the new object.

AllocateFrame

Ref Al'l ocat eFrame(voi d);

The Al | ocat eFr ane function creates a new, empty (slotless) frame object, and returns a
reference to the frame object.

Note

Calling the Al | ocat eFr ame function in C++ is the same as using the
following expression in NewtonScript:

{5
O

ArrayMunger

void ArrayMunger(RefArg al,
| ong alstart,
| ong alcount,
Ref Arg a2,
| ong alstart,

C++ Object System Functions

CHAPTER 3

Newton Object System Reference

| ong a2count) ;
al A reference to the destination array.
alstart The starting element in the destination array.
alcount The number of elements to be replaced in the destination array. If

you specify - 1 as the value of alcount, elements are replaced to the
end of the array.

a2 A reference to the source array. If you specify NI LREF as the value
of a2, there is no source array and elements are deleted from al.

a2start The starting element in the source array.

a2count The number of elements to use from the source array. If you specify

- 1 as the value of a2count, elements are taken to the end of the array.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

IMPORTANT

This function is the same as the NewtonScript function Ar r ayMinger
with one important difference: in the NewtonScript version, you specify
NI L as the value of alcount or a2count to indicate that elements are taken
to the end of the array. In the C++ version, you specify - 1 to indicate the
same thing. a

ArrayPosition

long ArrayPosition(RefArg array,
Ref Ar g item,
| ong start,
Ref Ar g test) ;

array A reference to an array object.

item A reference to an item that might be an element in the array.
start The starting position in the array.

test A reference to a function object used for testing. If you specify

NI LREF, the equality test is used.

This function is described as the Ar r ay Pos function in the “Utility Functions” chapter
of Newton Programmer’s Guide.

ArrayRemove

Boolean ArrayRenove(Ref Ar g array,
Ref Arg element) ;

array A reference to an array object.

element A reference to the element to remove from the array.

C++ Object System Functions 3-7

CHAPTER 3

Newton Object System Reference

The Ar r ayRenpve function searches for the specified element in the array. If the element
is found in the array, Ar r ayRenove removes it from the array and shifts any following
elements left so that no empty elements remain.

Note
If there are two matching elements in the array, the Ar r ayRenove
function only removes the first one. O

The Ar r ayRenpve function returns t r ue if el enment is found and removed, and f al se
if element is not found in the array.

WARNING

The Ar r ayRenpve function cannot remove an element that is an array
or a frame. a

ArrayRemoveCount

void ArrayRenoveCount (Ref Arg array,
Fast I nt start,
FastInt removeCount) ;

array A reference to an array object.
start The index of the first element to remove from the array.
removeCount The number of elements to remove from the array.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

ASCIIString

Ref ASCII String(Ref Arg str);
str A reference to a Unicode string object.

The ASCI | St ri ng function creates a binary object that holds an ASCII string from the
Unicode string in str.

WARNING

Since the Unicode string str may contain non-ASCII characters, the
resulting ASCII string may contain characters with the value

kNoTr ansl ati onChar, as described in Chapter 7, “Newton Unicode
Reference.”

BinaryMunger

void Bi naryMunger (RefArg al,
| ong alstart,
| ong alcount,
Ref Arg a2,
| ong alstart,

C++ Object System Functions

CHAPTER 3

Newton Object System Reference

| ong a2count) ;

al A reference to the destination value bytes.

alstart The starting position (numbering from 0) in al.

alcount The number of bytes to be replaced in the destination bytes. If you
specify - 1 as the value of alcount, bytes are replaced to the end of
al.

a2 A reference to the source bytes. If you specify NI LREF as the value
of a2, there is no source data and bytes are deleted from al.

a2start The starting position (numbering from 0) in a2.

a2count The number of bytes to use from the source array. If you specify - 1

as the value of a2count, bytes are taken to the end of a2.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

IMPORTANT

This function is the same as the NewtonScript function Bi nar yMinger
with one important difference: in the NewtonScript version, you specify
NI L as the value of alcount or a2count to indicate that elements are taken
to the end of the array. In the C++ version, you specify - 1 to indicate the
same thing. a

ClassOf

Ref A assOf (Ref Arg obj) ;
obj A reference to an object.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

Clone

Ref A one(RefArg obj);
obj A reference to the object that you want cloned.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

CoerceToDouble

double Coer ceToDoubl e(Ref Arg 1) ;
4 A reference to a Newton real number object.

The Coer ceToDoubl e function returns a double-precision value approximation of the
Newton real number object referenced by .

C++ Object System Functions 3-9

3-10

CHAPTER 3

Newton Object System Reference

CoerceTolnt

long CoerceTolnt(RefArg 71);
4 A reference to a Newton real number object.

The Coer ceTol nt function returns a long-integer value approximation of the Newton
real number object referenced by r.

DeepClone

Ref DeepCd one(Ref Arg obj);
obj A reference to the object that you want cloned.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

Ensurelnternal

Ref Ensurelnternal (RefArg obj);
obj A pointer to an object.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

FrameHasPath

int FrameHasPat h(RefArg obj,
Ref Arg thePath) ;

obj A reference to a frame object.
thePath A reference to a path.

The Fr aneHasPat h function determines if the frame referenced by obj contains the path
expression referenced by thePath. If the path is found, Fr aneHasPat h returns a
non-zero value; if the path is not found, Fr aneHasPat h returns 0.

Note

Calling the Fr anmeHasPat h function in C++ is the same as using the
following expression in NewtonScript:

obj. (thePath) exists

FrameHasSlot

int FrameHasSl ot (RefArg obj,
Ref Arg slot) ;

obj A reference to a frame object.

slot A reference to a symbol naming a slot.

C++ Object System Functions

CHAPTER 3

Newton Object System Reference

This function is described as the Has Sl ot function in the “Utility Functions” chapter of

Newton Programmer’s Guide.

GC

void GC() ;

The GC function invokes the Newton garbage collector.

Note

The Newton system software automatically invokes the garbage
collector as required. You rarely, if ever, need to call this function. O

GetArraySlot
Ref GetArraySlot(RefArg obj,
| ong slot) ;
obj A reference to an array object.
slot The index of the slot in the array.
The Get ArraySl ot function returns a reference to the element at index slot in the array
obj.
Note

Calling the Get ArraySl ot function in C++ is the same as using the
following expression in NewtonScript:

objl slot]

GetFramePath

Ref Get FramePath(RefArg obj,
Ref Ar g thePath) ;

obj A reference to a frame object.
thePath A reference to a path expression.

The Get Fr anePat h function returns the value of the object reached by the path
expression thePath in the frame specified by obj.

Note

Calling the Get Fr anePat h function in C++ is the same as using the
following expression in NewtonScript:

value : = obj. (thePath)

C++ Object System Functions

3-11

3-12

CHAPTER 3

Newton Object System Reference

GetFrameSlot

Ref GetFrameSlot(RefArg obj,
Ref Ar g slot) ;

obj A reference to a frame object.
slot A reference to a symbol naming the slot whose value you want to
get.

This function is described as the Get Sl ot function in the “Utility Functions” chapter of
Newton Programmer’s Guide.

IsArray

Boolean | sArray(Ref Arg ref) ;
ref A reference to an object.

The | sArray function returns TRUE if the object referenced by ref is a Newton array
object and FALSE if not.

IsBinary

Boolean | sBi nary(Ref Arg ref);
ref A reference to an object.

The | sBi nary function returns TRUE if the object referenced by ref is a Newton binary
object and FALSE if not.

IsFrame

Boolean | sFrame(Ref Ar g ref) ;
ref A reference to an object.

The | sFrame function returns TRUE if the object referenced by ref is a Newton frame
object and FALSE if not.

IsFunction

Boolean | sFuncti on(Ref Arg ref) ;
ref A reference to an object.

The | sFuncti on function returns TRUE if the object referenced by ref is a Newton
function object and FALSE if not.

C++ Object System Functions

CHAPTER 3

Newton Object System Reference

IsInstance

Boolean | sl nst ance(Ref Arg obj,
Ref Ar g super) ;

obj A reference to an object.
super A reference to a class symbol.

The | sl nst ance function returns TRUE if the object referenced by obj is an instance of
the class super, and FALSE if not.

IsNumber
Boolean | sNunmber (Ref Arg ref) ;

ref A reference to an object.

The | sNunber function returns TRUE if the object referenced by ref is a Newton number
object and FALSE if not.

IsReadOnly
Boolean | sReadOnl y(Ref Arg obj) ;

obj A reference to an object.

The | sReadOnl y function returns TRUE if the object referenced by obj is in read-only
memory and FALSE if not.

IsReal
Boolean | sReal (Ref Arg 71);

ref A reference to an object.

The | sReal function returns TRUE if the object referenced by refis a Newton real
number object and FALSE if not.

IsString
Boolean |sString(RefArg ref);

ref A reference to an object.

The | sStri ng function returns TRUE if the object referenced by ref is a Newton string
object and FALSE if not.

IsSubclass

Boolean |1 sSubcl ass(Ref Arg sub,
Ref Ar g super) ;

sub A reference to a class symbol.

super A reference to a class symbol.

C++ Object System Functions 3-13

CHAPTER 3

Newton Object System Reference

The | sSubcl ass function returns TRUE if the class referenced by sub is a subclass of the
class referenced by super, and FALSE if not.

IsSymbol

Boolean | sSynbol (Ref Arg obj) ;
obj A reference to an object.

The | sSynbol function returns TRUE if the object referenced by ref is a Newton symbol
object and FALSE if not.

Length

long Lengt h(Ref Arg obj) ;

obj A reference to an object.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

RemoveSlot

void RenoveS| ot (Ref Arg frame,
Ref Arg tag) ;

frame A reference to a frame object.
tag A reference to a symbol naming a slot.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

IMPORTANT

The C++ version of the RenpbveS| ot function does not work with
arrays. a

ReplaceObject

void Repl aceObj ect (Ref Arg target,
Ref Arg replacement) ;

target A reference to the original object.

replacement A reference to the object to which you want to redirect any
references to target.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

SetArraySlot

void Set ArraySl ot (RefArg obj,
| ong slotIndex,

3-14 C++ Object System Functions

CHAPTER 3

Newton Object System Reference

Ref Arg value) ;

obj A reference to an array object.
slotIndex The index of the slot in the array.
value A reference to the new value for the slot in the array.

The Set Arr aySl ot function establishes the value of the element at index slot in the
array obj.

Note

Calling the Set ArraySl ot function in C++ is the same as using the
following expression in NewtonScript:

obj[slot] :=wvalue;

SetClass

void Set O ass(RefArg obj,
Ref Ar g theClass) ;

obj A reference to an object.
theClass A reference to a class symbol.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

SetFramePath

Ref Set FramePat h(RefArg obj,
Ref Arg thePath,
Ref Arg value) ;

obj A reference to a frame object.

thePath A reference to a path expression.

value A reference to the new value for the slot specified by the path
expression.

The Set Fr anmePat h function sets the value of a slot to value. The slot whose value is set

is determined by thePath, starting at the object obj.

Note

Calling the Set Fr anePat h function in C++ is the same as using the
following expression in NewtonScript:

obj.(thePath) : = wvalue

C++ Object System Functions

3-15

3-16

CHAPTER 3

Newton Object System Reference

SetFrameSlot

void Set FrameS| ot (RefArg obj,
Ref Arg slot,
Ref Arg value) ;

obj A reference to a frame object.

slot A reference to a symbol naming the slot whose value you want to
change.

value A reference to an object that you want to be the value of the slot.

The Set Fr aneS| ot function searches for the slot whose name matches the slot symbol
in the frame referenced by obj. If the named slot is found in the frame, Set Fr ameS| ot
modifies the value of the slot to value. If the named slot is not found, Set Fr ame S| ot
adds a new slot with name slof to the frame and initializes it to value.

Note
Calling the Set Fr aneSl ot function in C++ is the same as using the
following expression in NewtonScript:

obj. (slot) : = wvalue

IMPORTANT

The Set Fr aneS| ot function adds a new slot to the frame referenced by
obj if the slot does not already exist. a

SetLength
void Set Lengt h(RefArg obj,
| ong length) ;
obj A reference to an object.
length The new length for the object.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

SortArray

void SortArray(RefArg array,
Ref Ar g test,
Ref Arg key) ;

array A reference to the array that you want sorted.

test A reference to a function object. The function must take two
parameters and return an integer value that specifies their sorting
relationship.

key The sort key within each array element. .

C++ Object System Functions

CHAPTER 3

Newton Object System Reference

This function is described as the Sor t function in the “Utility Functions” chapter of
Newton Programmer’s Guide.

Statistics

void Statistics(ULong* freeSpace,
ULong* | ar gest Fr eeBl ock) ;

freeSpace On return, the amount of free space, in bytes, in the task heap.
largestFreeBlock On return, the number of bytes in the largest block of free memory
in the task heap.

The St at i sti cs function returns the total amount of free space in the task heap and
the size of the largest block of free space in the task heap.

StrBeginsWith

int StrBegi nsWth(RefArg str,
Ref Arg prefix) ;

str A reference to a string object.
prefix A reference to a string object.

This function is described as the Begi nsW't h function in the “Utility Functions”
chapter of Newton Programmer’s Guide.

StrCapitalize
void StrCapitalize(RefArg str) ;

str A reference to a string object.

This function is described as the Capi t al i ze function in the “Utility Functions”
chapter of Newton Programmer’s Guide.

StrCapitalizeWords
void StrCapitalizeWrds(RefArg str);

str A reference to a string object.

This function is described as the Capi t al i zeWor ds function in the “Utility Functions”
chapter of Newton Programmer’s Guide.

StrDowncase

void St r Downcase(Ref Arg str);
str A reference to a string object.

This function is described as the Downcase function in the “Utility Functions” chapter
of Newton Programmer’s Guide.

C++ Object System Functions 3-17

3-18

CHAPTER 3

Newton Object System Reference

StrEndsWith

int StrEndsWth(RefArg str,
Ref Ar g suffix) ;

str A reference to a string object.
suffix A reference to a string object.

This function is described as the EndsW t h function in the “Utility Functions” chapter
of Newton Programmer’s Guide.

StrMunger

void StrMunger(RefArg s1,
| ong slstart,
| ong slcount,
Ref Arg s2,
| ong s2start,
| ong s2count) ;

s1 A reference to the destination string.

slstart The starting position in the destination string.

slcount The number of characters to be replaced in the destination string. If
you specify - 1 as the value of s1count, characters are replaced to
the end of the string.

s2 A reference to the source string. If you specify NI LREF as the value
of s2, there is no source string and characters are deleted from s1.

s2start The starting position in the source string.

s2count The number of characters to use from the source string. If you
specify - 1 as the value of s2count, characters are taken to the end of
the string.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

IMPORTANT

This function is the same as the NewtonScript function St r Munger with
one important difference: in the NewtonScript version, you specify NI L
as the value of alcount or a2count to indicate that elements are taken to
the end of the array. In the C++ version, you specify - 1 to indicate the
same thing. a

StrPosition

long StrPosition(RefArg str,
Ref Arg substr,

C++ Object System Functions

CHAPTER 3

Newton Object System Reference

| ong startPos) ;
str A reference to the string object that you want searched.
substr A reference to the string object for which you want to search.
startPos A reference to the character position in str at which you want the

search to start.

This function is described as the St r Pos function in the “Utility Functions” chapter of
Newton Programmer’s Guide.

Note that the St r Posi t i on function returns - 1 if substr is not found in str. The
NewtonScript St r Pos function returns NI L instead.

StrReplace

long StrRepl ace(Ref Arg str,
Ref Arg substr,
Ref Ar g replacement,

| ong count) ;

str A reference to a string in which a substring replacement is to be
made.

substr A reference to the substring to be replaced.

replacement A reference to the replacement string.

count The maximum number of replacements that can be made. If you

specify - 1, all occurrences will be replaced.

This function is described as in the “Utility Functions” chapter of Newton Programmer’s
Guide.

Note

The C++ St r Repl ace function uses - 1 as the value of count to indicate
that all occurrences of substr should be replaced. The NewtonScript
version uses Nl L. O

StrUpcase

void StrUpcase(Ref Ar gstr) ;
str A reference to a string object.

This function is described as the Upcase function in the “Utility Functions” chapter of
Newton Programmer’s Guide.

Substring

Ref Substring(Ref Arg str,
| ong start,

C++ Object System Functions 3-19

3-20

CHAPTER 3

Newton Object System Reference

| ong count) ;
str A reference to a string object.
start The starting position of the substring in the string.
count The number of characters in the substring.

This function is described as the SubSt r function in the “Utility Functions” chapter of
Newton Programmer’s Guide.

SymbolCompareLex

int Synbol Conpar eLex(Ref Arg syml,
Ref Ar g sym?2) ;

syml A reference to a symbol object to compare.
sym?2 A reference to the other symbol object to compare.

The Symbol Conpar eLex function compares the name of sym1 to the name of sym?2,
using a case-insensitive string comparison. Synmbol Conpar eLex returns a value as
follows:

» if sym1 is greater than sym2, return a positive integer value
s if syml is equivalent to sym2, return 0

» if sym1 is less than sym2, return a negative integer value

symcmp
int syncnp(char* sl,
char* s2);
s1 The string name of a symbol to compare.
s2 The string name of the other symbol to compare.

The symemp function compares the two symbol names with a case-insensitive string
comparison. symcmp returns a value as follows:

» if s1 is greater than s2, return a positive integer value
= if s1 is equivalent to s2, return 0

» if 51 is less than s2, return a negative integer value

ThrowBadTypeWithFrameData

void Thr owBadTypeW t hFr aneDat a(Newt onEr r errorCode,

Ref Arg value) ;
errorCode A numeric error code.
value A reference to the frame data object that caused the exception.

The Thr owBadTypeW t hFr aneDat a function raises a “bad type” exception. The
exception frame contains two slots:

C++ Object System Functions

CHAPTER 3

Newton Object System Reference

= aslotnamed' error code whose value is the integer representation of errorCode

= aslotnamed ' val ue whose value is value.

ThrowRefException

void Thr owRef Excepti on(Excepti onNanme name,
Ref Arg data) ;

name An exception symbol.
data A reference to the data object that caused the exception.

The Thr owRef Except i on function raises an exception and creates an exception frame
with the specified name and data.

TotalClone
Ref Total O one(Ref Arg obj) ;

obj A reference to an object that you want cloned.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

TrimString
void TrinGtring(RefArg str) ;

str A reference to a string object.

This function is described in the “Utility Functions” chapter of Newton Programmer’s
Guide.

C++ Object System Functions 3-21

CHAPTER 3

Newton Object System Reference

Summary of Object System Reference

Object System Classes

Object Iterator Class

class TObjectlterator : public Singlelject {

voi d Reset (Ref Arg newbj) ;
i nt Next (voi d) ;
i nt Done(voi d);
Ref Tag(void);
Ref Val ue(voi d);
i
void Reset (Ref Arg newQbj) ;
int Next (voi d);
int Done(voi d);
Ref Tag(void);
Ref Val ue(voi d);

Newton Object System Functions and Macros

Iterator Functions
TObjectlterator* NewTObjectlterator(RefArg obj);
DeleteTObjectIterator(TObjectlterator™* iter);

Iteration Macros

FOREACH(obj, wvalue_var)

END FOREACH

FOREACH W TH_TAQ(obj, tag_var, value_var)

C++ Newton Object Functions

void AddArrayS| ot (Ref Arg obj, Ref Arg wvalue) ;
Ref Al |l ocat eArray(Ref Arg theClass, |ong length);

3-22 C++ Object System Functions

CHAPTER 3

Newton Object System Reference

Ref Al | ocat eBi nary(Ref Arg theClass, | ong length);
Ref Al | ocat eFrane(void);
void ArrayMunger (Ref Arg al, |ong alstart, | ong alcount,

Ref Arg a2, |ong a2start, | ong a2count);

long ArrayPosi tion(Ref Arg array, RefArg item, |ong start,
Ref Arg test) ;

Boolean ArrayRenmove(Ref Arg array, Ref Arg element) ;

void ArrayRermoveCount (Ref Arg array, Fastlnt start,
Fast | nt removeCount) ;
Ref ASCI | String(RefArg str);
void Bi naryMunger (Ref Arg al, |ong alstart, |ong alcount,
Ref Arg a2, |ong a2start, | ong a2count);
Ref C assOf (Ref Arg obj) ;
Ref Cl one(Ref Arg obj);
double Coer ceToDoubl e(Ref Arg 7r);
long CoerceTol nt (Ref Arg r);
Ref DeepC one(Ref Arg obj) ;
Ref Ensur el nt er nal (Ref Arg obj) ;
int FrameHasPat h(Ref Arg obj, Ref Arg thePath) ;
int FrameHasSl ot (Ref Arg obj, Ref Arg slot);
Ref Get Arr aySl ot (Ref Arg obj, |ong slot);
void Get FranePat h(Ref Arg obj, Ref Arg thePath) ;
Ref Get Frane$S!| ot (Ref Arg obj, Ref Arg slot);
void cC();
Boolean | sArray(Ref Arg ref);
Boolean | sBi nary(Ref Arg ref);
Boolean | sFrame(Ref Arg ref);
Boolean I sFuncti on(Ref Arg ref);
Boolean I sl nstance(Ref Arg obj, RefArg super);
Boolean I sNurber (Ref Ar g ref) ;
Boolean | sReadOnl y(Ref Arg oby) ;
Boolean | sReal (Ref Arg 7);
Boolean IsString(Ref Arg ref);
Boolea n | sSubcl ass(Ref Arg sub, Ref Arg super);
Boolean | sSynbol (Ref Arg obj);
long Lengt h(Ref Arg obj) ;
void RenoveS! ot (Ref Arg frame, Ref Arg tag);

C++ Object System Functions 3-23

3-24

CHAPTER 3

Newton Object System Reference

void
void
void
Ref
void
void
void
void
int

void
void
void
int

void

long
long

void
Ref
int

int

void
void
Ref

void

Repl aceCbj ect (Ref Arg target, Ref Arg replacement) ;

Set ArraySl ot (Ref Arg obj, |ong slot, RefArg wvalue);
Set Cl ass(Ref Arg obj, RefArg theClass) ;

Set Fr anePat h(Ref Arg bj, Ref Arg thePath, Ref Arg value) ;
Set FraneS| ot (Ref Arg obj, Ref Arg slot, Ref Arg wvalue) ;
Set Lengt h(Ref Arg obj, |ong length) ;
Statistics(ULong* freeSpace, ULong* | argestFreeBl ock);
Sort Array(Ref Arg array, Ref Arg test, RefArg key);
StrBegi nsWth(Ref Arg str, RefArg prefix);
StrCapitalize(RefArg str);
StrCapitalizeWrds(RefArg str);

St r Downcase(Ref Arg str) ;

StrEndsWt h(Ref Arg str, RefArg suffix);

St rMunger (Ref Arg s1, |1 ong slstart, | ong slcount,
Ref Arg s2,1 ong s2start, | ong s2count) ;

StrPosition(Ref Arg str, Ref Arg substr, | ong startPos);

StrRepl ace(Ref Arg str, Ref Arg substr,
Ref Arg replacement, | ong count);

StrUpcase(Ref Arg str);

Substri ng(Ref Arg str, |ong start, | ong count);

Synbol Conpar eLex(Ref Arg syml, RefArg sym2);

syncnp(char* s1, char* s2);

Thr owBadTypeW t hFr anmeDat a(Newt onErr errorCode, Ref Ar g wvalue) ;
Thr owRef Except i on(Excepti onNane name, Ref Arg data) ;

Tot al G one(Ref Arg obj) ;

Trinstring(Ref Arg str);

C++ Object System Functions

CHAPTER 4

Newton Memory Manager
Reference

This chapter describes the functions that you use to work with the Newton memory
manager.

About the Newton Memory Manager

The Newton Memory Manager presents a memory model that allows you to allocate and
deallocate heap objects as you would in a standard C++ application programming
environment.

The one thing in the Newton environment of which you must be aware is that the
Newton object system maintains its own heap, the object heap. This is separate from the
application heap that your C++ program uses. Although this is an important fact, it should
not have any impact on your applications.

Memory Manager Functions

This section describes the C++ Toolkit Memory Manager functions.

BlockMove

void Bl ockMove(const voi d* srcPtr,
voi d* destPtr,

About the Newton Memory Manager 4-1

4-2

CHAPTER 4

Newton Memory Manager Reference

Si ze byteCount) ;
srcPtr A pointer to the block in memory that you want copied.
destPtr A pointer to the area into which you want the block copied.
byteCount The number of bytes to copy.

The Bl ockMove function copies byteCount bytes from srcPtr to destPtr.
Note

The Bl ockMbve function is the same as the C library function
nmemove. O

CountFreeBlocks

unsigned long Count Fr eeBl ocks(Heap h=DEFAULT_NIL);

h A pointer to a heap object. Always use DEFAULT_NI L as the value
of this parameter.

The Count Fr eeBl ocks function returns the number of free blocks in the application
heap.

IMPORTANT

The value of the 1 parameter to this function must always be
DEFAULT_NIL. a

DisposePtr

void Di sposePtr (Ptr p);
p A pointer to a block of memory allocated in the heap.

The Di sposePt r function disposes of (releases) the block of memory pointed to by p.

Note
The Di sposePtr function is the same as the C library function f ree. O

EqualBytes
int EQual Byt es(const voi d* ptrl,

const voi d* ptr2,

Si ze byteCount) ;
ptrl A pointer to the first block of memory you want compared.
ptr2 A pointer to the second block of memory you want compared.
byteCount The number of bytes that you want compared.

The Equal Byt es function compares bytes in memory. It first compares the byte at ptr1
with the byte at ptr2 and then advances each pointer by one byte and compares again.
The comparison continues until the comparison fails or until byteCount bytes have been
compared.

Memory Manager Functions

CHAPTER 4

Newton Memory Manager Reference

The Equal Byt es function returns 1 if the two blocks are equal and 0 if not.

FillBytes

void Fi | | Bytes(voi d* ptr,
Si ze length,
UChar pattern) ;

ptr A pointer to a block of memory.

length The number of bytes in the block that you want modified. See the
warning below for special considerations.

pattern The byte value that you want assigned to each location in the block.

The Fi | | Byt es function fills a block of memory with the byte value specified by
pattern. Each byte starting at ptr and continuing for length bytes is assigned the pattern
value.

WARNING

The Fi | | Byt es function does not protect against negative or extremely
large length values. It attempts to allocate the specified amount of
memory, even though such values can cause disastrous results in your
program. You must ensure that your calls to Fi | | Byt es supply
appropriate length values. a

Note

The Fi | | Byt es function is the same as the C library function
menset. O

FillLongs

void Fi I | Longs(voi d* ptr,
Si ze length,
ULong pattern) ;

ptr A pointer to a block of memory.
length The number of bytes in the block that you want modified.
pattern The unsigned long value that you want to fill the block.

The Fi | | Longs function fills a block of memory with the unsigned long value specified
by pattern. The pattern is treated as a sequential array of bytes that is repeatedly written
to the block, starting with the byte pointed to by ptr and continuing until the byte at
offset length from ptr is written.

Note

The length parameter indicates the number of bytes that you want
modified. Remember that you are modifying those bytes by writing a
long (4-byte) value. For example, if you want to overwrite twelve bytes
in memory with a long value, you specify 12 as the value of length. The
pattern will be written three times in this case. O

Memory Manager Functions 4-3

CHAPTER 4

Newton Memory Manager Reference

GetPtrName

ULong Get PtrName(Ptr ptr);
ptr A pointer to an object in the heap.
The Get Pt r Name function returns the 4-byte ID tag associated with ptr.

GetPtrSize

SizeGet Pt r Si ze(Ptr p);
p A pointer to a block of memory allocated in the heap.

The Get Pt r Si ze function returns the number of bytes in the memory block pointed to
by p.

LargestFreelnHeap

Size Lar gest Fr eel nHeap(Heap h=DEFAULT_NIL);

h A pointer to a heap object. Always use DEFAULT_NI L as the value
of this parameter.

The Lar gest Fr eel nHeap function returns the size of the largest free block in the
application heap.

IMPORTANT

The value of the h parameter to this function must always be
DEFAULT_NIL. a

MaxHeapSize
Size MaxHeapSi ze(Heap h=DEFAULT_NIL);
h A pointer to a heap object. Always use DEFAULT_NI L as the value

of this parameter.

The MaxHeapSi ze function returns the application heap size in bytes.
IMPORTANT

The value of the h parameter to this function must always be
DEFAULT_NIL. a

MemError

NewtonErr MenEr ror (voi d) ;

The MenEr r or function returns the result of the most recent call by your task to the
Memory Manager.

Memory Manager Functions

CHAPTER 4

Newton Memory Manager Reference

NewNamedPtr

Ptr NewNamedPt r (Si ze byteCount,
ULong name) ;

byteCount The number of bytes in the block to be allocated.

name The name to assign to the block. This is a 4-byte ID tag. See the
warning below for special considerations.

The NewNarredPt r function allocates a non-relocatable block of memory in the heap.
The size of the allocated block is indicated by byteCount. The NewNanmedPt r function
returns a pointer to the newly allocated block. The ID tag name is assigned to the pointer.

WARNING

The value of name is limited to valid 30-bit long integer values. If you
specify a larger value, the name is set to 0X7FFFFFF. a

If the allocation is successful, the Memory Manager result code (which is returned by the
MemError function) is set to noEr r. If the allocation is not successful, the Memory
Manager result code is set to menful | Err.

NewPtr
Ptr NewpPt r (Si ze byteCount) ;

byteCount The number of bytes in the block to be allocated. See the warning
below for special considerations.

The NewPt r function allocates a non-relocatable block of memory in the heap. The size
of the allocated block is indicated by byteCount. The NewPt r function returns a pointer to
the newly allocated block.

WARNING

The NewPt r function does not protect against negative or extremely
large byteCount values. It attempts to allocate the specified amount of
memory, even though such values can cause disastrous results in your
program. You must ensure that your calls to NewPt r supply appropriate
byteCount values. a

If the allocation is successful, the Memory Manager result code (which is returned by the
MemError function) is set to noEr r. If the allocation is not successful, the Memory
Manager result code is set to menful | Err.

Note
The NewPt r function is the same as the C library function mal | oc. O

NewPtrClear
Ptr NewPt r Cl ear (Si ze byteCount) ;

byteCount The number of bytes in the block to be allocated. See the warning
below for special considerations.

Memory Manager Functions 4-5

4-6

CHAPTER 4

Newton Memory Manager Reference

The NewPt r O ear function allocates a non-relocatable block of memory in the heap.
The size of the allocated block is indicated by byteCount. Each byte in the newly allocated
block is cleared to zero. The NewPt r Cl ear function returns a pointer to the newly
allocated block.

WARNING

The NewPt r O ear function does not protect against negative or
extremely large byteCount values. It attempts to allocate the specified
amount of memory, even though such values can cause disastrous
results in your program. You must ensure that your calls to

NewPt r Cl ear supply appropriate byteCount values. a

If the allocation is successful, the Memory Manager result code (which is returned by the
MemError function) is set to noEr r. If the allocation is not successful, the Memory
Manager result code is set to menful | Err.

ReallocPtr

PtrReal l ocPtr(Ptr P
Si ze newSize) ;

p A pointer to a block of memory allocated in the heap.

newSize The size, in bytes, that you want allocated for the block pointed to
by p.

The Real | ocPt r function modifies the size (and address) of the otherwise
non-relocatable block of memory pointed to by p, copying the previous contents of the

block as required. The Real | ocPt r function returns a pointer to the newly allocated
block.

If pis NULL, Real | ocPt r simply calls and returns the value of the NewPt r function.

Note

The Real | ocPt r function behaves differently than the standard, ANSI
C library implementation in one case. If the value of newSize is O,

Real | ocPt r does not free p; instead, it sets the size of the buffer
pointed to by p to 0, which indicates that the Newton System Software
can free the pointer at a later time. O

If the allocation is successful, the Memory Manager result code (which is returned by the
MemError function) is set to noEr r. If the allocation is not successful, the Memory
Manager result code is set to menful | Err.

Note
The Real | ocPt r function is the same as the C library function
realloc. O

Memory Manager Functions

CHAPTER 4

Newton Memory Manager Reference

SetPtrName

void Set Pt r Nanme(Ptr ptr,
ULong name) ;

ptr A pointer to an object in the heap.

name A 4-byte ID tag for the object. See the warning below for special
considerations.

The Set Pt r Nanme function associates the tag name with ptr.

WARNING

The value of name is limited to valid 30-bit long integer values. If you
specify a larger value, the name is set to OX7FFFFFF. a

SystemRAMSize

Size Syst enRAMVSI ze(void) ;

The Syst enRanSi ze function returns maximum number of bytes available for
allocation before the user has stored anything. This is equivalent to all of RAM minus
any user stores in RAM.

TotalFreelnHeap

Size Tot al Freel nHeap(Heap h=DEFAULT_NI L) ;

h A pointer to a heap object. Always use DEFAULT_NI L as the value
of this parameter.

The Tot al Fr eel nHeap function returns the total number of bytes of free space in the
application heap.

IMPORTANT

The value of the 1 parameter to this function must always be
DEFAULT_NIL. a

TotalUsedInHeap

Size Tot al Usedl nHeap(Heap h=DEFAULT_NIL);

h A pointer to a heap object. Always use DEFAULT_NI L as the value
of this parameter.

The Tot al Usedl nHeap function returns the total number of bytes that have been
stored in the application heap.

IMPORTANT

The value of the 1 parameter to this function must always be
DEFAULT_NIL. a

Memory Manager Functions 4-7

4-8

CHAPTER 4

Newton Memory Manager Reference

XORBytes
void XORByt es(const voi d* srcl,
const voi d* src2,
voi d* dest,
Si ze byteCount) ;
srcl A pointer to a block of memory.
src2 A pointer to a block of memory.
destPtr A pointer to a block of memory.
byteCount The number of bytes on which to perform the operation.

The XORByt es functions performs a byte-by-byte exclusive-or operation on two blocks

of memory and writes the resulting bytes to a third block. Each byte in the block pointed
to by srcl is xor’ed with the corresponding byte in the block pointed to by src2; the result
of that exclusive-or is written to the corresponding byte in the block pointed to by destPtr.

ZeroBytes
void Zer oByt es(voi d* ptr,
Si ze length) ;
ptr A pointer to a block of memory.
length The number of bytes in the block that you want zeroed.

The Zer oByt es function clears each byte in the block of memory pointed to by ptr to
zero. A total of length bytes is cleared.

Memory Manager Functions

CHAPTER 4

Newton Memory Manager Reference

Summary of Memory Manager Reference

Memory Manager C++ Functions

void Bl ockMove(const voi d* srcPtr, voi d* destPtr, Size byteCount);

unsigned long
Count Fr eeBl ocks(Heap h=DEFAULT_NIL);

void Di sposePtr(Ptr p);
int Equal Byt es(const voi d* ptrl, const void* ptr2,
Si ze byteCount) ;

void Fi I I Bytes(voi d* ptr, Size length, UChar pattern);

void Fi Il Longs(voi d* ptr, Size length, ULong pattern);

ULong Get Pt r Name(Ptr ptr);

Size Get PtrSize(Ptr p);

Size Lar gest Fr eel nHeap(Heap h=DEFAULT NI L);

Size MaxHeapSi ze(Heap h=DEFAULT_NIL);

NewtonErr MenError (void);

Ptr NewNamedPt r (Si ze byteCount, ULong name) ;

Ptr NewPt r (Si ze byteCount) ;

Ptr NewPt r Cl ear (Si ze byteCount) ;

Ptr Real | ocPtr(Ptr p, Size newSize) ;

void Set Pt r Name(Ptr ptr, ULong name);

Size Syst enRAMSI ze(void) ;

Size Tot al Freel nHeap(Heap h=DEFAULT_NIL);

Size Tot al Usedl nHeap(Heap h=DEFAULT_NI L) ;

void XORByt es(const voi d* srcl, const void* src2,
voi d* dest, Size byteCount);

void Zer oByt es(voi d* ptr, Size length);

Memory Manager Functions

CHAPTER 4

Newton Memory Manager Reference

4-10 Memory Manager Functions

CHAPTER 5

Newton Exceptions Reference

This chapter describes the constants, data types, and classes that you use to raise and
handle exceptions in your Newton C++ applications.

About Newton Exceptions

You can use exceptions and exception handling to “catch” error conditions that occur
during the execution of your Newton application. Exceptions provide a mechanism for
breaking out of the normal flow of control, responding to an exceptional condition, and
then continuing with execution of your application.

The C++ Toolkit provides exception handling that is analagous to the exception handling
provided in NewtonScript. You can read about NewtonScript exception handling in The
NewtonScript Programming Language.

With the C++ Toolkit, you can define your own exceptions, throw exceptions, and catch
exceptions. When you catch an exception, your exception-handling code is invoked.
Some exceptions include data, which your exception handler can use to process the
exception.

Defining Exceptions

The Newton system software defines a number of exceptions that you can catch and
handle. The system software provides default handling for these exceptions, which are
listed in Table 5-2 on page 5-5.

You can use the Def i neExcept i on macro, which is described on page 5-7, to define a
new exception for use in your application. Each exception is defined with a class name
and a structured exception string.

About Newton Exceptions 5-1

5-2

CHAPTER 5

Newton Exceptions Reference

IMPORTANT

The class name that you use to define the exception is the name that you
use with the C++ exception functions and macros. This is, among other
things, a symbolic name for the structured string name of the

exception. a

When you define an exception, the Newton system software creates a new class for the

exception. In the following call to Def i neExcept i on, exMyExcept i on is the class
name for the new exception:

Def i neExcepti on(exMyExcepti on, evt.ex.nyApp);

In subsequent calls to exception-handling functions, you would use exMyExcept i on to
specify this exception.

Note

The C++ exception-handling macros, including Def i neExcept i on, do

not require the use of quotes around their string arguments. O

Exception names are structured strings that create a hierarchy of exceptions. These
structured strings consist of a sequence of dot-separated prefix parts, followed by the
final and most specific exception part. Exception names and exception-handling
hierarchies are described more fully in The NewtonScript Programming Language.

WARNING

Exception name strings cannot exceed 127 characters in length. Longer

exception names can cause a system crash. a

Your exception handlers can be structured to handle exceptions in a hierarchy of
specificity: the handler for the most specific exception name catches that exception, and a
less specific handler can catch any exceptions whose prefixes match it. The following are
examples of exception names:

evt . ex

evt. ex. myApp
evt. ex. nyApp. entryErr

evt. ex. nyApp. entryErr. noDigit

About Newton Exceptions

CHAPTER 5

Newton Exceptions Reference

Given the above exception definitions, exception handlers would catch exceptions as
shown in Table 5-1.

Table 5-1 An exception-handling hierarchy

Exception handler string Exceptions handled

evt. ex Any with the prefix evt . ex that has not
been handled by a more specific handler.

evt. ex. nyApp Any matching the prefix evt . ex. myApp
that has not been handled by a more specific
handler.

evt. ex. myApp. entryErr Anevt. ex. myApp. Entr yEr r exception
or an

evt. ex. nyApp. entryErr. noDigi t
exception that has not been handled by a
more specific handler.

evt. ex. nyApp. entryErr. noDigi t Only the
evt. ex. nyApp. entryErr. noDigit
exception.

WARNING

The Newton system software catches exceptions that begin with one of
two prefixes: evt . ex ortype. r ef . If an exception does not begin with
one of these prefixes, the system software throws the evt . ex. fr
exception with error number kFr anesEr r BadExcept i onName. a

Exception Data

When you throw an exception, you can optionally include data in the call to the Thr ow
function. You can include a pointer to any data that you want to pass along.

Note

One important difference between NewtonScript and C++ exceptions is
that the data included with a C++ exception can be any kind of data.
The data included with a NewtonScript exception is always a
NewtonScript object. O

When you include data with an exception, the exception handler needs to be able to
destroy the data after using it. Since the shape of the data is arbitrary, you must tell the
exception handler how to destroy it. You do so by including an

Excepti onDest ruct or function specification along with the data. The Thr ow function
can then call the Except i onDest r uct or function to deallocate the data.

The Except i onDest r uct or specification is described in the section “The Exception
Destructor Type” on page 5-6. The Thr ow function is described in the section “Throw”
on page 5-8.

About Newton Exceptions 5-3

CHAPTER 5

Newton Exceptions Reference

Exception Blocks

Exceptions are handled in exception blocks. This is a block of code that begins with the
newt on_t r y macro and ends with the end_t r y macro. The exception-handling macros
can only be used within an exception block. The following is an example of an exception
block:

newton_try

{
DoSoneSt uf f;
}
newt on_cat ch(exMyExcepti on)
{

printf("Caught exception %", CurrentException()->nane);

}
end_try;

WARNING

You must not r et ur n or br eak out of an exception block, which
includes newt on_try, newt on_cl eanup, unwi nd_pr ot ect, and
on_unwi nd blocks. Exiting from one of these blocks with ar et ur n or
br eak statement will cause strange and possibly disastrous behavior in
your program. a

Catch Blocks

The code block following the newt on_cat ch clause is referred to as a catch block. Some
exception-handling calls, including the Cur r ent Except i on macro, are only valid
within these blocks. These restrictions are described in the section “Exception-Handling
Macros” beginning on page 5-9.

Other Exception-handling Blocks

Within an exception block, you can include several newt on_cat ch clauses as well as
cl eanup and unwi nd_pr ot ect clauses. All of these clauses are optional and are
followed by code blocks: the newt on_cat ch clause, is followed by a catch block, the
cl eanup clause is followed by a cleanup block, and the unwi nd_pr ot ect clause is
followed by an unwind block.

The cl eanup clause, if present, must appear after any newt on_cat ch blocks. If none of
the newt on_cat ch clauses catch the exception, the code in the cl eanup block is
executed before the next exception handler in the hierarchy is invoked.

The unwi nd_pr ot ect clause introduces a block of code that must be run whether or
not an exception occurs. This code is known as protected code. Within the

unwi nd_pr ot ect block, you can include on_unwi nd clause to specify the code that
closes out the protected code block.

About Newton Exceptions

CHAPTER 5

Newton Exceptions Reference

The macros mentioned in this section are described in the section “Exception-Handling
Macros” beginning on page 5-9.

\Volatile Values

You need to declare some local variables as volatile to work around a subtle problem that
occurs with exception usage. The problem occurs as follows:

s The C++ compiler assigns a local variable to a register.

» You modify that variable inside of a t r y block that precedes code that can raise an
exception.

= You need to access the local variable after exiting the t r y block. In other words, the
value that you assigned to that variable inside of the t r y block is used outside of the
t ry block.

The problem is that the local variable can be kept in a register if you do not declare it
volatile. If this is the case and an exception is raised, the state of the register is restored to
the value that it had when the t r y block was entered and the value that you assigned to
the variable in the t r y block is lost.

IMPORTANT

You must use the vol at i | e keyword when declaring a local variable
that you modify inside of at ry block. a

Newton System Software Exceptions

Table 5-2 lists the exceptions that the Newton system software generates.

Table 5-2 Newton system software exceptions

Exception name Data type Description

exAbor t generic abort

exAl i gnnment alignment error
exBusError bus error

exD vi deByZer o divide by zero error
exl|legal I nstr illegal instruction
exMsgExcept i on exception with message
exQut O St ack out of stack space error
exPer ni ssi onMi ol ati on permission error
exRoot Excepti on the mother of all exceptions
exSki a skia error

exWit eProtected write-protection error

About Newton Exceptions 5-5

CHAPTER 5

Newton Exceptions Reference

Exception Types

This section describes the data types that you use to work with exceptions in your C++
applications.

The Exception Structure Type

When you define an exception, the Newton system software creates a new object class
for that exception. The name of the class is the name that you specify as the first
parameter to the Def i neExcept i on macro.

The Cur r ent Except i on macro returns a pointer to an object of this class. You can
access the name of an exception by using the name field of the object. For example, the
structured string name of the current exception can be accessed with the following
statement:

Cur rent Excepti on() - >nane;

The Exception Destructor Type

The Newton system software uses the exception destructor type, of type

Except i onDest ruct or, to define the function type used to destroy the data associated
with an exception. Some exceptions are raised with a pointer to data that is in the heap;
the destructor function is used to deallocate that data. Each destructor function must be
declared with the form defined by the Except i onDest r uct or type:

t ypedef void (*ExceptionDestructor)(void*);

Exception Functions and Macros

5-6

This section describes the functions that you can use in your C++ applications to work
with Newton exceptions.

CurrentException

void* Current Exception();

The Cur r ent Except i on macro returns a pointer to the exception object for the
exception that is currently being handled. This is a pointer to an object whose class is the
class of the current exception. See the section “The Exception Structure Type” beginning
on page 5-6.

Exception Types

CHAPTER 5

Newton Exceptions Reference

IMPORTANT

The Cur r ent Except i on macro is only valid from within a
newt on_cat ch or cl eanup block of an exception handler. a

DefineException

Def i neExcept i on(excptClass, string) ;

excptClass The string name of the exception class. See the warning below for
special considerations.

string A “structured string” that becomes the string name of the exception.

The Def i neExcept i on macro declares a new exception class using the name excptClass.

The exception name given by string is a structured string that defines the exception
name in a manner that allows for hierarchical exception handling.

An exception name can be structured by separating its component parts with the period

(" . ") character. Each part that follows a period adds specificity to the exception name.
You can then structure your exception handlers to handle increasingly specific
exceptions. For example, you could define three exception names:

evt. ex. myApp

evt. ex. myApp. str
evt. ex. nyApp. str. nul |

You could then define three exception handlers: one to handle only the* str. nul |'*
exceptions in your application, another to handle any other' str' exceptions in your
application, and another to handle any other exceptions in your application.

WARNING

Exception name strings cannot exceed 127 characters in length. Longer
exception names can cause a system crash. a

The following is an example of using the Def i neExcept i on macro:

Def i neExcepti on(exMyExcepti on, evt.ex.nyException);

rethrow

rethrow();

The rethrow macro reraises the current exception to allow the next handler (the next
enclosing Tr y block) the opportunity to handle it. The data and destructor function
associated with the current exception (if any) are passed along to the next handler.

Exception Functions and Macros

5-8

CHAPTER 5

Newton Exceptions Reference

Subexception

int Subexception(ExceptionNanme sub,
Excepti onName super) ;

sub The name of an exception. This string can contain a number of
semicolon-separated parts

super The name of an exception.

The Subexcept i on function determines if the exception named by super is equivalent
to or a prefix of any of the parts of the exception named by sub.

The Subexcept i on function returns 1 if super is a prefix of any part of sub and 0 if not.

Throw
void Throw(Excepti onNane name,
voi d* data = NULL,
Excepti onDestructor destructor = NULL);
name A string that is the class name of the exception.
data A pointer to the data that you want associated with the exception.
This is an optional parameter
destructor The function that you want used to destroy the data associated with

the exception. This is an optional parameter.

The Thr ow function raises an exception. You can optionally associate data and a a data
destructor function with the exception.

If you pass heap data into the Thr ow function, you can provide a destructor function to
deallocate that data. The Thr ow function uses the destructor function to deallocate the
data after the exception has been handled.

The following are examples of using the Thr ow function:

Thr om exMyExcepti on);
Thr om exMyException, (void*) 1234);
Thr owm(exMyException, (void*) 1234, 0);

ThrowMsg

void Thr omvsg(char* msg);
msg A message string.

The Thr owVs g function raises an exception with the name exMsgExcept i on. The
exception uses the string msg as its data.

You can use the Thr omVs g function to generate debugging messages. For example,

Exception Functions and Macros

CHAPTER 5

Newton Exceptions Reference

Thr owmvsg(" You are here");

Exception-Handling Macros

This section describes the macros that you can use to control exception handling in your
C++ programs.

To handle exceptions in your C++ applications, you need to catch the exception. You can
only catch exceptions within a Tr y block, which is also known as an exception handler.
An exception handler is a block of code that you begin with a call to the newt on_try
macro and end with a call to the end_t r y macro.

You catch exceptions within an exception handler by calling the newt on_cat ch macro.
Exception handlers can be nested within other exception handlers, which allows you to
handle a hierarchy of exception conditions.

Listing 5-1 shows an example of using the newt on_t ry, newt on_cat ch, and end_try
macros:

Listing 5-1 Using the newt on_t ry, newt on_cat ch, and end_t ry macros

newton_try
{
DoMySet up() ;
DoMyFcn();
}
newt on_cat ch(exMyExcepti on);
{

printf("Exception raised: %", CurrentException()->nane);

}
end_try

In Listing 5-1, the newt on_cat ch clause will handle any exceptions named
exM/Except i on that are raised during the processing of the DoMy Set up and DoMyFcn
functions. Any other exceptions will be handled by the next enclosing exception handler
(oftentimes the system software).

cleanup

cl eanup

You can add a cl eanup clause after any newton_catch clauses in your exception
handler. If no newton_catch clause handles the exceptions, the cleanup clause will
execute before the exception is passed onto the next handler.

Exception-Handling Macros 5-9

5-10

CHAPTER 5

Newton Exceptions Reference

Note

The cl eanup clause operates in exactly the same manner as does the
newt on_cat ch_al | clause, except that the cl eanup clause implicitly
(automatically) rethrows the current exception. a

WARNING

You must not r et ur n or br eak out of a newt on_cl eanup code block.
Doing so will cause strange and possibly disastrous behavior in your
program. a

end_unwind

end_unwi nd

The end_unwi nd clause ends a block of protected code.

end_try

end_try

The end_t r y macro marks the end of a block of code within which exceptions can be
caught and handled.

An example of using the end_t r y macro is shown in Listing 5-1.

newton_catch

newt on_cat ch(excptName)

excptName A string that is the class name of the exception. This is the same
string that is used in the call to the Thr ow function.

The newt on_cat ch macro catches and handles the exception named by excptName. The
macro is followed by a block of code that handles the exception. Within that block of
code, you can reraise the exception by calling the rethrow macro, which is described in
the section “rethrow” on page 5-7.

An example of using the newt on_cat ch macro is shown in Listing 5-1.

WARNING

You must not r et ur n or br eak out of a newt on_cat ch code block.
Doing so will cause strange and possibly disastrous behavior in your
program. a

newton_catch_all

newt on_catch_al |

The newt on_cat ch_al | macro catches any exceptions that have not been caught by
any preceding newton_catch clauses. The newt on_cat ch_al | clause must follow any
newt on_cat ch clauses.

Listing 5-2 shows an example of using the newt on_cat ch_al | macro.

Exception-Handling Macros

CHAPTER 5

Newton Exceptions Reference

Listing 5-2 Using the newt on_cat ch_al | macro

newton_try

{
DoMy Set up() ;
DoMyFen();
}
newt on_cat ch(exM/Excepti on) ;
{
printf("Exception raised: %", CurrentException()->nane);
}
newt on_catch_al |
{
exception_occurred = true;
}
end_try
WARNING

You must not r et ur n or br eak out of anewt on_cat ch_al | code
block. Doing so will cause strange and possibly disastrous behavior in
your program. a

newton_try

newton_try

The newt on_t r y macro marks the beginning of a block of code within which exceptions
can be caught and handled.

An example of using the newt on_t r y macro is shown in Listing 5-1.

WARNING

You must not r et ur n or br eak out of a newt on_t ry code block.
Doing so will cause strange and possibly disastrous behavior in your
program. a

on_unwind

on_unwi nd

The on_unwi nd clause closes out a block of protected code. You can call the
unwi nd_f ai | ed macro from within this clause to determine if an exception occurred
during the processing of the protected code block.

WARNING

You must not r et ur n or br eak out of a on_unwi nd code block. Doing
so will cause strange and possibly disastrous behavior in your
program. a

Exception-Handling Macros 5-11

5-12

CHAPTER 5

Newton Exceptions Reference

unwind_failed

unwi nd_fail ed()

You can call the unwi nd_f ai | ed macro from within the on_unwi nd clause of a
protected block of code to determine if an exception occurred during the execution of the
block of code. If an exception did occur, it will automatically be rethrown at the end of
the on_unwi nd clause.

unwind_protect

unwi nd_pr ot ect

You can use the unwi nd_pr ot ect construct to specify code in an exception handler that
must be run whether or not an exception occurs. The unwi nd_pr ot ect construct
consists of an unwi nd_pr ot ect clause, an on_unw nd clause, and an end_unw nd
macro.

Listing 5-3 shows an example of using the unwi nd_pr ot ect clause. Note that you can
use the unwi nd_pr ot ect construct within an exception handler, although you need not
do so.

Listing 5-3 Using the unwi nd_pr ot ect, on_unw nd , and unwi nd_end macros

unwi nd_pr ot ect

{
QpenAFi l e() ;
DoSoret hi ngWt hFil e();
}
on_unwi nd
{
Cl oseTheFil e();
}

end_unwi nd

WARNING

You must not r et ur n or br eak out of a unwi nd_pr ot ect code block.
Doing so will cause strange and possibly disastrous behavior in your
program. a

Exception-Handling Macros

CHAPTER 5

Newton Exceptions Reference

Summary of Exceptions Reference

Exception C++ Functions

Functions and Macros to Define and Throw Exceptions

void* Current Exception();
Def i neExcept i on(excptClass, string) ;
rethrow();
int Subexcepti on(Excepti onNane sub, Excepti onName super);
void Thr o Except i onNane name, voi d* data = NULL,
Excepti onDestruct or destructor = NULL) ;
void Thr owvsg(char* msg) ;

Exception-Handling Macros
cl eanup
end_onwi nd
end_try
newt on_cat ch(excptName)
newt on_catch_al |
newton_try
on_unwi nd
unwi nd_f ai | ed()

unwi nd_pr ot ect

Exception-Handling Macros 5-13

CHAPTER 5

Newton Exceptions Reference

5-14 Exception-Handling Macros

CHAPTETR 6

NewtonScript Reference

This chapter describes the programming interface that you can use from your C++
programs to call into the NewtonScript interpreter. It also explains how to structure your
C++ functions to allow NewtonScript applications to call them.

NewtonScript Interpreter Functions

You can use the NewtonScript interpreter functions in your C++ programs to call
NewtonScript functions.

Some NewtonScript functions are implemented directly as C++ functions to improve
their performance. Those functions are described in Chapter 3, “Newton Object System
Reference.”

If you want to use a NewtonScript function in your C++ program, you should first
determine if a C++ implementation exists for the function. If so, use that function, as
documented in Chapter 3, “Newton Object System Reference.”. If a C++ version does not
exist, use the functions described in this chapter to call the NewtonScript function.

Note

The NewtonScript Interpreter functions use object references (Ref),
object reference parameters (Ref Ar g) and symbols, all of which are
described in the section “The Newton Object System” beginning on
page 1-6 in Chapter 1, “C++ Toolkit Introduction.” O

Functions for Calling NewtonScript Functions From C++

This section describes the NewtonScript Interpreter functions that you can call in your
C++ programs. These functions allow you to execute NewtonScript function objects
directly from C++.

NewtonScript Interpreter Functions 6-1

CHAPTER 6

NewtonScript Reference

Note

Each of these functions is overloaded, which means that they are
supplied in different variations that allow you to supply different
numbers of arguments to the functions. There is also a version of each
function that you can call with an argument array. O

NSCall

Ref NSCal | (RefArg fen);

Ref NSCal | (RefArg fen,
Ref Arg arg0) ;

Ref NSCal | (RefArg fen,
Ref Arg arg0,
Ref Arg argl)

Ref NSCal | (RefArg fen,
Ref Arg arg0,
Ref Arg argl,
Ref Arg arg?) ;

Ref NSCal | (RefArg fen,
Ref Ar g argo,
Ref Arg argl,
Ref Arg arg2,
Ref Ar g arg3) ;

Ref NSCal | (RefArg fen,
Ref Arg arg0,
Ref Arg argl,
Ref Arg arg2,
Ref Arg arg3,
Ref Arg arg4,

Ref NSCal | (RefArg fen,

Ref Ar g argo,
Ref Arg argl,
Ref Arg arg2,
Ref Ar g arg3,
Ref Arg arg4,

NewtonScript Interpreter Functions

CHAPTER 6

NewtonScript Reference

Ref Arg argb) ;
fen The function object that you want to call.

arg0 The value of the first argument to supply as a parameter value to
the function you are calling.

arg1 The value of the second argument to supply as a parameter value to
the function you are calling.

arg2 The value of the third argument to supply as a parameter value to
the function you are calling.

arg3 The value of the fourth argument to supply as a parameter value to
the function you are calling.

argd The value of the fifth argument to supply as a parameter value to
the function you are calling.

args The value of the sixth argument to supply as a parameter value to
the function you are calling.

The NSCal | function calls the NewtonScript function named by fcn and passes it any
supplied parameter values. The provided variations of NSCal | allow you to call
functions that require any number of parameter values from zero to six.

The following is an example of using the NSCal | function to call a NewtonScript
function named MyFcn that requires two parameter values:

NSCal | (MyFcn, X, y);

The C++ statement above has the same semantics as using the following NewtonScript
expression:

call MyFcn with (x, y);

The NSCal | function returns an object reference to the returned value of the function
that you called. If the named function is not defined, NSCal | throws an “is not defined
as a function” exception.

NSCallwithArgArray

Ref NSCal | WthArgArray(RefArg fen,
Ref Arg argArray) ;

fen The function object that you want to call.
argArray A reference to an array that contains the function parameter values.

The NSCal | W t hAr gAr r ay function is a variant of the NSCal | function that allows
you to provide an array of parameter values. You can use this form to call a
NewtonScript function with more than six arguments.

NewtonScript Interpreter Functions 6-3

CHAPTER 6

NewtonScript Reference

NSCallGlobalFn

Ref NSCal | A obal Fn(Ref Arg

Ref NSCal | G obal Fn(Ref Ar g
Ref Arg

Ref NSCal | G obal Fn(Ref Ar g
Ref Ar g
Ref Arg

Ref NSCal | G obal Fn(Ref Ar g
Ref Arg
Ref Ar g
Ref Ar g

Ref NSCal | A obal Fn(Ref Arg
Ref Arg
Ref Ar g
Ref Arg
Ref Arg

Ref NSCal | G obal Fn(Ref Arg
Ref Ar g
Ref Ar g
Ref Arg
Ref Ar g
Ref Ar g

Ref NSCal | A obal Fn(Ref Arg
Ref Arg
Ref Ar g
Ref Arg
Ref Arg
Ref Ar g
Ref Arg

NewtonScript Interpreter Functions

sym) ;

sym,
arg0) ;

sym,
arg0,
argl)

sym,
arg0,
argl,
arg2)

sym,
arg0,
argl,
arg2,
arg3) ;

sym,
arg0,
argl,
arg2,
arg3,
arg4) ;

sym,
arg0,
argl,
arg2,
arg3,
arg4,
args) ;

CHAPTER 6

NewtonScript Reference

sym A symbol representing the name of the function that you want to
call.
arg0 The value of the first argument to supply as a parameter value to

the function you are calling.

argl The value of the second argument to supply as a parameter value to
the function you are calling.

arg2 The value of the third argument to supply as a parameter value to
the function you are calling.

arg3 The value of the fourth argument to supply as a parameter value to
the function you are calling.

arg4 The value of the fifth argument to supply as a parameter value to
the function you are calling.

args The value of the sixth argument to supply as a parameter value to
the function you are calling.

The NSCal | G obal Fn function calls the NewtonScript global function named by sym
and passes it any supplied parameter values. The provided variations of

NSCal | G obal Fn allow you to call functions that require any number of parameter
values from zero to six.

The following is an example of using the NSCal | G obal Fn function to call a
NewtonScript function named My@ obal Fcn that requires two parameter values:

NSCal | d obal Fn(SYM Myd obal Fcn), x, y);

The C++ statement above has the same semantics as using the following NewtonScript
expression:

M/d obal Fen(x, Yy);

The NSCal | G obal Fn function returns an object reference to the returned value of the
function that you called. If the named function is not defined as a global function,
NSCal | G obal Fn throws an “is not defined as a function” exception.

NSCallGlobalFnWithArgArray

Ref NSCal | G obal FnWthArgArray(Ref Arg sym,
Ref Arg argArray),

sym A symbol representing the name of the function that you want to
call.
argArray A reference to an array that contains the function parameter values.

The NSCal | A obal FnW t hAr gAr r ay function is a variant of the NSCal | G obal Fn
function that allows you to provide an array of parameter values. You can use this form
to call a NewtonScript function with more than six arguments.

NewtonScript Interpreter Functions 6-5

CHAPTER 6

NewtonScript Reference

NSSend
Ref NSSend(RefArg receiver,
Ref Ar g sym) ;
Ref NSSend(RefArg receiver,
Ref Ar g sym,
Ref Ar g arg0) ;
Ref NSSend(RefArg receiver,
Ref Ar g sym,
Ref Arg arg0,
Ref Arg argl) ;
Ref NSSend(RefArg receiver,
Ref Arg sym,
Ref Ar g argo,
Ref Arg argl,
Ref Arg arg2) ;
Ref NSSend(RefArg receiver,
Ref Arg sym,
Ref Arg arg0,
Ref Ar g argl,
Ref Arg arg2,
Ref Arg arg3) ;
Ref NSSend(RefArg receiver,
Ref Arg sym,
Ref Ar g argo,
Ref Arg argl,
Ref Arg arg2,
Ref Ar g arg3,
Ref Ar g arg4) ;
Ref NSSend(RefArg receiver,
Ref Arg sym,
Ref Arg arg0,
Ref Arg argl,
Ref Arg arg2,
Ref Arg arg3,
Ref Arg arg4,
Ref Ar g argb) ;

6-6 NewtonScript Interpreter Functions

CHAPTER 6

NewtonScript Reference

receiver A symbol representing the frame to which the function message is
sent (the message receiver).

sym A symbol representing the name of the function that you want to
call.
arg0 The value of the first argument to supply as a parameter value to

the function you are calling.

argl The value of the second argument to supply as a parameter value to
the function you are calling.

arg2 The value of the third argument to supply as a parameter value to
the function you are calling.

arg3 The value of the fourth argument to supply as a parameter value to
the function you are calling.

arg4 The value of the fifth argument to supply as a parameter value to
the function you are calling.

argd The value of the sixth argument to supply as a parameter value to
the function you are calling.

The NSSend function sends the message named by sym to receiver with any supplied
parameter values.

The provided variations of NSSend allow you to call methods that require any number
of parameter values from zero to six.

The following is an example of using the NSSend function to call a NewtonScript
method named My SM hd that requires two parameter values:

NSSend(x, SYM WSM hd), vy, 2z);

The C++ statement above has the same semantics as using the following NewtonScript
expression:

X: MyYSM hd(y, 2);

The NSSend function returns an object reference to the returned value of the method that
was invoked. If the named method is not defined in the receiver frame, the parent chain,
or the proto chain, NSSend throws an “undefined method” exception.

NSSendWithArgArray

Ref NSSendW thArgArray(RefArg receiver,
Ref Arg sym,

NewtonScript Interpreter Functions 6-7

6-8

CHAPTER 6

NewtonScript Reference

Ref Arg argArray) ;

receiver A symbol representing the frame to which the function message is
sent (the message receiver).

sym A symbol representing the name of the function that you want to
call.
argArray A reference to an array that contains the function parameter values.

The NSSendW t hAr gAr r ay function is a variant of the NSSend function that allows
you to provide an array of parameter values. You can use this form to call a
NewtonScript function with more than six arguments.

NSSendlfDefined

Ref NSSendlI f Defi ned(Ref Arg receiver,
Ref Arg sym);

Ref NSSendlI f Defi ned(Ref Arg receiver,
Ref Arg sym,
Ref Arg arg0);

Ref NSSendlI f Defi ned(Ref Arg receiver,
Ref Arg sym,
Ref Arg arg0,
Ref Arg argl);

Ref NSSendlI f Defi ned(Ref Arg receiver,

Ref Arg sym,
Ref Arg arg0,
Ref Arg argl,

Ref Arg arg2);

Ref NSSendl f Def i ned(Ref Arg receiver,

Ref Arg sym,
Ref Arg arg0,
Ref Arg argl,
Ref Arg arg2,

Ref Arg arg3);

Ref NSSendlI f Defi ned(Ref Arg receiver,

Ref Arg sym,
Ref Arg arg0,
Ref Arg argl,
Ref Arg arg2,

Ref Arg arg3,

NewtonScript Interpreter Functions

CHAPTER 6

NewtonScript Reference

Ref Arg argd);

Ref NSSendlI f Defi ned(Ref Arg receiver,

Ref Arg sym,
Ref Arg arg0,
Ref Arg argl,
Ref Arg arg2,
Ref Arg arg3,
Ref Arg arg4,

Ref Arg arg5);

receiver A symbol representing the frame to which the function message is
sent (the message receiver).

sym A symbol representing the name of the function that you want to
call.
arg0 The value of the first argument to supply as a parameter value to

the function you are calling.

argl The value of the second argument to supply as a parameter value to
the function you are calling.

arg2 The value of the third argument to supply as a parameter value to
the function you are calling.

arg3 The value of the fourth argument to supply as a parameter value to
the function you are calling.

arg4 The value of the fifth argument to supply as a parameter value to
the function you are calling.

args The value of the sixth argument to supply as a parameter value to
the function you are calling.

The NSSend| f Def i ned function sends the message named by sym to receiver, if and
only if the method is defined.

If the method is defined, it is called with any supplied parameter values. The provided
variations of NSSend| f Def i ned allow you to call methods that require any number of
parameter values from zero to six.

The following is an example of using the NSSend| f Def i ned function to call a
NewtonScript method named Myl f M hd that requires two parameter values:

NSSendl f Def i ned(x, SYMWIfMhd), vy, z);

The C++ statement above has the same semantics as using the following NewtonScript
expression:

NewtonScript Interpreter Functions 6-9

6-10

CHAPTER 6

NewtonScript Reference

X: ?M Il f M hd(y, 2);

The NSSend| f Def i ned function returns an object reference to the returned value of the
method that was invoked. If the method is not defined, NSSend| f Def i ned returns the
constant NI LREF.

NSSendlfDefinedWithArgArray

Ref NSSendlI f Defi nedWthArgArray(RefArg receiver,
Ref Arg sym,
Ref Arg argArray) ;

receiver A symbol representing the frame to which the function message is
sent (the message receiver).

sym A symbol representing the name of the function that you want to
call.
argArray A reference to an array that contains the function parameter values.

The NSSendl f Def i nedW t hAr gAr r ay function is a variant of the NSSend|I f Def i ned
function that allows you to provide an array of parameter values. You can use this form
to call a NewtonScript function with more than six arguments.

NSSendProto

Ref NSSendProto(Ref Arg receiver,
Ref Ar g sym) ;

Ref NSSendProto(Ref Arg receiver,
Ref Arg sym,
Ref Arg arg0) ;

Ref NSSendProto(Ref Arg receiver,
Ref Ar g sym,
Ref Arg arg0,
Ref Arg argl) ;

Ref NSSendProto(Ref Arg receiver,

Ref Arg sym,
Ref Arg arg0,
Ref Arg argl,

Ref Ar g arg2) ;

Ref NSSendProto(Ref Arg receiver,

Ref Arg sym,
Ref Arg arg0,
Ref Ar g argl,
Ref Arg arg2,

NewtonScript Interpreter Functions

CHAPTER 6

NewtonScript Reference

Ref Arg arg3) ;

Ref NSSendProto(Ref Arg receiver,

Ref Arg sym,
Ref Arg arg0,
Ref Arg argl,

Ref Arg arg2,
Ref Arg arg3,
Ref Arg arg4) ;

Ref NSSendProto(Ref Arg receiver,

Ref Ar g sym,
Ref Arg arg0,
Ref Arg argl,
Ref Ar g arg2,
Ref Arg arg3,

Ref Arg arg4,
Ref Ar g argb) ;

receiver A symbol representing the frame to which the function message is
sent (the message receiver).

sym A symbol representing the name of the function that you want to
call.

arg0 The value of the first argument to supply as a parameter value to

the function you are calling.

argl The value of the second argument to supply as a parameter value to
the function you are calling.

arg2 The value of the third argument to supply as a parameter value to
the function you are calling.

arg3 The value of the fourth argument to supply as a parameter value to
the function you are calling.

arg4 The value of the fifth argument to supply as a parameter value to
the function you are calling.

argb The value of the sixth argument to supply as a parameter value to
the function you are calling.

The NSSendPr ot o function sends the message named by sym to receiver and passes it
any supplied parameter values. The NSSendPr ot o function only looks in the proto
chain for the method.

If the method is defined, it is called with any supplied parameter values. The provided
variations of NSSendPr ot 0 allow you to call methods that require any number of
parameter values from zero to six.

NewtonScript Interpreter Functions 6-11

6-12

CHAPTER 6

NewtonScript Reference

The following is an example of using the NSSendPr ot o function to call a NewtonScript
method named MyPr ot oM hd that requires two parameter values:

NSSendProt o(x, SYM MyProtoM hd), vy, 2z);

The C++ statement above has the same semantics as using the following NewtonScript
expression:

if x. MyProtoM hd exists then x: M/ProtoM hd(y, z)
el se Throw(<undef met hod>);

The NSSendPr ot 0 function returns an object reference to the returned value of the
method that was invoked. If the named method is not defined, NSSendPr ot o throws an
“undefined function” exception.

NSSendProtoWithArgArray

Ref NSSendProt oWt hArgArray(Ref Arg receiver,
Ref Ar g sym,
Ref Arg argArray),

receiver A symbol representing the frame to which the function message is
sent (the message receiver).

sym A symbol representing the name of the function that you want to
call.

argArray A reference to an array that contains the function parameter values.

The NSSendPr ot oW t hAr gAr r ay function is a variant of the NSSendPr ot o function
that allows you to provide an array of parameter values. You can use this form to call a
NewtonScript function with more than six arguments.

NSSendProtolfDefined

Ref NSSendProtol f Defi ned(Ref Arg receiver,
Ref Arg sym) ;

Ref NSSendProtol f Defi ned(Ref Arg receiver,
Ref Arg sym,
Ref Arg arg0) ;

Ref NSSendProtol f Defi ned(Ref Arg receiver,
Ref Arg sym,
Ref Arg arg0,
Ref Arg argl) ;

Ref NSSendPr ot ol f Defi ned(Ref Arg receiver,

Ref Ar g sym,
Ref Arg arg0,

NewtonScript Interpreter Functions

CHAPTER 6

NewtonScript Reference

Ref Arg argl,
Ref Ar g arg?) ;

Ref NSSendPr ot ol f Defi ned(Ref Arg receiver,
Ref Arg sym,
Ref Arg argo,
Ref Arg argl,
Ref Arg arg2,
Ref Ar g arg3) ;

Ref NSSendProt ol f Defi ned(Ref Arg receiver,

Ref Ar g sym,
Ref Arg arg0,
Ref Arg argl,
Ref Ar g arg2,
Ref Arg arg3,

Ref Arg arg4) ;

Ref NSSendProtol f Defi ned(Ref Arg receiver,

Ref Arg sym,
Ref Arg arg0,
Ref Ar g argl,

Ref Arg arg2,
Ref Arg arg3,
Ref Ar g arg4,
Ref Arg argb) ;

receiver A symbol representing the frame to which the function message is
sent (the message receiver).

sym A symbol representing the name of the function that you want to
call.
arg0 The value of the first argument to supply as a parameter value to

the function you are calling.

argl The value of the second argument to supply as a parameter value to
the function you are calling.

arg2 The value of the third argument to supply as a parameter value to
the function you are calling.

arg3 The value of the fourth argument to supply as a parameter value to
the function you are calling.

arg4 The value of the fifth argument to supply as a parameter value to
the function you are calling.

args The value of the sixth argument to supply as a parameter value to
the function you are calling.

NewtonScript Interpreter Functions 6-13

6-14

CHAPTER 6

NewtonScript Reference

The NSSendPr ot ol f Def i ned function sends the message named by sym to receiver, if
and only if the method is defined. The NSSendPr ot ol f Def i ned function only looks in
the proto chain for the method.

If the method is defined, it is called with any supplied parameter values. The provided
variations of NSSendPr ot ol f Def i ned allow you to call methods that require any
number of parameter values from zero to six.

The following is an example of using the NSSendPr ot ol f Def i ned function to call a
NewtonScript method named MyPr ot ol f M hd that requires two parameter values:
NSSendPr ot ol f Def i ned(x, SYM MyProtolfMhd), vy, z);
The C++ statement above has the same semantics as using the following NewtonScript
expression:
if x. MProtolfMhd exists then x: M/ProtolfMhd(y, z)
el se nil;

The NSSendPr ot ol f Def i ned function returns an object reference to the returned value
of the method that was invoked. If the method is not defined, NSSendPr ot ol f Def i ned
returns the constant NI LREF.

NSSendProtolfDefinedWithArgArray

Ref NSSendPr ot ol f Defi nedWt hArgArray(Ref Arg receiver,
Ref Arg sym,
Ref Ar g argArray) ;

receiver A symbol representing the frame to which the function message is
sent (the message receiver).

sym A symbol representing the name of the function that you want to
call.

argArray A reference to an array that contains the function parameter values.

The NSSendPr ot ol f Def i nedW t hAr gAr r ay function is a variant of the
NSSendPr ot ol f Def i ned function that allows you to provide an array of parameter
values. You can use this form to call a NewtonScript function with more than six
arguments.

Functions for Accessing NewtonScript Slot Values from C++

This section describes several functions that you can use from your C++ programs to set
the value or retrieve the value of NewtonScript variables.

GetVariable

Ref GetVariable(RefArg frame,
Ref Arg varName,

NewtonScript Interpreter Functions

CHAPTER 6

NewtonScript Reference

| ong* found = 0);

frame A reference to the frame in which to start searching for the slot.
varName A symbol representing the name of the slot that you want to find.
found A Boolean value. On exit, this is t r ue if the variable was found and

f al se if not.

The Get Var i abl e function searches for the slot with name varName and returns its
value. The named slot is searched for using the combined prototype and parent
inheritance lookup, as described in The NewtonScript Programmer’s Language.

If the variable was not found, the function returns NI LREF as its result.

SetVariable

void Set Vari abl e(Ref Arg contextFrame,
Ref Arg varName,
Ref Ar g value);

contextFrame A reference to the frame in which to start searching for the slot.
varName A symbol representing the name of the slot that you want to find.
value A reference to the new value that you want assigned to the slot.

The Set Var i abl e function searches for the slot with name varName and modifies the
value of that slot to value. The named slot is searched for using the combined prototype
and parent inheritance lookup, as described in The NewtonScript Programmer’s Language.

If the Set Var i abl e function does not find a slot with name varName, it adds a new slot
to contextFrame, using varName and value for the new slot.

Calling C++ Functions from NewtonScript

This section explains how you can call C++ functions from a NewtonScript application.
Each NewtonScript-callable C++ function must use the following format:

Ref MyCpl usFuncti on(Ref Arg receiver,
Ref Arg arg0,
Ref Arg argl,

Ref Arg argn);

receiver A reference to the receiver frame for the C++ function.
arg0 The first argument to your function.

argl The second argument to your function.

argn The final argument to your function.

Calling C++ Functions from NewtonScript 6-15

6-16

CHAPTER 6

NewtonScript Reference

Assuming that the above function is declared in a C++ module named “mynodul e,” you
would use the following NewtonScript expression to call the function (with two
arguments):

call nmyModul e. MyCpl usFunction with (argl, arg2);

Note

The NewtonScript caller does not supply a value for the receiver

parameter. The Newton system software manages this automatically. O

Your C++ function must always include the receiver as its first parameter. You can define
your function with anywhere from zero to five additional parameters. The Newton
system software automatically fills this value in when a NewtonScript application calls
your C++ function.

Your C++ function always returns a reference as its return value.

Calling C++ Functions from NewtonScript

CHAPTER 6

NewtonScript Reference

Summary of NewtonScript Interpreter Functions

Functions for Calling NewtonScript Functions From C++

NSCall

Ref NSCal | (Ref Arg fcn) ;

Ref NSCal | (Ref Arg fen, Ref Arg arg0);

Ref NSCal | (Ref Arg fcn, Ref Arg arg0, RefArg argl);

Ref NSCal | (Ref Arg fen, RefArg arg0, RefArg argl, RefArg arg2);

Ref NSCal | (Ref Arg fcn, RefArg arg0, RefArg argl, RefArg arg2,
Ref Arg arg3);

Ref NSCal | (Ref Arg fen, RefArg arg0, RefArg argl, RefArg arg2,
Ref Arg arg3, Ref Arg arg4) ;

Ref NSCal | (Ref Arg fen, RefArg arg0, RefArg argl, RefArg arg2,
Ref Arg arg3, Ref Arg arg4, Ref Arg arg5);

Ref NSCal | Wt hArgArray(Ref Arg fen, Ref Arg argArray);

NSCallGlobalFn

Ref NSCal | G obal Fn(Ref Arg sym) ;

Ref NSCal | d obal Fn(Ref Arg sym, Ref Arg arg0);

Ref NSCal | G obal Fn(Ref Arg sym, Ref Arg arg0, RefArg argl);

Ref NSCal | G obal Fn(Ref Arg sym, Ref Arg arg0, RefArg argl, RefArg arg2);

Ref NSCal | G obal Fn(Ref Arg sym, Ref Arg arg0, RefArg argl, RefArg arg2,
Ref Arg arg3);

Ref NSCal | G obal Fn(Ref Arg sym, Ref Arg arg0, RefArg argl, RefArg arg2,
Ref Arg arg3, Ref Arg arg4) ;

Ref NSCal | A obal Fn(Ref Arg sym, Ref Arg arg0, Ref Arg argl, RefArg arg2,
Ref Arg arg3, Ref Arg arg4, Ref Arg arg5) ;

Ref NSCal | A obal FnW t hAr gArray(Ref Arg sym, Ref Arg argArray) ;

NSSend

Ref NSSend(Ref Arg receiver, Ref Arg sym);

Ref NSSend(Ref Arg receiver, Ref Arg sym, RefArg arg0);

Ref NSSend(Ref Arg receiver, RefArg sym, RefArg arg0, RefArg argl);

Calling C++ Functions from NewtonScript 6-17

6-18

CHAPTER 6

NewtonScript Reference

Ref NSSend(Ref Arg receiver, RefArg sym, RefArg arg0, RefArg argl,
Ref Arg arg2);

Ref NSSend(Ref Arg receiver, RefArg sym, RefArg arg0, RefArg argl,
Ref Arg arg2, RefArg arg3);

Ref NSSend(Ref Arg receiver, Ref Arg sym, RefArg arg0, RefArg argl,
Ref Arg arg2, Ref Arg arg3, Ref Arg arg4);

Ref NSSend(Ref Arg receiver, RefArg sym, RefArg arg0, RefArg argl,
Ref Arg arg2, RefArg arg3, Ref Arg arg4, Ref Arg argb);

Ref NSSendW t hAr gArray(Ref Arg receiver, Ref Arg sym, RefArg argArray);

NSSendIfDefined
Ref NSSendl f Def i ned(Ref Arg receiver, Ref Arg sym);
Ref NSSendl f Def i ned(Ref Arg receiver, Ref Arg sym, RefArg arg0);

Ref NSSendl f Def i ned(Ref Arg receiver, Ref Arg sym, RefArg arg0,
Ref Arg argl);

Ref NSSendl f Def i ned(Ref Arg receiver, RefArg sym, RefArg arg0,
Ref Arg argl, RefArg arg2);

Ref NSSendl f Def i ned(Ref Arg receiver, RefArg sym, RefArg arg0,
Ref Arg argl, RefArg arg2, RefArg arg3);

Ref NSSendl f Def i ned(Ref Arg receiver, RefArg sym, RefArg arg0,
Ref Arg argl, RefArg arg2, RefArg arg3, Ref Arg arg4);

Ref NSSendl f Def i ned(Ref Arg receiver, RefArg sym, RefArg arg0,
Ref Arg argl, RefArg arg2, RefArg arg3, Ref Arg arg4, Ref Arg argb);

Ref NSSendl f Def i nedW t hAr gArray(Ref Arg receiver, Ref Arg sym,
Ref Arg argArray) ;

NSSendProto

Ref NSSendPr ot o(Ref Arg receiver, Ref Arg sym);

Ref NSSendPr ot o(Ref Arg receiver, RefArg sym, RefArg arg0);

Ref NSSendPr ot o(Ref Arg receiver, Ref Arg sym, RefArg arg0, RefArg argl);

Ref NSSendPr ot o(Ref Arg receiver, Ref Arg sym, RefArg arg0, RefArg argl,
Ref Arg arg2);

Ref NSSendPr ot o(Ref Arg receiver, RefArg sym, RefArg arg0, RefArg argl,
Ref Arg arg2, RefArg arg3);

Ref NSSendPr ot o(Ref Arg receiver, RefArg sym, RefArg arg0, RefArg argl,
Ref Arg arg2, RefArg arg3, Ref Arg arg4);

Ref NSSendPr ot o(Ref Arg receiver, RefArg sym, RefArg arg0, RefArg argl,
Ref Arg arg2, RefArg arg3, Ref Arg arg4, Ref Arg argb);

Calling C++ Functions from NewtonScript

CHAPTER 6

NewtonScript Reference

Ref NSSendPr ot oWt hAr gArray(Ref Arg receiver, Ref Arg sym,
Ref Arg argArray) ;

NSSendProtoIfDefined
Ref NSSendPr ot ol f Defi ned(Ref Arg receiver, Ref Arg sym);
Ref NSSendPr ot ol f Defi ned(Ref Arg receiver, Ref Arg sym, RefArg arg0);
Ref NSSendPr ot ol f Def i ned(Ref Arg receiver, Ref Arg sym, RefArg arg0,
Ref Arg argl);
Ref NSSendPr ot ol f Defi ned(Ref Arg receiver, Ref Arg sym, RefArg arg0,
Ref Arg argl, RefArg arg2);

Ref NSSendPr ot ol f Defi ned(Ref Arg receiver, Ref Arg sym, RefArg arg0,
Ref Arg argl, RefArg arg2, RefArg arg3);

Ref NSSendPr ot ol f Def i ned(Ref Arg receiver, Ref Arg sym, RefArg arg0,
Ref Arg argl, RefArg arg2, RefArg arg3, Ref Arg arg4);

Ref NSSendPr ot ol f Def i ned(Ref Arg receiver, Ref Arg sym, RefArg arg0,
Ref Arg argl, RefArg arg2, RefArg arg3, Ref Arg arg4, Ref Arg argb);

Ref NSSendPr ot ol f Def i nedW t hAr gArray(Ref Arg receiver, Ref Arg sym,
Ref Arg argArray) ;

Functions for Accessing NewtonScript Slot Values from C++

Ref Get Vari abl e(Ref Arg frame, Ref Arg varName, |ong* found = 0);
void Set Var i abl e(Ref Arg contextFrame, Ref Arg wvarName, Ref Arg value);

Calling C++ Functions from NewtonScript 6-19

CHAPTER 6

NewtonScript Reference

6-20 Calling C++ Functions from NewtonScript

CHAPTER 7

Newton Unicode Reference

This chapter describes the constants, data types, and classes that you use to manipulate
Unicode strings.

Unicode Constants and Data Types

This section describes the constants and data types that you use with the Unicode
functions that are described in this chapter.

The UniChar Type

The Newton System Software defines the Uni Char type for Unicode characters.

t ypedef unsigned short Uni Char

Encoding Type Constants

You use the encoding type constants to specify the kind of encoding to use for the
various Unicode conversion functions.

#defi ne kiMacRomanEncodi ng
#def i ne kASClI | Encodi ng
#def i ne kW zar dEncodi ng
#defi ne kShiftJl SEncodi ng
#def i ne kMacKanj i Encodi ng

o OB~ DN B

.Unicode Constants and Data Types 7-1

CHAPTER 7

Newton Unicode Reference

Constant Descriptions

kMacRomanEncodi ng Macintosh Roman character encoding.
kASCI | Encodi ng 7-bit ASCII character encoding.

kW zar dEncodi ng English Wizards character encoding.

kshi ft JI SEncodi ng Japanese character encoding.

kMacKanj i Encodi ng Macintosh KanjiTalk 7 character encoding.

Note

The system software automatically sets the value of the constant
kDef aul t Encodi ng to the character set of the current desktop
platform.

Unicode Character and String Constants

The Unicode functions use these constants to indicate values in strings.

const UChar kNoTr ansl at i onChar 1
const UChar KEndOF Char Stri ng 2
const Uni Char KkEndOf Uni codeStri ng 2

Constant Descriptions
kNoTr ansl ati onChar Stored in the string destination string to indicate that there
was no translation for the character in the source string.

KEndCOf Char String The string termination character for a string resulting from the
conversion of a Unicode string.

KEndCf Uni codeSt ri ng The string termination character for a string resulting from the
conversion of a string to a Unicode string.

Unicode Functions

This section describes the functions that you can use with Unicode strings.

ConvertFromUnicode

void Convert Fronlni code(const Uni Char* source,
voi d* dest,
Fast | nt destEncoding = kDef aul t Encodi ng,

Unicode Functions

CHAPTER 7

Newton Unicode Reference

| ong length = Ox7FFFFFFF) ;
source The Unicode character string to be converted.
dest A pointer to the destination string.
destEncoding The encoding method to use for the conversion. Use one of the
constants shown in the section “Encoding Type Constants” on
page 7-1.
length The maximum number of characters to convert.

The Conver t Fr omni code function converts the characters in the source string from
Unicode character encoding into another encoding. The output of the conversion is
written to the destination string, which is pointed to by dest.

The destination string is always terminated by the KEndCOf Char St ri ng character
constant.

The Conver t Fr onni code function converts up to length characters or until the string
termination character is encountered in the source string. You must ensure that adequate
memory has been allocated for dest to contain all of the converted characters.

ConvertToUnicode

void Convert ToUni code(const voi d* source,
Uni Char * dest,
Fast | nt srcEncoding = kDef aul t Encodi ng,
| ong length = OX7FFFFFFF) ;
source The character string to be converted.
dest A pointer to the destination (Unicode) string.
destEncoding The encoding method to use for the conversion. Use one of the
constants shown in the section “Encoding Type Constants” on
page 7-1.
length The maximum number of characters to convert.

The Convert ToUni code function converts the characters in the source string into
Unicode characters. The output of the conversion (the Unicode characters) is written to
the destination string, which is pointed to by dest.

The destination string is always terminated by the KEndOf Uni codeSt ri ng character
constant.

The Conver t ToUni code function converts up to length characters or until the string
termination character is encountered in the source string. You must ensure that adequate
memory has been allocated for dest to contain all of the converted characters.

ConvertUnicodeChar

long Convert Uni codeChar (Uni Char * c,
Ptr b,

Unicode Functions 7-3

CHAPTER 7

Newton Unicode Reference

Fast I nt conversionType) ;
c A pointer to a Unicode character.
b A pointer to the destination string.
conversionType The encoding method to use for the conversion. Use one of the
constants shown in the section “Encoding Type Constants” on

page 7-1.

The Conver t Uni codeChar function converts the Unicode character pointed to by ¢
and stores the output of the conversion into the buffer b. The Conver t Uni codeChar
function is a convenience function that makes the following call:

Convert Fronni code(c, b, conversionType, 1);

The Convert Uni codeChar function returns the length, in bytes, of the character (c)
that was converted.

ConvertUnicodeCharacters

void Convert Uni codeCharacters(Uni Char* array,
Ptr buffer,
Fast | nt conversionType,
| ong len) ;
array The source array of characters.
buffer The destination buffer.
conversionType The encoding method to use for the conversion. Use one of the
constants shown in the section “Encoding Type Constants” on
page 7-1.
len The number of characters to convert.

The Convert Uni codeChar act er s function converts the characters in the source array
from Unicode character encoding into another encoding. The output of the conversion is

written to the destination buffer, which is pointed to by buffer.

The Convert Uni codeChar act er s function converts len characters. The
Conver t Uni codeChar act er s function does apply any special handling to string
terminators, which are treated just like any other character.

You must ensure that array contains at least the specified number (len) of characters. You
must also ensure that adequate memory has been allocated for buffer to contain all of the

converted characters.

HasChars

Boolean HasChar s(Uni Char* ¢);

c A pointer to a Unicode string.

Unicode Functions

CHAPTER 7

Newton Unicode Reference

The HasChar s function examines the string referenced by ¢ to determine if it contains
any alphabetic characters. An alphabetic character is any lowercase character between
"a'and ' z', inclusively, or any uppercase character between' A' and ' Z', inclusively.

If the string referenced by c¢ contains at least one alphabetic character, HasChar s returns
t r ue; otherwise, HasChar s returns f al se.

HasDigits
Boolean HasDi gi t s(Uni Char* ¢);

c A pointer to a Unicode string.

The HasDi gi t s function examines the string referenced by ¢ to determine if it contains
any numeric characters. A numeric character is any character between' 0' and ' 9',
inclusively.

If the string referenced by c¢ contains at least one numeric character, HasDi gi t s returns
t r ue; otherwise, HasDi gi t s returns f al se.

HasSpaces
Boolean HasSpaces(Uni Char* ¢);

c A pointer to a Unicode string.

The Has Spaces function examines the string referenced by ¢ to determine if it contains
any space (' ') characters.

If the string referenced by c contains at least one space character, Has Spaces returns
t r ue; otherwise, Has Spaces returns f al se.

IsPunctSymbol
Boolean | sPunct Synbol (Uni Char *word,
Fast | nt index) ;
word A pointer to a Unicode string.
index The index in word of the character to be tested.

The | sPunct Synmbol function examines the character specified by word[index] to
determine if it is a punctuation symbol. The | sPunct Synbol function returnst r ue if
the specified character is a punctuation symbol and f al se if not.

The character is not considered a punctuation symbol if it is preceded by ' s’ ' or' S' ' .

The | sPunct Synbol function considers the characters shown in Table 7-1 on page 7-6
to be punctuation symbols.

StripPunctSymbols
void Stri pPunct Synbol s(Uni Char* word) ;

word A pointer to a Unicode string.

Unicode Functions 7-5

CHAPTER 7

Newton Unicode Reference

The St ri pPunct Synbol s function strips any leading and trailing punctuation symbols
from the string word. Any of the characters shown in Table 7-1 are considered to be
punctuation symbols.

Table 7-1 Unicode punctuation symbols

Character Character Name Hexadecimal Value

! exclamation mark 0x21L

" quotation mark 0x22L

' single quote 0x27L

(left parenthesis 0x28L

) right parenthesis 0x29L

, comma 0x2CL
period Ox2EL
colon Ox3AL

; semicolon 0x3BL

? question mark Ox3FL

“ left double quotation 0x2018L

" right double quotation 0x2019L

‘ left single quote 0x201CL

' right single quote 0x201DL

WARNING

The St ri pPunct Synbol s function modifies the string word. a

Umemset
void* Umenset (voi d* str,
Uni Char ch,
ULong numChars) ;
str A pointer to a buffer in memory.
ch A character.
numChars The number of characters to set.

The Urenset f unction initializes the block of memory pointed to by str. It copies the
value of the character ch into each of the first numChars characters of str.

The Umenset function returns a pointer to str.

Unicode Functions

CHAPTER 7

Newton Unicode Reference

Ustrcat
UniChar* Ustr cat (Uni Char * destStr,
const Uni Char * sourceStr) ;
destStr TheUnicode string on which to concatenate characters.
sourceStr The Unicode string to be copied.

The Ust r cat function concatenates the Unicode string sourceStr onto the end of the
Unicode string destStr. This is done by copying each character of sourceStr to the end of
the destStr. You must ensure that adequate memory has been allocated for destStr to
contain the additional characters from sourceStr.

Ustrchr

UniChar* Ustrchr(const Uni Char *str,
Uni Char ch);

str A pointer to a Unicode string.

ch A character.

The Ust r chr function finds the first occurrence of the character ch in the string str and
returns a pointer to that character. If the character it not found in the string, Ust r chr
returns 0.

Ustrcmp

Fastint Ustrcnp(const Uni Char* strl,
const Uni Char* str2) ;

strl A pointer to a Unicode string.

str2 A pointer to a Unicode string.

The Ust r cnp function compares two strings according to the Unicode collating
sequence.

The Ust r cnp function returns 0 if the two strings are equal.
The Ust r cnp function returns a negative number if str1 is less than str2.

The Ust r cnp function returns a positive number if str1 is greater than str2.

Ustrcpy
UniChar* Ustrcpy(Uni Char* destStr,
const Uni Char * sourceStr) ;
destStr The Unicode string into which to copy. On exit, this is the string
copy.
sourceStr The Unicode string to be copied.

Unicode Functions 7-7

CHAPTER 7

Newton Unicode Reference

The Ust r cpy function copies the Unicode string sourceStr to destStr. You must ensure
that adequate memory has been allocated for destStr to hold all of the characters in
sourceStr.

Ustrlen

ULong Ustrlen(const Uni Char* str);
str A Unicode string.

The Ust r | en function returns the length of the Unicode string str.

Ustrncat
UniChar* Ustrncat (Uni Char* destStr,
const Uni Char* sourceStr,
ULong n);
destStr The Unicode string on which to concatenate characters.
sourceStr The Unicode string to be copied.
n The number of characters to copy.

The Ust r ncat function concatenates n characters of the Unicode string sourceStr onto
the end of the Unicode string destStr. This is done by copying each character of sourceStr
to the end of the destStr. You must ensure that adequate memory has been allocated for
destStr to contain the additional characters from sourceStr. The Ust r ncat function stops
copying (concatenating) if it encounters the string termination character in sourceStr.

Ustrncpy
UniChar* Ust rncpy(Uni Char* destStr,
const Uni Char* sourceStr,
ULong n);
destStr The Unicode string into which to copy. On exit, this is the string
copy.
sourceStr The Unicode string to be copied.
n The number of characters to copy.

The Ust r ncpy function copies n characters of the Unicode string sourceStr to destStr. You
must be certain that adequate memory has been allocated for destStr to hold n characters.
The Ust r ncpy function stops copying if it encounters the string termination character in
sourceStr.

The Ust r ncpy function always writes a string termination character at the end of destStr.

Unicode Functions

CHAPTER 7

Newton Unicode Reference

Summary of Unicode Reference

Unicode Data Types
t ypedef unsigned short Uni Char;

Encoding Type Constants

#defi ne kMacRomanEncodi ng
#def i ne kASClI | Encodi ng
#def i ne kW zar dEncodi ng
#defi ne kShiftJl SEncodi ng
#defi ne kMacKanj i Encodi ng

o g B~ N P

Unicode Character and String Constants

const UChar kNoTr ansl ati onChar 1
const UChar KEndOf Char Stri ng 2
const Uni Char KkEndOF Uni codeString 2

Unicode Functions

void Convert Fronmni code(const Uni Char* source, voi d* dest,
Fast | nt destEncoding = kDef aul t Encodi ng,
 ong length = Ox7FFFFFFF);

void Convert ToUni code(const Uni Char* source, voi d* dest,
Fast | nt srcEncoding = kDef aul t Encodi ng,
l ong length = OX7FFFFFFF) ;

long Convert Uni codeChar (Uni Char * c,

Ptr b,

Fast I nt conversionType) ;
void Convert Uni codeChar act er s(

Uni Char * array,

Ptr buffer,

Fast | nt conversionType,

| ong len) ;

Boolean HasChar s(Uni Char* ¢);
Boolean HasDi gi t s(Uni Char* ¢);
Boolean HasSpaces(Uni Char* ¢);

Unicode Functions

CHAPTER 7

Newton Unicode Reference

Boolean | sPunct Synbol (Uni Char* word, Fastlnt index);
void Stri pPunct Synbol s(Uni Char* word) ;
void* Urenset (voi d* str, Uni Char ch, ULong numChars) ;

UniChar* Ustrcat (Uni Char* destStr, const Uni Char* sourceStr);
UniChar* Ustrchr(const Uni Char* str, Uni Char ch);

FastInt Ustrcnp(const Uni Char* strl, const Uni Char* str2);
UniChar* Ust rcpy(Uni Char* destStr, const Uni Char* sourceStr);
ULong Ustrl en(const Uni Char* str);

UniChar* Ust rncat (Uni Char* destStr, const Uni Char* sourceStr,
ULong n);

UniChar* Ust rncpy(Uni Char* destStr, const Uni Char* sourceStr,
ULong n);

7-10 Unicode Functions

CHAPTER 8

Newton C Library Reference

This chapter describes the constants, data types, and functions from the C Library that
you can use with your Newton programs.

IMPORTANT

With a few exceptions, all of the functions described in this chapter are
part of the C Library that is supplied with most C and C++ compilers.

The description for many of these functions states that “this function is
part of the standard ANSI-C library.” This means that you need to read
about the function in the C library documentation that accompanied
your compiler.

The description for some of these functions states that “the Newton

implementation of this function is described in the Utility Functions
chapter of Newton Programmer’s Guide”. This means that you need to
read about the function in the Newton Programmer’s Guide.

Finally, a few of the functions are only found in the Newton C++ Toolkit.
These functions—asct i me_newt on, cti me_newt on, and

| ocal ti me_newt on—are variations of their analogs in the C library
and are described in this chapter. a

C Library Constants and Data Types

This section describes the data types that you use with the Newton C Library functions.

C Library Constants

This section describes the constants that you can use with the C Library functions.

C Library Constants and Data Types 8-1

8-2

CHAPTER 8

Newton C Library Reference

The NULL Pointer

The NULL pointer is used as the value of a pointer that does not point to anything.

#define NULL O

The HUGE_VAL Constant

The HUGE_VAL constant is used to approximate infinity. This value is returned by several
of the math functions when certain conditions exist.

#define HUGE_ VAL _inf();

The Maximum Random Number Value

The maximum random number value constant, RAND_MAX, defines the largest number
that the r and function can return.

#defi ne RAND_MAX Ox7fffffff

Standard Library Types

This section describes the data types that you use with the standard C Library functions.

The Size Type

You use the size type, of type si ze_t, to define the sizes of objects used in various of the
C Library functions.

t ypedef unsigned int size_t;

The Wide Char Type

You use the wide character type, of type wchar_t, for characters that require more than
one byte.

typedef int wchar _t;

The Division Result Type

You use the division result type, of type div_t, to hold the results of the di v function.

typedef struct div_t {

i nt quot ;
i nt reny
} div_t;

C Library Constants and Data Types

CHAPTER 8

Newton C Library Reference

Field descriptions
quot The quotient for the division.
rem The remainder for the division.

The Long Division Result Type

You use the long division result type, of type | di v_t, to hold the results of the 1div
function.

typedef struct Idiv_t {
I ong int quot;
long int rem

} ldiv_t;

Field descriptions

quot The quotient for the division.
rem The remainder for the division.
Math Types

This section describes the data types that you use with the math functions.

Double-precision Value Type

The double-precision value type, of type doubl e_t, is used for double-precision values.
It is exactly equivalent to the C++ doubl e type.

Relational Operator Type

The relational operator type, of type r el op, describes the relationship between two
numbers.

t ypedef short rel op;
enum {
CGREATERTHAN = ((relop) (0)),
LESSTHAN,
EQUALTO,
UNORDERED

b

Constant descriptions
GREATERTHAN The first operand is greater than the second operand.

LESSTHAN The first operand is less than the second operand.
EQUALTO The first operand is equal to the second operand.
UNORDERED At least one of the two operands is not a number.

C Library Constants and Data Types 8-3

CHAPTER 8

Newton C Library Reference

Time Types

This section describes the data types that you use with the time functions.

Clock Time Type

The C Library functions use the clock time type, of type cl ock_t, to represent the cpu
time type, which is the number of ticks per second in the value that is returned by the
clock function. The clock function is described on page 8-31.

t ypedef unsigned int clock t;

Calendar Time Type

The C Library functions use the calendar time type, of type t i me_t, to represent the
current calendar time in a single, integer value. The internal representation of this value
is not specified.

typedef unsigned int time_t;

Calendar Clock Time Structure

The C Library time functions use the calendar clock time structure, of type t m to hold
the components of a calendar clock reading.

struct tm {

int tmsec;
int tmmn;

i nt tm hour;
i nt tm nday;
int tmnon;
int tmyear;
i nt tmwday;
i nt tmyday;
int tmisdst;

C Library Constants and Data Types

CHAPTER 8

Newton C Library Reference

Field descriptions
tm sec

tmmn
t m hour

t m_nday
t m non

tmyear
t m wday
t m yday

tm.i sdst

C Library Functions

The number of seconds after the minute. This is a value between 0
and 59.

The number of minutes after the hour. This is a value between 0 and
59.

The number of hours since midnight. This is a value between 0 and
23.

The day of the month. This is a value between land 31.

The number of months since January. This is a value between 0 and
11.

The number of years since 1900.
The number of days since Sunday. This is a value between 0 and 6.

The number of days since January 1. This is a value between 0 and
365.

A flag indicating whether Daylight Savings Time is in effect. This
value is positive if Daylight Savings Time is in effect, zero if
Daylight savings time is not in effect, and negative if the
information is not available.

This section describes the C Library functions that you can use in your Newton

programs.

Character Conversion Functions

This section describes the C Library functions that convert a single character.

tolower

int tolower(int ¢);

c

A single character.

The t ol ower function is part of the standard ANSI-C library.

toupper

int toupper(int ¢);

c

A single character.

The t oupper function is part of the standard ANSI-C library.

C Library Functions

8-5

8-6

CHAPTER 8

Newton C Library Reference

Floating-point Math Functions

This section describes the C Library functions for working with floating-point math
values.

WARNING

The functions in this section, which are declared in the fp.h include file,
cannot be used in p-classes. This might be of concern to you if you are
using the C++ library functions to develop a Newton driver; however,
this is not a concern for developers who are using C++ code with a
NewtonScript application. a

acos

double_t acos(double t x);
x A double-precision value.

The acos function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

acosh

double_t acosh(doubl e_t X);
x A double-precision value.

The acosh function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

asin
double_t asi n(doubl e_t x);
x A double-precision value.

The asi n function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

asinh

double_t asi nh(doubl e_t X);
x A double-precision value.

The asi nh function is part of the standard ANSI-C library. The Newton
implementation of this function is documented in the “Utility Functions” chapter of
Newton Programmer’s Guide.

C Library Functions

CHAPTER 8

Newton C Library Reference

atan
double_t at an(doubl e_t x) ;
x A double-precision value.

The at an function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

atan2
double_t atan2(double_ t x,
double_t v);
x A double-precision value.
y A double-precision value.

The at an2 function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

atanh

double_t at anh(doubl e_t X);
x A double-precision value.

The at anh function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

ceil
double_t cei |l (doubl e_t x);
x A double-precision value.

The cei | function is part of the standard ANSI-C library.

copysign
double_t copysign(double_t x,
doubl e_t v);
x A double-precision value.
y A double-precision value.

The copysi gn function is part of the standard ANSI-C library. The Newton
implementation of this function is documented in the “Utility Functions” chapter of
Newton Programmer’s Guide.

C Library Functions 8-7

8-8

CHAPTER 8

Newton C Library Reference

copysignf
float copysi gn(fl oat X,
f1 oat y);
x A floating-point value.
y A floating-point value.

The copysi gnf function is part of the standard ANSI-C library. This function is the
same as the copysign function, except that copysi gnf takes floating-point values for
arguments and returns a floating-point value. The Newton implementation of this
function is documented as the copysi gn function in the “Utility Functions” chapter of
Newton Programmer’s Guide.

cos
double_t cos(doubl e_t X);
X A double-precision value.

The cos function is part of the standard ANSI-C library. The Newton implementation of
this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

cosh
double_t cosh(doubl e_t X);
x A double-precision value.

The cosh function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

erf
double_t erf (doubl e_t X);
X A double-precision value.

The er f function is part of the standard ANSI-C library. The Newton implementation of
this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

erfc

double_t erfc(double_t x);
x A double-precision value.

The er f ¢ function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

C Library Functions

CHAPTER 8

Newton C Library Reference

exp
double_t exp(doubl e_t x) ;
x A double-precision value.

The exp function is part of the standard ANSI-C library. The Newton implementation of
this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

exp2
double_t exp2(doubl e_t X);
x A double-precision value.

The exp2 function is part of the standard ANSI-C library.

expml
double_t expnil(doubl e_t X);

x A double-precision value.

The expnil function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

fabs
double_t fabs(doubl e_t X);
X A double-precision value.

The f abs function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

fdim

double_t fdi m(doubl e_t X,
doubl e_t Y);

x A double-precision value.
y A double-precision value.

The f di mfunction is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

floor

double_t fl oor (doubl e_t X);

x A double-precision value.

C Library Functions 8-9

8-10

CHAPTER 8

Newton C Library Reference

The f | oor function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

fmax
double_t f max(doubl e_t X,
doubl e_t DK
x A double-precision value.
y A double-precision value.

The f max function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

fmin
double_t fm n(doubl e_t X,
doubl e_t y);
x A double-precision value.
y A double-precision value.

The f max function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

fmod
double_t f mod(doubl e_t X,
doubl e_t y);
X A double-precision value to be divided (the dividend).
y The double-precision divisor.

The f mod function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

frexp
double_t frexp(double_ t X,

i nt * exponent) ;
x A double-precision value.
exponent On exit, the exponent of x.

The f r exp function is part of the standard ANSI-C library.

C Library Functions

CHAPTER 8

Newton C Library Reference

hypot
double_t hypot(double t x,
double_t vy);
x A double-precision value.
y A double-precision value.

The hypot function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

isfinite

inti sfinite(long double x);
x Along double-precision value.

The i sfi ni t e function is documented in the “Utility Functions” chapter of Newton
Programmer’s Guide.

isnan

inti snan(l ong doubl e x);
x Along double-precision value.

The i snan function is documented in the “Utility Functions” chapter of Newton
Programmer’s Guide.

isnormal

inti snormal (1 ong doubl e x);
x Along double-precision value.

The i snor mal function is documented in the “Utility Functions” chapter of Newton
Programmer’s Guide.

Idexp
double_t | dexp(doubl e _t X,
i nt n);
X The double-precision mantissa value.
n The exponent value.

The | dexp function is part of the standard ANSI-C library.

log
double_t | og(doubl e_t X);
x A double-precision value.

C Library Functions 8-11

8-12

CHAPTER 8

Newton C Library Reference

The | og function is part of the standard ANSI-C library. The Newton implementation of
this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

logb

double_t | ogb(doubl e_t X);
X A double-precision value.

The | ogb function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

loglp

double_t | oglp(doubl e t X);
x A double-precision value.

The | 0g1p function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

log10

double_t |1 0g10(doubl e_t X);
X A double-precision value.

The | 0910 function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

log2

double_t | og2(doubl e_t X);
x A double-precision value.

The | og function is part of the standard ANSI-C library.

modf
double nmodf (doubl e X,
doubl e *iptr) ;
X A double-precision value.
iptr On exit, the integral part of x.

The nodf function is part of the standard ANSI-C library.

C Library Functions

CHAPTER 8

Newton C Library Reference

modff
float modf f (f1 oat X,
fl oat *iptrf) ;
x A floating-point value.
iptr On exit, the integral part of x, stored as a floating point value.

The nodf f function is part of the standard ANSI-C library.

nearbyint

double_t near byi nt (double_t x);
x A double-precision value.

The near byi nt function is part of the standard ANSI-C library. The Newton
implementation of this function is documented in the “Utility Functions” chapter of
Newton Programmer’s Guide.

nextafterd

double nextafterd(double X,
double y);

x A double-precision value.

y A double-precision value.

The next af t er d function is part of the standard ANSI-C library. The Newton
implementation of this function is documented in the “Utility Functions” chapter of
Newton Programmer’s Guide.

nextafterf
float nextafterf(fl oat X,
f1 oat y);
X A double-precision value.
y A double-precision value.

The next af t er f function is part of the standard ANSI-C library.

pow

double_t pow(doubl e_t X,
doubl e_t Y

x A double-precision value.

y A double-precision number representing the power.

C Library Functions

8-13

CHAPTER 8

Newton C Library Reference

The pow function is part of the standard ANSI-C library. The Newton implementation of
this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

randomx

double_t randomx(doubl e_t* X);
x On entry, the seed value. On exit, the new seed value.

The r andonx function is part of the standard ANSI-C library. The Newton
implementation of this function is documented in the “Utility Functions” chapter of
Newton Programmer’s Guide.

relation
relop rel ati on(doubl e_t X,
doubl e_t Y);
x A double-precision value.
y A double-precision value.

Ther el ati on function is part of the standard ANSI-C library.

remainder
double_t remai nder (double_t x,
double_t v);
x A double-precision value to be divided (the dividend).
y The double-precision divisor.

The r emmi nder function is part of the standard ANSI-C library. The Newton
implementation of this function is documented in the “Utility Functions” chapter of
Newton Programmer’s Guide.

remaquo
double_t rermguo(doubl e_t X,
doubl e_t Y,
int* quo) ;
X A double-precision value to be divided (the dividend).
y The double-precision divisor.
quo On exit, the seven low-order bits of x divided by y as a value

between - 127 and 127.

The r enquo function is part of the standard ANSI-C library. The Newton
implementation of this function is documented in the “Utility Functions” chapter of
Newton Programmer’s Guide.

8-14 C Library Functions

CHAPTER 8

Newton C Library Reference

rint
double_t rint (doubl e_t x) ;
x A double-precision value.

Theri nt function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

rinttol

longint rinttol (double_t x);
x A double-precision value.

Therinttol function is part of the standard ANSI-C library. The Newton
implementation of this function is documented in the “Utility Functions” chapter of
Newton Programmer’s Guide.

round

double_t round(doubl e_t x) ;
x A double-precision value.

The r ound function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

roundtol
long int roundt ol (doubl e_t round) ;
x A double-precision value.

The r oundt ol function is part of the standard ANSI-C library.

scalb
double_t scal b(doubl e_t X,
| ong int n);
x A double-precision value.
n A double-precision value.

The scal b function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

signbit

int si gnbit (1 ong double x);

x A long double-precision value.

C Library Functions 8-15

8-16

CHAPTER 8

Newton C Library Reference

The si gnbi t function is documented in the “Utility Functions” chapter of Newton
Programmer’s Guide.

sin
double_t si n(doubl e_t x) ;
x A double-precision value.

The si n function is part of the standard ANSI-C library. The Newton implementation of
this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

sinh
double_t si nh(doubl e_t X);
x A double-precision value.

The si nh function returns is part of the standard ANSI-C library. The Newton
implementation of this function is documented in the “Utility Functions” chapter of
Newton Programmer’s Guide.

sqrt
double_t sqrt (doubl e_t x);
x A double-precision value.

The sgrt function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

tan
double_t tan(doubl e_t X);
x A double-precision value. The Newton implementation of this

function is documented in the “Utility Functions” chapter of Newton
Programmer’s Guide.

The t an function is part of the standard ANSI-C library.

tanh
double_t t anh(doubl e_t x);
x A double-precision value.

The t anh function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

C Library Functions

CHAPTER 8

Newton C Library Reference

trunc

double_t trunc(doubl e_t x) ;
x A double-precision value.

The t r unc function is part of the standard ANSI-C library. The Newton implementation
of this function is documented in the “Utility Functions” chapter of Newton Programmer’s
Guide.

Financial Functions

This section describes the C Library functions that you can use to compute financial
values.

annuity

double_t annui ty(doubl e_t rate,
doubl e_t periods) ;

rate The interest rate per period.
periods The number of periods for which to compound interest.

The annui ty function calculates the present value factor of an annuity at the specified
interest rate over the specified number of periods. The Newton implementation of this
function is documented in the “Utility Functions” chapter of Newton Programmer’s Guide.

compound

double_t conmpound(doubl e_t rate,
doubl e_t periods) ;

rate The interest rate per period.
periods The number of periods for which to compound interest.

The conpound function calculates the compounded interest factor for the specified
interest rate over the specified number of periods. The Newton implementation of this
function is documented in the “Utility Functions” chapter of Newton Programmer’s Guide.

Variable Argument List Macros

This section describes the C Library macros you can use to define functions that take a
variable number of arguments..

C Library Functions 8-17

8-18

CHAPTER 8

Newton C Library Reference

va_start
void va_start(wva_list ap,
parmN) ;
ap A va_list object that you have declared.
parmN Abulffer in which to save the current program environment.

The va_st art macro is part of the standard ANSI-C library.

va_arg
type va_arg(va_list ap,
type) ;
ap Ava_l i st object that has been initialized by the va_st ar t macro.
type The type of the object that you are retrieving from the variable

argument list.

The va_ar g macro is part of the standard ANSI-C library.

va_end

void va_end(va_li st ap) ;
ap Ava_l i st object that has been initialized by the va_st art macro.

The va_end macro is part of the standard ANSI-C library.

Standard Input and Output Functions

This section describes the C Library functions for standard input and output processing.

sprintf
int sprintf(char* s,
const char* fornmat,
-);
s The string into which you want to write. See the warning below for
special considerations regarding floating-point strings.
format The format specification string, which tells sprintf how to convert

its arguments and write them into s.

The data arguments. A variable number of objects, each of which is
a pointer to an object that is to be converted into a string. The first
argument points to the first value to convert, the second pointer
points to the second value to convert, and so on.

The spri ntf function is part of the standard ANSI-C library.

C Library Functions

CHAPTER 8

Newton C Library Reference

WARNING

The Newton implementation of spri nt f has problems with conversion
of floating-point values that have out-or-range exponents. If you supply
a string representation of a float that is too large (one that evaluates to

I NF), spri ntf hangs up, forcing you to reboot the system. You can get

around this problem by following one of these rules:

1. Convert floating-point strings from ASCII to double before calling
sprintf, and avoid using single-precision floating-point values.

2. Perform your own range checking on doubles to ensure that | NF
values do not get passed tospri ntf.
A

IMPORTANT

The Newton implementation of spri nt f adds the' %J directive for
Unicode strings. The ' %J directive converts the Unicode string to the
Macintosh Roman character set and prints it. a

sscanf
int sscanf (char* S,
const char* format,
)5
s The string that you want converted.
format The format specification string, which tells sscanf how to convert

the contents of s.

The data arguments. A variable number of objects, each of which is
a pointer to the object that is to receive the converted value. The
first pointer receives the first converted value, the second pointer
receives the second converted value, and so on.

The sscanf function is part of the standard ANSI-C library.

vsprintf
int vsprintf(char* s,
const char* format,
_va_list arg);
s The string into which you want to write.
format The format specification string, which tells vsprintf how to convert
its arguments and write them into s.
arg A pointer to an argument list, which contains the objects that you

want converted into strings.

The vspri ntf function is part of the standard ANSI-C library.

C Library Functions 8-19

CHAPTER 8

Newton C Library Reference

The vspri nt f function is the same as the spri nt f function, except thatvspri nt f
takes a pointer to an argument list as its third and final parameter. The spri nt f
function is described in the section “sprintf” beginning on page 8-18.

IMPORTANT

The Newton implementation of vspri nt f adds the' %J directive for
Unicode strings. The ' %J directive converts the Unicode string to the
Macintosh Roman character set and prints it. a

Standard C Library Functions

This section describes the C Library functions that are part of the standard ANSI C
Library definition.

_ANSI_rand

int _ANSI _rand(void);
The _ANSI _r and function is part of the standard ANSI-C library.

_ANSI_srand

void _ANSI _srand(unsi gned int seed);
seed An unsigned integer value.
abs

int abs(int j);
i An integer value.

The abs function is part of the standard ANSI-C library.

atof

double at of (const char* wnptr);

nptr A character string.

The at of function is part of the standard ANSI-C library.

atoi

int atoi (const char* nptr);

nptr A character string.

The at oi function is part of the standard ANSI-C library

8-20 C Library Functions

CHAPTER 8

Newton C Library Reference

atol

long int at ol (const char* nptr);
nptr A character string.

The at ol function is part of the standard ANSI-C library

bsearch

void* bsearch(const void* key,
const voi d* base,

size_t nmemb,

size t size,

i nt (* compar) (const void *key,

const void *data));

key A pointer to the object that you want to be matched in the array.
base A pointer to the initial element in the array to be searched.
nmemb The number of objects in the array.
size The size, in bytes, of each array element.
compar A pointer to a comparison function. This is a function that compares

a key value with a data value (from the array) and returns a value
that describes the comparison.

The bsear ch function is part of the standard ANSI-C library.

div
div_t div(int numer,
i nt denom) ;
numer The numerator value.
denom The denominator value.

The di v function is part of the standard ANSI-C library. It fills in the fields of a di v_t
structure with the results. The di v_t structure is described in the section “The Division
Result Type” on page 2.

Note

The Newton implementation of the di v function does not generate an
exception if the value of denom is 0. The di v function returns 0 as its
result without generating an exception. O

labs

long int labs(long int j);

j Along integer value.

C Library Functions 8-21

8-22

CHAPTER 8

Newton C Library Reference

The | abs function is part of the standard ANSI-C library.

[div

Idiv_ t Idiv(long int nuner,
I ong int denonj;

numer The numerator value.
denom The denominator value.

The | di v function is part of the standard ANSI-C library. It fills in the fields of an
1di v_t structure with the results. The | di v_t structure is described in the section “The
Long Division Result Type” on page 3.

Note

The Newton implementation of the Idi v function does not generate an
exception if the value of denom is 0. The 1di v function returns 0 as its
result without generating an exception. O

gsort
void* gqsort(const voi d* base,
size t nmemb,
size_t size,
i nt (* compar)(const void* el,
const void* e2));
base A pointer to the initial element in the array to be sorted.
nmemb The number of objects in the array.
size The size, in bytes, of each array element.
compar A pointer to a comparison function. This is a function that compares
two elements of the array and returns a value that describes the
comparison.

The gsort function is part of the standard ANSI-C library.

rand

int rand(void);

The r and function is part of the standard ANSI-C library.

srand

void srand(unsi gned int seed);
seed An unsigned integer value.

The sr and function is part of the standard ANSI-C library.

C Library Functions

CHAPTER 8

Newton C Library Reference

strtod
double strtod(const char* nptr,
char** endptr) ;
nptr A pointer to a string.
endptr On exit, a pointer to the remainder of the string.

The st r t od function is part of the standard ANSI-C library

strtol
longint strtol (const char* nptr,
char** endptr,
i nt base) ;
nptr A pointer to a string.
endptr On exit, a pointer to the remainder of the string.
base The number base of the value.

The strt ol function is part of the standard ANSI-C library.

strtoul
unsigned long int strtoul (const char* nptr,
char** endptr,
i nt base) ;
nptr A pointer to a string.
endptr On exit, a pointer to the remainder of the string.
base The number base of the value.

The st rt oul function is part of the standard ANSI-C library.

Heap Functions

This section describes the C Library functions that you can use to allocate and free
memory in the heap.

calloc

void* cal | oc(size_t nnenb,
size_t size);

nmemb The number of array members in the block that you want allocated.
size The size, in bytes, of each array member.

The cal | oc function is part of the standard ANSI-C library.

C Library Functions 8-23

CHAPTER 8

Newton C Library Reference

free

void free(void* ptr);
ptr A pointer to a block of memory in the heap.
The f r ee function is part of the standard ANSI-C library.

Note

The f r ee function is the same as the Newton Memory Manager
function Di sposePtr. O

malloc

void* mal l oc(size_ t size);
size The size, in bytes, of the block of memory that you want allocated.

The nal | oc function is part of the standard ANSI-C library.

WARNING

The Newton implementation of the mal | oc function does not protect
against negative or extremely large size values. It attempts to allocate the
specified amount of memory, even though such values can cause
disastrous results in your program. You must ensure that your calls to
mal | oc supply appropriate size values. a

Note

The nal | oc function is the same as the Newton Memory Manager
function NewPt r. O

realloc
void* real loc(voi d* ptr,
si ze_t si ze);
ptr A pointer to a block of memory in the heap.
size The new size for the object, in bytes.

The r eal | oc function is part of the standard ANSI-C library.

Note

The r eal | oc function behaves differently than the standard, ANSI C
library implementation in one case. If the value of size is O, r eal | oc
does not free ptr; instead, it sets the size of the buffer pointed to by ptr to
0, which indicates that the Newton System Software can free the pointer
at a later time. O

Note

The r eal | oc function is the same as the Newton Memory Manager
function Real | ocPtr. O

8-24 C Library Functions

CHAPTER 8

Newton C Library Reference

Memory Block Manipulation Functions

This section describes the C Library functions that you can use to work with memory
blocks.

memchr
void* menchr (const voi d* s,
i nt c,
size_t n);
s A pointer to the string to be searched.
c A character to search for in s.
n The number of characters to search in s.

The nmenchr function is part of the standard ANSI-C library.

memcmp

int mencnp(const voi d* sl,
const void* s2,

size_t n);
s1 A pointer to a block of memory.
s2 A pointer to a block of memory.
n The number of characters to compare.

The nmencnp function is part of the standard ANSI-C library.

memcpy
void* mencpy(voi d* sl,

const void* s2,

si ze_t n);
s1 A pointer to a block of memory.
s2 A pointer to a block of memory.
n The number of characters to copy.

The mentpy function is part of the standard ANSI-C library.

memmove

void* memmove(voi d* si,
const voi d* s2,

C Library Functions 8-25

8-26

CHAPTER 8

Newton C Library Reference

size_t n);
s1 A pointer to a block of memory.
s2 A pointer to a block of memory.
n The number of characters to copy.

The menmove function is part of the standard ANSI-C library.

Note

The nermove function is the same as the Newton Memory Manager
function Bl ockMove. O

memset
void* menset (voi d* s,
i nt c,
si ze_t n);
s A pointer to a block of memory.
c A character.
n The number of characters to initialize.

The menset f unction is part of the standard ANSI-C library.

WARNING

The menset function does not protect against negative or extremely
large n values. It attempts to allocate the specified amount of memory,
even though such values can cause disastrous results in your program.
You must ensure that your calls to Fi | | Byt es supply appropriate n
values. a

Note

The menset function is the same as the Newton Memory Manager
function Fi | | Byt es. O

String Manipulation Functions

This section describes the C Library functions that you can use to work with strings.

strcat
char* strcat (char* si,
const char* s2);
s1 A pointer to a null-terminated string.
s2 A pointer to a null-terminated string.

The st r cat function is part of the standard ANSI-C library.

C Library Functions

CHAPTER 8

Newton C Library Reference

strchr
char* strchr(const char* s,
i nt c);
s A pointer to a null-terminated string.
C A character.

The st r chr function is part of the standard ANSI-C library

strcmp

int strcnp(const char* sl,
const char* s2);

s1 A pointer to a null-terminated string.
s2 A pointer to a null-terminated string.

The st r cnp function is part of the standard ANSI-C library.

strcoll

int strcoll (const char* s1,
const char* s2);

s1 A pointer to a null-terminated string.
s2 A pointer to a null-terminated string.

The strcol | function is part of the standard ANSI-C library.

strcpy
char* strcpy(char* sl,
const char* s2);
s1 A pointer to a null-terminated string.
s2 A pointer to a null-terminated string.

The st r cpy function is part of the standard ANSI-C library.

strcspn

size_t strcspn(const char* sl,
const char* s2);

s1 A pointer to a null-terminated string.
s2 A pointer to a null-terminated string.

The st r cspn function is part of the standard ANSI-C library.

C Library Functions 8-27

CHAPTER 8

Newton C Library Reference

strlen

size_t strlen(const char* s);
s A pointer to a null-terminated string.

The st r | en function is part of the standard ANSI-C library.

strncat
char* strncat(char* si,
const char* s2,
size_t n);
s1 A pointer to a null-terminated string.
s2 A pointer to a null-terminated string.
n The maximum number of characters to copy.

The st rncat functionis part of the standard ANSI-C library.

strncmp

int strncnp(const char* s1i,
const char* s2,

size_t n);
s1 A pointer to a null-terminated string.
s2 A pointer to a null-terminated string.
n The number of characters to compare.

The st r ncnp function is part of the standard ANSI-C library.

strncpy
char* strncpy(char* sl,
const char* s2,
size t n);
s1 A pointer to a null-terminated string.
s2 A pointer to a null-terminated string.
n The maximum number of characters to copy.

The st r ncpy function is part of the standard ANSI-C library.

8-28 C Library Functions

CHAPTER 8

Newton C Library Reference

strpbrk

char* strpbrk(const char* si,
const char* s2);

s1 A pointer to a null-terminated string.
s2 A pointer to a null-terminated string.

The st r pbr k function is part of the standard ANSI-C library.

strrchr
char* strrchr(const char* s,
i nt c);
s A pointer to a null-terminated string.
C A character.

The st rrchr function is part of the standard ANSI-C library.

strspn

size_t strspn(const char* s1,
const char* s2);

s1 A pointer to a null-terminated string.
s2 A pointer to a null-terminated string.

The st r spn function is part of the standard ANSI-C library.

strstr

char* strstr(const char* sl,
const char* s2);

s1 A pointer to a null-terminated string.
s2 A pointer to a null-terminated string.

The st r st r function is part of the standard ANSI-C library.

strtok
char* strtok(char* sl,
const char* s2);
s1 A pointer to null-terminated string.
s2 A pointer to a null-terminated string.

The st r t ok function is part of the standard ANSI-C library.

C Library Functions 8-29

8-30

CHAPTER 8

Newton C Library Reference

strxfrm

size_t strxfrm char* sl,
const char* s2,
size_t n);

s1 A pointer to a string into which characters are copied. This string
must be long enough to contain n+1 characters.

s2 A pointer to a string to be copied.

n The number of characters to copy.

The st r xf r mfunction is part of the standard ANSI-C library.

Time Functions

This section describes the C Library functions that you can use to work with clock and
processor time values.

asctime

char* asctime(const struct tnr timeptr);

The asct i me function is not available for use on the Newton. Use the
ascti me_new on function instead. The asct i ne_new on function is described in the
next section.

asctime_newton

char* asctime_newton(const struct tnt tinmeptr,
char* ti mebuf);

timeptr A pointer to a calendar clock time structure. The calendar clock time
structure is described on page 8-4.

timebuf A character buffer. You must allocate at least 70 bytes for this buffer.

The asct i me function is a Newton C++ Toolkit variation of the standard C library
function asct i ne.

The asct i me_newt on function differs from the asct i ne function in that you must
preallocate the output buffer timebuf.

The asct i me_newt on function returns timebuf as its function value.

WARNING

You must allocate timebuf by calling either the NewPt r function or the
mal | oc function, or you can declare timebuf as a local variable within a
function. You cannot declare timebuf as a static global variable. a

C Library Functions

CHAPTER 8

Newton C Library Reference

clock

clock_t cl ock(void);

The cl ock function is part of the standard ANSI-C library.

WARNING

You cannot use the cl ock function on the Newton in the same way as
you can on many other computing devices. This is because your
application is sharing task space with other applications, which means
that the concept of “CPU task time” is distorted on the Newton. You
thus cannot use the difference between two calls to ¢l ock to determine
how long it took your application to perform an operation. a

ctime

char* ctime(const time_t* tinmer);

The ct i ne function is not available for use on the Newton. Use the cti ne_newt on
function instead. The ct i me_newt on function is described in the next section.

ctime_newton

char* ctime_newton(const time_t* tiner,

char* ti mebuf);
timer A pointer to a time_t value. The t i me_t type is described on page
8-4.
timebuf A character buffer. You must allocate at least 70 bytes for this buffer.

The ct i me function is a Newton C++ Toolkit variation of the standard C library function
ctinme.

The ct i me_new on function differs from the ct i ne function in that you must
preallocate the output buffer timebuf.

The ct i me_newt on function returns timebuf as its function value.

WARNING

You must allocate timebuf by calling either the NewPt r function or the
mal | oc function, or you can declare timebuf as a local variable within a
function. You cannot declare timebuf as a static global variable. a

difftime
double difftime(time_t timel,
tinme_t time0);

timel The second calendar clock time reading value.
timeQ The first calendar clock time reading value.

The di f f t i me function is part of the standard ANSI-C library.

C Library Functions 8-31

8-32

CHAPTER 8

Newton C Library Reference

gmtime

struct tm* gmtime(const tine_t* tiner);

timer Apointer toati me_t value. Theti ne_t type is described on
page 8-4.

The gnt i ne function is part of the standard ANSI-C library. The Newton
implementation of this function does not perform any computation and returns NI L.

WARNING
The Newton implementation of gnt i me simply returns NI L. a

localtime

struct tm* | ocal ti me(const time_t* tiner);

The | ocal t i me function is not available for use on the Newton. Use the
| ocal ti me_new on function instead. The | ocal t i ne_newt on function is described
in the next section.

localtime_newton

struct tm® | ocal ti me_newton(const tine_t* tinmer,

t nt tms);
timer Apointer toati me_t value. Theti ne_t type is described on
page 8-4.
tms A pointer to a calendar clock time structure that you have allocated
in your application. The calendar clock time structure is described
on page 8-4.

The | ocal ti me function is a Newton C++ Toolkit variation of the standard C library
function | ocal ti nme.

The | ocal ti me_newt on function differs from the | ocal ti ne function in that you
must preallocate the output calendar clock time structure.

The | ocal ti me_new on function returns tms as its function value.

WARNING

You must allocate the output calendar clock structure by calling either
the NewPt r function or the mal | oc function, or you can declare at m
structure within a function in your application and pass in a pointer to
that structure as the value of tms. You cannot declare the structure as a
static global variable. a

mktime

time_t nktime(struct tnt tinmeptr);

timeptr A pointer to a calendar clock time structure. The calendar clock time
structure is described on page 8-4.

C Library Functions

CHAPTER 8

Newton C Library Reference

The nkt i me function is part of the standard ANSI-C library.

strftime
size_t strftime(char* S,
size_t maxsi ze,
const char* format,
const struct tnt tineptr);
s A pointer to a string. On exit, this is the formatted, string
representation of the time.
maxsize The maximum number of characters to store into s.
format A format specification.
timeptr A pointer to a calendar clock time structure that contains the time

you want formatted.

The st rfti nme function is part of the standard ANSI-C library.

time

time_t time(time_t* timer);

timer A pointer to a time structure that you want filled in with the current
time. On exit, this is filled in with the current time. You can specify
NULL as the value of timer if you don’t want a structure to be filled
in.

The t i nme function is part of the standard ANSI-C library.

C Library Functions 8-33

CHAPTER 8

Newton C Library Reference

Summary of C Library Reference

C Library Constants and Types

#define NULL O
#define HUGE_ VAL _inf();
#define RAND MAX Ox7fffffff

Standard Library Types
typedef unsigned int size_t;

typedef int wchar _t;

typedef struct div_t {

i nt quot ;
i nt rem
} div_t;

typedef struct Idiv_t {
I ong int quot;
long int rem

} ldiv_t;

Math Types
typedef short rel op;

enum {
GREATERTHAN = ((relop) (0)),
LESSTHAN,
EQUALTQO,
UNORDERED

b
Time Types

t ypedef unsigned int clock t;
typedef unsigned int time_t;

8-34 C Library Functions

CHAPTER 8

Newton C Library Reference

struct tm{
int tmsec;
int tmmn;
i nt tm hour;
i nt tm nday;
int tmnon;
int tmyear;
i nt tmwday;
i nt tmyday;
int tmisdst;

b

C Library Functions

Character Conversion Functions
int tolower (int ¢);
int t oupper (int ¢);

Floating-point Math Functions

double_t acos(doubl e t x);

double_t acosh(double_t x);

double_t asi n(double_t x);

double_t asi nh(double_t x);

double_t atan(doubl e _t x);

double_t at an2(double_t x, double_t y);
double_t atanh(double_t x);

double_t ceil (double_t x);

double_t copysi gn(doubl e_t x, double_t v);
float copysignf (float x, float y);
double_t cos(double t x);

double_t cosh(doubl e t x);

double_t erf(double_ t x);

double_t erfc(double_t x);

long double
erfcl (1l ong double x);

long double
erfl (1 ong double x);

double_t exp(double t x);

C Library Functions 8-35

8-36

CHAPTER 8

Newton C Library Reference

double_t
double_t
double_t
double_t
double_t
double_t
double_t
double_t
double_t
double_t
int

int

int
double_t
double_t
double_t
double_t
double_t
double_t
double_t
double
float
double_t
double

float
double_t

double_t
relop

double_t
double_t
double_t
long int
double_t
long int
double_t

int

exp2(double_t x);
expmi(double_t x);
fabs(double_t x);

fdi n{double_t x, double_t v);
fl oor(double_t x);
fmax(double_t x, double_t y);
fmn(double_t x, double_t v);
frod(doubl e_t x, double_t v);
frexp(double_t x, int* exponent,
hypot (doubl e_t x, double_t yv);
isfinite(long double x);

i snornal (1 ong double x);

i snan(l ong doubl e x);

| dexp(double_ t x, int n);

| gamma(doubl e _t x);

| og(double_t x);

| ogb(doubl e_t x);

| oglp(double t x);

| og1l0(doubl e t x);

| og2(double_t x);

nodf (doubl e x, doubl e* iptr);
nmodf f (fl oat x, float* iptr);
near byi nt (double_t x);

next af t erd(doubl e x, double y);
nextafterf(float x, float y);

pow(doubl e_t x, double_t y);
randonx(doubl e t* x);

rel ation(double_t x, double_t v);
remai nder (doubl e_t x, double_t y);
remguo(doubl e_t x, double_t y, int* guo);
rint(double t x);

rinttol (double t x);
round(doubl e t x);
roundt ol (doubl e_t round);

scal b(double_t x, long int n);
signbit (1l ong double x);

C Library Functions

CHAPTER 8

Newton C Library Reference

double_t sin(double_ t x);
double_t si nh(double_t x);
double_t sqgrt(double_t x);
double_t tan(double_t x);
double_t tanh(double_t x);
double_t trunc(double_ t x);

Financial Functions
double_t annui ty(doubl e_t rate, doubl e_t periods) ;

double_t conpound(doubl e_t rate, doubl e_t periods) ;

Variable Argument List Macros

void va_start(va_list ap, parmN);
type va_arg(va_list ap, type);
void va_end(va_list ap);

Standard Input and Output Functions

int sprintf(char* s, const char* format, ...);
int sscanf(char* s, const char* format, ...);
int vsprintf(char* s, const char* format, _va_list arg);

Standard C Library Functions

int _ANSI _rand(void);

void _ANSI _srand(unsi gned int seed);
int abs(int j);

double at of (const char* nptr);

int atoi (const char* nptr);

long int atol (const char* nptr);

void* bsearch(const voi d* key, const void* base, size_t mnmemb,
size_t size,
i nt(* compar) (const void *key, const void *data));

div_t di v(int numer, int denom);

long int l abs(long int j);

Idiv_t [div(long int numer, long int denonj;

void* gsort (const voi d* base, size_t nmemb, Size_t size,

i nt(* compar) (const void *el, const void *e2));

int rand(voi d);

C Library Functions 8-37

CHAPTER 8

Newton C Library Reference

void srand(unsi gned i nt seed);
double strtod(const char* nptr, char** endptr);
long int strtol (const char* wmnptr, char** endptr, int base);

unsigned long int
strtoul (const char* nptr, char** endptr, int base);

Heap Functions

void* calloc(size t nmenb, size t size);
void free(void* ptr);

void” mal | oc(si ze_t size);

void* reall oc(void* ptr, size_t size);

Memory Block Manipulation Functions

void* menchr (const void* s, int c, size t n);

int nmencnp(const voi d* sl1l, const void* s2, size_t n);
void* mencpy(voi d* s1, const void* s2, size_t n);

void* memmove(voi d* s1, const void* s2, size_t n);

void* menset (void* s, int ¢, size t n);

String Manipulation Functions

char* strcat(char* sl1, const char* s2);

char* strchr(const char* s, int c);

int strcnp(const char* sl1, const char* s2);

int strcoll (const char* sl1, const char* s2);
char* strcpy(char* sl1, const char* s2);

size_t strcspn(const char* sl1, const char* s2);
size_t strlen(const char* s);

char* strncat (char* sl1, const char* s2, size_t n);
int strncnp(const char* sl1, const char* s2, size_t n);
char* strncpy(char* sl1, const char* s2, size_ t n);
char* strpbrk(const char* sl1, const char* s2);
char* strrchr(const char* s, int c);

size_t strspn(const char* sl1, const char* s2);

char* strstr(const char* s1, const char* s2);

char* strtok(char* sl1, const char* s2);

size_t strxfrm(char* sl1l, const char* s2, size_ t n);

8-38 C Library Functions

CHAPTER 8

Newton C Library Reference

Time Functions

char* asctime_newton(const struct tnr tinmeptr, char* tinebuf);
clock_t cl ock(voi d);

char* cti me_newton(const time_t* timer, tnf tns);

double difftinme(time_t tinel, tinme_t tinme0);

struct tm* gmtime(const tine_t* tiner);
struct tm* | ocal ti me_newton(const tinme_t* tiner, char* tinebuf);

time_t mktinme(struct tnmr tineptr);

size_t strftine(char* s, size_t maxsize, const char* format,
const struct tnr tineptr);

time_t time(time_t* tinmer);

C Library Functions 8-39

CHAPTER 8

Newton C Library Reference

8-40 C Library Functions

A PPENDIX A

C++ Function Tables

This appendix presents the name of each function in the C++ Toolkit and specifies where
to find the description of that function. Some of the function descriptions are provided in
this book, while others are located in other books.

The declaration (function header and parameter descriptions) for each function is given
in this book.

Functions and Macros for Using C++ With NewtonScript

Table A-1 summarizes the functions and macros described in Chapter 2, “C++ and
NewtonScript Conversion Reference.”.

Table A-1 C++ and NewtonScript conversion functions and macros
Function Name Page number
Debugger 2-6
DebugStr 2-6
DebugCst r 2-6

EQ 2-5

| sChar 2-4

| SFALSE 2-5

I sl nt 2-4

| sMagi cPtr 2-4

I sNI L 2-5

I sPtr 2-4

I sReal Ptr 2-4

| STRUE 2-5
MakeBool ean 2-2
MakeChar 2-2

Makel nt 2-2
MakeReal 2-2

MakeSt ri ng 2-2

Functions and Macros for Using C++ With NewtonScript A-1

APPENDIX A

C++ Function Tables

Table A-1 C++ and NewtonScript conversion functions and macros (continued)
Function Name Page number

MakeSynbol 2-3

NOTNI L 2-5

Ref Tol nt 2-3

Ref ToUni Char 2-3

SYM 2-3

Newton Object System Functions

Table A-2 shows the location of the description for each of the Newton Object System
functions in the C++ Toolkit. The declaration for each of these functions is provided in
Chapter 3, “Newton Object System Reference.”

Table A-2 C++ Toolkit Object System functions

Function
header page
Function Name Location of function description in C++ book
AddArraySl| ot The “Utility Functions” chapter 3-5
of Newton Programmer’s Guide.
Al | ocat eArray In Chapter 3, “Newton Object 3-6
System Reference.”
Al | ocat eBi nary In Chapter 3, “Newton Object 3-6
System Reference.”
Al | ocat eFr ane In Chapter 3, “Newton Object 3-6
System Reference.”
ArrayMinger The “Utility Functions” chapter 3-6
of Newton Programmer’s Guide.*
ArrayPosition As Arr ayPos in the “Utility 3-7
Functions” chapter of Newton
Programmer’s Guide.
ArrayRenove In Chapter 3, “Newton Object 3-7
System Reference.”
Ar r ayRenoveCount The “Utility Functions” chapter 3-8
of Newton Programmer’s Guide.
ASCI I String In Chapter 3, “Newton Object 3-8

System Reference.”

A-2 Newton Object System Functions

APPENDIX A

C++ Function Tables

Table A-2

C++ Toolkit Object System functions (continued)

Function Name
Bi nar yMunger

d assOr

Cl one

Coer ceToDoubl e

Coer ceTol nt

DeepC one

Del et eTObj ect It erat or

Done

Ensur el nt er nal

Fr ameHasPat h

Fr aneHas Sl ot

cC

Get ArraySl ot

Cet Fr anePat h

Cet Fr aneSl ot

| SArray

| sBi nary

| sFrane

Newton Object System Functions

Location of function description

The “Utility Functions” chapter
of Newton Programmer’s Guide.*

The “Utility Functions” chapter
of Newton Programmer’s Guide.

The “Utility Functions” chapter
of Newton Programmer’s Guide.

In Chapter 3, “Newton Object
System Reference.”

In Chapter 3, “Newton Object
System Reference.”

The “Utility Functions” chapter
of Newton Programmer’s Guide.

In Chapter 3, “Newton Object
System Reference.”

In Chapter 3, “Newton Object
System Reference.”

The “Utility Functions” chapter
of Newton Programmer’s Guide.

The HasPat h function in The
“Utility Functions” chapter of
Newton Programmer’s Guide.

The Has Sl ot function in The
“Utility Functions” chapter of
Newton Programmer’s Guide.

In Chapter 3, “Newton Object
System Reference.”

In Chapter 3, “Newton Object
System Reference.”

In Chapter 3, “Newton Object
System Reference.”

The Get Sl ot method in The
“Utility Functions” chapter of
Newton Programmer’s Guide.

The “Utility Functions” chapter
of Newton Programmer’s Guide.

The “Utility Functions” chapter
of Newton Programmer’s Guide.

The “Utility Functions” chapter
of Newton Programmer’s Guide.

Function
header page
in C++ book

3-8

3-9

3-9

3-9

3-10

3-10

3-5

3-4

3-10

3-10

3-10

3-11

3-11

3-11

3-12

3-12

3-12

3-12

A-3

A-4

APPENDIX A

C++ Function Tables

Table A-2

C++ Toolkit Object System functions (continued)

Function Name
I sFunction

| sl nst ance

| sNunber

| sReadOnl y

| sReal

IsString

| sSubcl ass

| sSymbol

Length

NewTChj ect | t er at or

Next

RermovesS| ot

Repl acebj ect

Reset

Set ArraySl| ot

Set Cl ass

Set Fr anmePat h

Set Fr ameS! ot

Set Lengt h

Newton Object System Functions

Location of function description
In Chapter 3, “Newton Object
System Reference.”

The “Utility Functions” chapter
of Newton Programmer’s Guide.

The “Utility Functions” chapter
of Newton Programmer’s Guide.

In Chapter 3, “Newton Object
System Reference.”

In Chapter 3, “Newton Object
System Reference.”

The “Utility Functions” chapter
of Newton Programmer’s Guide.

The “Utility Functions” chapter
of Newton Programmer’s Guide.

The “Utility Functions” chapter
of Newton Programmer’s Guide.

The “Utility Functions” chapter
of Newton Programmer’s Guide.

In Chapter 3, “Newton Object
System Reference.”

In Chapter 3, “Newton Object
System Reference.”

The “Utility Functions” chapter
of Newton Programmer’s Guide.*

The “Utility Functions” chapter
of Newton Programmer’s Guide.

In Chapter 3, “Newton Object
System Reference.”

In Chapter 3, “Newton Object
System Reference.”

The “Utility Functions” chapter
of Newton Programmer’s Guide.

In Chapter 3, “Newton Object
System Reference.”

In Chapter 3, “Newton Object
System Reference.”

The “Utility Functions” chapter
of Newton Programmer’s Guide.

Function
header page
in C++ book

3-12

3-13

3-13

3-13

3-13

3-13

3-13

3-14

3-14

3-5

3-4

3-14

3-14

3-4

3-14

3-15

3-15

3-16

3-16

APPENDIX A

C++ Function Tables

Table A-2 C++ Toolkit Object System functions (continued)

Function Name
Sort Array

Statistics

StrBegi nsWth

StrCapitalize

StrCapitalizeWrds

St r Downcase

StrEndsWth

St r Munger

StrPosition

Str Repl ace

St rUpcase

Substring

Synbol Conpar eLex

syntnp

Tag

Thr owBadTypeW t hFr aneDat a

Thr owRef Except i on

Tot al Cl one

Newton Object System Functions

Location of function description

The “Utility Functions” chapter
of Newton Programmer’s Guide.

In Chapter 3, “Newton Object
System Reference.”

The “Utility Functions” chapter
of Newton Programmer’s Guide.

The “Utility Functions” chapter
of Newton Programmer’s Guide.

The “Utility Functions” chapter
of Newton Programmer’s Guide.

The “Utility Functions” chapter
of Newton Programmer’s Guide.

The “Utility Functions” chapter
of Newton Programmer’s Guide.

The “Utility Functions” chapter
of Newton Programmer’s Guide.*

The “Utility Functions” chapter
of Newton Programmer’s Guide.

The “Utility Functions” chapter
of Newton Programmer’s Guide.

The “Utility Functions” chapter
of Newton Programmer’s Guide.

The “Utility Functions” chapter
of Newton Programmer’s Guide.

In Chapter 3, “Newton Object
System Reference.”

In Chapter 3, “Newton Object
System Reference.”

In Chapter 3, “Newton Object
System Reference.”

In Chapter 3, “Newton Object
System Reference.”

In Chapter 3, “Newton Object
System Reference.”

The “Utility Functions” chapter
of Newton Programmer’s Guide.

Function
header page
in C++ book

3-16

3-17

3-17

3-17

3-17

3-17

3-18

3-18

3-18

3-19

3-19

3-19

3-20

3-20

3-4

3-20

3-21

3-21

A-5

APPENDIX A

C++ Function Tables

Table A-2 C++ Toolkit Object System functions (continued)

Function
header page
Function Name Location of function description in C++ book
TrinBtring The “Utility Functions” chapter 3-21
of Newton Programmer’s Guide.
Val ue In Chapter 3, “Newton Object 3-5

System Reference.”

t Although this C++ function is a wrapper for a NewtonScript method, there are some slight differences in parameter usage
and/ or return value semantics. These differences are described with the function declaration in this book.

C++ Toolkit Memory Manager Functions

Table A-3 shows the location of the description for each of the Newton Memory Manager
functions in the C++ Toolkit. The declaration for each of these functions is provided in
Chapter 4, “Newton Memory Manager Reference.”

Table A-3 C++ Toolkit Memory Manager functions
Function
header page
Function Name Location of function description in C++ book
Bl ockMove In Chapter 4, “Newton Memory Manager 4-1
Reference.”
Count Fr eeBl ocks In Chapter 4, “Newton Memory Manager 4-2
Reference.”
Di sposPtr In Chapter 4, “Newton Memory Manager 4-2
Reference.”
Equal Byt es In Chapter 4, “Newton Memory Manager 4-2
Reference.”
Fill Bytes In Chapter 4, “Newton Memory Manager 4-3
Reference.”
FillLongs In Chapter 4, “Newton Memory Manager 4-3
Reference.”
Get Pt r Nane In Chapter 4, “Newton Memory Manager 4-4
Reference.”
GetPtrSize In Chapter 4, “Newton Memory Manager 4-4

Reference.”

Lar gest Fr eel nHeap In Chapter 4, “Newton Memory Manager 4-4
Reference.”

C++ Toolkit Memory Manager Functions

APPENDIX A

C++ Function Tables

Table A-3 C++ Toolkit Memory Manager functions (continued)

Function Name
MaxHeapSi ze

MermEr r or

NewNamedPt r

NewPt r

NewPt r Cl ear

Real | ocPtr

Set Pt r Nane

Syst enRAMSI ze

Tot al Fr eel nHeap

Tot al Usedl nHeap

XORByt es

Zer oByt es

Location of function description

In Chapter 4, “Newton Memory Manager
Reference.”

In Chapter 4, “Newton Memory Manager
Reference.”

In Chapter 4, “Newton Memory Manager
Reference.”

In Chapter 4, “Newton Memory Manager
Reference.”

In Chapter 4, “Newton Memory Manager
Reference.”

In Chapter 4, “Newton Memory Manager
Reference.”

In Chapter 4, “Newton Memory Manager
Reference.”

In Chapter 4, “Newton Memory Manager
Reference.”

In Chapter 4, “Newton Memory Manager
Reference.”

In Chapter 4, “Newton Memory Manager
Reference.”

In Chapter 4, “Newton Memory Manager
Reference.”

In Chapter 4, “Newton Memory Manager
Reference.”

C++ Toolkit Memory Manager Functions

Function

header page
in C++ book

4-4

4-4

4-5

4-5

4-5

4-6

4-7

4-7

4-7

4-7

4-8

4-8

A-7

APPENDIX A

C++ Function Tables

C++ Toolkit Exception-Handling Functions

Table A-4 shows the location of the description of the Newton exception-handling
functions in the C++ Toolkit. The declaration for each of these functions is provided in
Chapter 5, “Newton Exceptions Reference.”

Table A-4 C++ Toolkit exception-handling functions

Function Name
cl eanup

Current Exception

end _try

end_unwi nd

newt on_cat ch

newt on_catch_al |

newton_try

on_unw nd

ret hr ow

Subexcepti on

Thr ow

Thr owVsg

unwi nd_failed

unwi nd_pr ot ect

Location of function description

In Chapter 5, “Newton Exceptions
Reference.”

In Chapter 5, “Newton Exceptions
Reference.”

In Chapter 5, “Newton Exceptions
Reference.”

In Chapter 5, “Newton Exceptions
Reference.”

In Chapter 5, “Newton Exceptions
Reference.”

In Chapter 5, “Newton Exceptions
Reference.”

In Chapter 5, “Newton Exceptions
Reference.”

In Chapter 5, “Newton Exceptions
Reference.”

In Chapter 5, “Newton Exceptions
Reference.”

In Chapter 5, “Newton Exceptions
Reference.”

In Chapter 5, “Newton Exceptions
Reference.”

In Chapter 5, “Newton Exceptions
Reference.”

In Chapter 5, “Newton Exceptions
Reference.”

In Chapter 5, “Newton Exceptions
Reference.”

C++ Toolkit Exception-Handling Functions

Function
header page in
C++ book

59

5-6

5-10

5-10

5-10

5-10

5-11

5-11

5-7

5-8

5-8

5-12

5-12

APPENDIX A

C++ Function Tables

C++ NewtonScript Functions

Table A-5 shows the location of the description of the NewtonScript functions in the C++
Toolkit. The declaration for each of these functions is provided in Chapter 6,
“NewtonScript Reference.”

Table A-5 C++ Toolkit NewtonScript functions

Function
header
page in
Location of function C++
Function Name description book
Cet Vari abl e In Chapter 6, 6-14
“NewtonScript Reference.”
NSCal | In Chapter 6, 6-2
“NewtonScript Reference.”
NSCal | W t hAr gAr r ay In Chapter 6, 6-3
“NewtonScript Reference.”
NSCal | G obal Fn In Chapter 6, 6-4
“NewtonScript Reference.”
NSCal | G obal FnW't hAr gAr r ay In Chapter 6, 6-5
“NewtonScript Reference.”
NSSend In Chapter 6, 6-6
“NewtonScript Reference.”
NSSendW t hAr gAr r ay In Chapter 6, 6-7
“NewtonScript Reference.”
NSSendl f Def i ned In Chapter 6, 6-8
“NewtonScript Reference.”
NSSend! f Def i nedW t hAr gAr r ay In Chapter 6, 6-10
“NewtonScript Reference.”
NSSendPr ot o In Chapter 6, 6-10
“NewtonScript Reference.”
NSSendPr ot oW t hAr gAr r ay In Chapter 6, 6-12
“NewtonScript Reference.”
NSSendPr ot ol f Def i ned In Chapter 6, 6-12
“NewtonScript Reference.”
NSSendPr ot ol f Def i nedW t hAr gAr r ay In Chapter 6, 6-14
“NewtonScript Reference.”
Set Vari abl e In Chapter 6, 6-15

“NewtonScript Reference.”

C++ NewtonScript Functions A-9

C++ Toolkit Unicode Functions

APPENDIX A

C++ Function Tables

A-10

Table A-6 shows the location of the description of the Unicode functions in the C++
Toolkit. The declaration for each of these functions is provided in Chapter 7, “Newton

Unicode Reference.”

Table A-6

C++ Toolkit Unicode functions

Function Name
Convert Fronlni code

Convert Uni codeChar

Convert Uni codeChar act er s

Convert ToUni code

HasChar s

HasDigits

HasSpaces

| sPunct Synbol

Stri pPunct Synbol s

Urenset

Ust rcat

Ustrchr

Ustrcnp

Ustrcpy

C++ Toolkit Unicode Functions

Location of function description

In Chapter 7, “Newton Unicode
Reference.”

In Chapter 7, “Newton Unicode
Reference.”

In Chapter 7, “Newton Unicode
Reference.”

In Chapter 7, “Newton Unicode
Reference.”

In Chapter 7, “Newton Unicode
Reference.”

In Chapter 7, “Newton Unicode
Reference.”

In Chapter 7, “Newton Unicode
Reference.”

In Chapter 7, “Newton Unicode
Reference.”

In Chapter 7, “Newton Unicode
Reference.”

In Chapter 7, “Newton Unicode
Reference.”

In Chapter 7, “Newton Unicode
Reference.”

In Chapter 7, “Newton Unicode
Reference.”

In Chapter 7, “Newton Unicode
Reference.”

In Chapter 7, “Newton Unicode
Reference.”

Function
header page in
C++ book

7-2

7-3

7-4

7-3

7-4

7-5

7-5

7-5

7-5

7-6

7-7

7-7

7-7

7-7

APPENDIX A

C++ Function Tables

Table A-6 C++ Toolkit Unicode functions (continued)
Function
header page in
Function Name Location of function description C++ book
Ustrlen In Chapter 7, “Newton Unicode 7-8
Reference.”
Ust r ncat In Chapter 7, “Newton Unicode 7-8
Reference.”
Ust r ncpy In Chapter 7, “Newton Unicode 7-8

Reference.”

C++ Toolkit ANSI-C Functions

Table A-7 shows the location of the description of the ANSI-C Library functions in the
C++ Toolkit. The declaration for each of these functions is provided in Chapter 8,
“Newton C Library Reference.”

Note

Many of the C Library functions are described in the Newton
Programmer’s Guide; however, the NewtonScript function names are
capitalized. You need to take this into consideration when reading the
description of the Newton implementation of a C Library function. For
example, to read about the C Library function acos, you need to look
up the Acos function in the Newton Programmer’s Guide. O

Table A-7 C++ Library ANSI-C Library functions

Function
header page
Function Name Location of function description in C++ book
abs Refer to ANSI-C library documentation.. 8-20
acos The “Utility Functions” chapter of Newton 8-6
Programmer’s Guide.
acosh The “Utility Functions” chapter of Newton 8-6
Programmer’s Guide.
annui ty The “Utility Functions” chapter of Newton 8-17
Programmer’s Guide.
asctine Not available. Use asct i me_new on
instead.
ascti me_newt on In Chapter 8, “Newton C Library 8-30

Reference.”

C++ Toolkit ANSI-C Functions A-11

A-12

APPENDIX A

C++ Function Tables

Table A-7

C++ Library ANSI-C Library functions (continued)

Function Name

asin

asi nh

at an

at an2

at anh

at of

at oi

at ol
bsearch
call oc
ceil

cl ock

conpound

copysi gn

copysi gnf

cos

cosh

ctinme

cti me_newt on

difftinme
div

erf

Location of function description

The “Utility Functions” chapter of Newton
Programmer’s Guide.

The “Utility Functions” chapter of Newton
Programmer’s Guide.

The “Utility Functions” chapter of Newton
Programmer’s Guide.

The “Utility Functions” chapter of Newton
Programmer’s Guide.

The “Utility Functions” chapter of Newton
Programmer’s Guide.

Refer to ANSI-C library documentation.
Refer to ANSI-C library documentation.
Refer to ANSI-C library documentation.
Refer to ANSI-C library documentation.
Refer to ANSI-C library documentation.
Refer to ANSI-C library documentation.
Refer to ANSI-C library documentation.

The “Utility Functions” chapter of Newton
Programmer’s Guide.

The “Utility Functions” chapter of Newton
Programmer’s Guide.

As the copysi gn function in the “Utility
Functions” chapter of Newton Programmer’s
Guide.

The “Utility Functions” chapter of Newton
Programmer’s Guide.

The “Utility Functions” chapter of Newton
Programmer’s Guide.

Not available. Use ct i me_new on instead.

In Chapter 8, “Newton C Library
Reference.”

Refer to ANSI-C library documentation.
Refer to ANSI-C library documentation.

The “Utility Functions” chapter of Newton
Programmer’s Guide.

C++ Toolkit ANSI-C Functions

Function
header page
in C++ book

8-6

8-6

8-7

8-7

8-7

8-20
8-20
8-21
8-21
8-23
8-7

8-31
8-17

8-7

8-8

8-8

8-8

8-31

8-31
8-21
8-8

APPENDIX A

C++ Function Tables

Table A-7 C++ Library ANSI-C Library functions (continued)

Function
header page

Function Name Location of function description in C++ book

erfc The “Utility Functions” chapter of Newton 8-8
Programmer’s Guide.

exp The “Utility Functions” chapter of Newton 89
Programmer’s Guide.

exp2 Refer to ANSI-C library documentation. 8-9

expmil The “Utility Functions” chapter of Newton 8-9
Programmer’s Guide.

f abs The “Utility Functions” chapter of Newton 8-9
Programmer’s Guide.

fdim The “Utility Functions” chapter of Newton 8-9
Programmer’s Guide.

f1 oor The “Utility Functions” chapter of Newton 8-9
Programmer’s Guide.

f max The “Utility Functions” chapter of Newton 8-10
Programmer’s Guide.

fmn The “Utility Functions” chapter of Newton 8-10
Programmer’s Guide.

f mod The “Utility Functions” chapter of Newton 8-10
Programmer’s Guide.

free Refer to ANSI-C library documentation. 8-24

frexp Refer to ANSI-C library documentation. 8-10

gntine Refer to ANSI-C library documentation. 8-32

hypot The “Utility Functions” chapter of Newton 8-11
Programmer’s Guide.

isfinite The “Utility Functions” chapter of Newton 8-11
Programmer’s Guide.

i snan The “Utility Functions” chapter of Newton 8-11
Programmer’s Guide.

i snor nal The “Utility Functions” chapter of Newton 8-11
Programmer’s Guide.

| abs Refer to ANSI-C library documentation. 8-21

| dexp Refer to ANSI-C library documentation. 8-11

I div Refer to ANSI-C library documentation. 8-22

[ocaltine Not available. Use | ocal ti me_newt on
instead.

C++ Toolkit ANSI-C Functions A-13

A-14

APPENDIX A

C++ Function Tables

Table A-7 C++ Library ANSI-C Library functions (continued)

Function Name

[ocal ti ne_newt on

| og

 0og10

| oglp

| 0g2
| ogb

mal | oc
menchr
mencnp
mencpy
menmove
menset
nktime
nmodf
nodf f

near byi nt

nextafterd

nextafterf

pow

gsort
r and

r andonx

reall oc

relation

Location of function description

In Chapter 8, “Newton C Library
Reference.”

The “Utility Functions” chapter of Newton
Programmer’s Guide.

The “Utility Functions” chapter of Newton
Programmer’s Guide.

The “Utility Functions” chapter of Newton
Programmer’s Guide.

Refer to ANSI-C library documentation.

The “Utility Functions” chapter of Newton
Programmer’s Guide.

Refer to ANSI-C library documentation.
Refer to ANSI-C library documentation.
Refer to ANSI-C library documentation.
Refer to ANSI-C library documentation.
Refer to ANSI-C library documentation.
Refer to ANSI-C library documentation.
Refer to ANSI-C library documentation.
Refer to ANSI-C library documentation.
Refer to ANSI-C library documentation.

The “Utility Functions” chapter of Newton
Programmer’s Guide.

The “Utility Functions” chapter of Newton
Programmer’s Guide.

Refer to ANSI-C library documentation.

The “Utility Functions” chapter of Newton
Programmer’s Guide.

Refer to ANSI-C library documentation.
Refer to ANSI-C library documentation.

The “Utility Functions” chapter of Newton
Programmer’s Guide.

Refer to ANSI-C library documentation.
Refer to ANSI-C library documentation.

C++ Toolkit ANSI-C Functions

Function
header page
in C++ book

8-32

8-11

8-12

8-12

8-12
8-12

8-24
8-25
8-25
8-25
8-25
8-26
8-32
8-12
8-13
8-13

8-13

8-13
8-13

8-22
8-22
8-14

8-24
8-14

APPENDIX A

C++ Function Tables

Table A-7 C++ Library ANSI-C Library functions (continued)

Function
header page

Function Name Location of function description in C++ book

remai nder The “Utility Functions” chapter of Newton 8-14
Programmer’s Guide.

renquo The “Utility Functions” chapter of Newton 8-14
Programmer’s Guide.

rint The “Utility Functions” chapter of Newton 8-15
Programmer’s Guide.

rinttol The “Utility Functions” chapter of Newton 8-15
Programmer’s Guide.

r ound The “Utility Functions” chapter of Newton 8-15
Programmer’s Guide.

r oundt ol Refer to ANSI-C library documentation. 8-15

scal b The “Utility Functions” chapter of Newton 8-15
Programmer’s Guide.

si gnbi t The “Utility Functions” chapter of Newton 8-15
Programmer’s Guide.

sin The “Utility Functions” chapter of Newton 8-16
Programmer’s Guide.

si nh The “Utility Functions” chapter of Newton 8-16
Programmer’s Guide.

sprintf Refer to ANSI-C library documentation. 8-18

sqrt The “Utility Functions” chapter of Newton 8-16
Programmer’s Guide.

srand Refer to ANSI-C library documentation. 8-22

sscanf Refer to ANSI-C library documentation. 8-19

strcat Refer to ANSI-C library documentation. 8-26

strchr Refer to ANSI-C library documentation. 8-27

strcnp Refer to ANSI-C library documentation. 8-27

strcol | Refer to ANSI-C library documentation. 8-27

st rcpy Refer to ANSI-C library documentation. 8-27

strcspn Refer to ANSI-C library documentation. 8-27

strftime Refer to ANSI-C library documentation. 8-33

strlen Refer to ANSI-C library documentation. 8-28

st rncat Refer to ANSI-C library documentation. 8-28

strncnp Refer to ANSI-C library documentation. 8-28

C++ Toolkit ANSI-C Functions A-15

APPENDIX A

C++ Function Tables

Table A-7 C++ Library ANSI-C Library functions (continued)

Function
header page
Function Name Location of function description in C++ book
st rncpy Refer to ANSI-C library documentation. 8-28
strpbrk Refer to ANSI-C library documentation. 8-29
strrchr Refer to ANSI-C library documentation. 8-29
strspn Refer to ANSI-C library documentation. 8-29
strstr Refer to ANSI-C library documentation. 8-29
strtod Refer to ANSI-C library documentation. 8-23
strtok Refer to ANSI-C library documentation. 8-29
strtol Refer to ANSI-C library documentation. 8-23
strtoul Refer to ANSI-C library documentation. 8-23
strxfrm Refer to ANSI-C library documentation. 8-30
tan The “Utility Functions” chapter of Newton 8-16
Programmer’s Guide.
t anh The “Utility Functions” chapter of Newton 8-16
Programmer’s Guide.
time Refer to ANSI-C library documentation. 8-33
t ol ower Refer to ANSI-C library documentation. 8-5
t oupper Refer to ANSI-C library documentation. 8-5
trunc The “Utility Functions” chapter of Newton 8-17
Programmer’s Guide.
va_arg Refer to ANSI-C library documentation. 8-18
va_end Refer to ANSI-C library documentation. 8-18
va_start Refer to ANSI-C library documentation. 8-18
vsprintf Refer to ANSI-C library documentation. * 8-19
_ANSI _rand Refer to ANSI-C library documentation. 8-20
_ANSI _srand Refer to ANSI-C library documentation. 8-20

¥ This implementation of the C library function may be slightly different than the standard implementation. Any variances are
described with the function declaration in this book.

A-16 C++ Toolkit ANSI-C Functions

APPENDIX A

C++ Function Tables

C++ Toolkit ANSI-C Functions A-17

T H E A PPLE PUBLISHTING

SYSTEM

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter Pro 630 printer. Final page
negatives were output directly from the
text and graphics files. Line art was
created using Adobe™ Tllustrator.
PostScript ", the page-description
language for the LaserWriter, was
developed by Adobe Systems
Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

WRITER
Gary Hillerson

ILLUSTRATOR
Peggy Kunz

EDITOR
David Schneider

PRODUCTION EDITOR
Rex Wolf

PROJECT MANAGER
Gerry Kane

Special thanks to Tom Waits and
Bob Dylan

Index

Symbols

C

_ANS| _RAND 8-20
_ANSI _srand 8-20

A

abs 8-20

acos 8-6

acosh 8-6
AddArraySl ot 3-5
Al ocateArray 3-6
Al ocateBinary 3-6
Al | ocat eFrane 3-6
allocating memory 1-18
annui ty 8-17
ArrayMunger 3-6
array objects 1-7
ArrayPosi tion 3-7
ArrayRenove 3-7
ArrayRenmoveCount 3-8
ASC 1 String 3-8
asctine 8-30

ascti me_newt on 8-30
asin 86

asi nh 8-6

atan 8-7

atan2 8-7

at anh 8-7

at of 8-20

atoi 8-20

atol 8-21

B

Bi nar yMunger 3-8

binary objects 1-7
accessing data in 1-10 to 1-11, 1-18
access warnings 1-11

Bl ockMove 4-1

bsearch 8-21

C++ arrays 1-16

C++ functions
accessing slot values from 6-14 to 6-15
and memory management 1-2
and the Newton screen 1-2
arguments to 1-6
as wrapper functions 1-6
calling from NewtonScript 1-3, 6-15

calling NewtonScript functions from 6-1 to 6-14

code restrictions 1-2, 1-3 to 1-6
memory allocation and deallocation 1-4
name-mangling 1-4
return values 1-6
static variables 1-5
calendar clock time type 8-4
calendar time type 8-4
calling C++ from NewtonScript 1-3
calling NewtonScript from C++ 1-2
cal l oc 8-23
catch blocks 5-4
ceil 87
A assd 39
cl eanup 5-9
C library constants
HUGE_VAL 8-2
NULL 8-2
RAND_MAX 8-2
C library constants and data types 8-1 to 8-5
C library functions and macros 8-5 to 8-33
_ANSI _RAND 8-20
_ANSI _srand 8-20
abs 8-20
acos 8-6
acosh 8-6
annui ty 8-17
asctine 8-30
ascti me_newt on 8-30
asin 8-6
asi nh 8-6
atan 8-7
atan2 8-7
atanh 8-7
at of 8-20
atoi 8-20
atol 8-21
bsearch 8-21
cal l oc 8-23

IN-1

INDEX

ceil 87

character conversion functions 8-5
cl ock 8-31

conpound 8-17

copysi gn 8-7

copysi gnf 8-8

cos 8-8

cosh 8-8

ctinme 831
ctine_newt on 8-31
difftinme 8-31

div 821

erf 88

erfc 8-8

exp 89

exp2 89

expnil 8-9

fabs 8-9

fdi m8-9

financial functions 8-17
floating-point math functions 8-6 to 8-17
floor 89

f max 8-10

fmn 810

fmod 8-10

free 8-24

frexp 8-10

gnine 832

heap functions 8-23 to 8-24
hypot 8-11

isfinite 8-11

i snan 8-11

i snornmal 8-11

| abs 8-21

| dexp 8-11

I div 822

| ocal tine 8-32

| ocal ti ne_newt on 8-32
| og 8-11

| 0g10 8-12

| oglp 8-12

| 0og2 8-12

| ogb 8-12

mal | oc 8-24

menchr 8-25

mencnp 8-25

nencpy 8-25

memove 8-25

memory block manipulation functions 8-25 to 8-26

menset 8-26
nkti ne 8-32
nodf 8-12

nodf f 8-13

near byi nt 8-13
nextafterd 8-13

IN-2

nextafterf 8-13
pow 8-13

gsort 8-22
rand 8-22
randonx 8-14
real |l oc 8-24
relation 8-14
remai nder 8-14
renquo 8-14
rint 815
rinttol 8-15
round 8-15
roundt ol 8-15
scal b 8-15
signbit 8-15
sin 8-16

si nh 8-16
sprintf 8-18
sgrt 8-16
srand 8-22
sscanf 8-19
standard C functions 8-20 to 8-23
standard input and output functions 8-18 to 8-20
strcat 8-26
strchr 8-27
strcnp 8-27
strcol | 8-27
strcpy 8-27
strcspn 8-27
strftime 8-33
string manipulation functions 8-26 to 8-30
strlen 8-28
strncat 8-28
strncnp 8-28
strncpy 8-28
strpbrk 8-29
strrchr 8-29
strspn 8-29
strstr 8-29
strtod 8-23
strtok 8-29
strtol 8-23
strtoul 8-23
strxfrm8-30
summary of 8-34 to 8-39
tan 8-16

tanh 8-16

tinme 8-33

time functions 8-30 to 8-33
t ol ower 8-5

t oupper 8-5
trunc 8-17
va_arg 8-18
va_end 8-18
va_start 8-18

INDEX

variable argument list functions 8-17 to 8-18
vsprintf 8-19
C library types
clock_t 8-4
div_ t 82
double t 8-3
Idiv_t 83
math types 8-3
rel op 8-3
size_t 82
standard types 8-2 to 8-3
tinme t 84
time types 8-4 to 8-5
tm8-4
wchar _t 8-2
cl ock 8-31
clock time type 8-4
d one 3-9
code restrictions 1-2, 1-3 to 1-6
Coer ceToDoubl e 3-9
Coer ceTol nt 3-10
conpound 8-17
constants
FALSEREF 2-1
HUGE_VAL 8-2
kASQ | Encodi ng 7-1
KEndCr Char String 7-2,7-9
kEndCr Uni codeString 7-2, 7-9
kMacKanj i Encodi ng 7-1
kMacRomanEncodi ng 7-1
kNoTr ansl ati onChar 7-2, 7-9
kShi ft JI SEncodi ng 7-1
kW zar dEncodi ng 7-1
N LREF 2-1
NULL 8-2
RAND MAX 8-2
TRUEREF 2-1
Convert Fr orruni code 7-2
Convert ToUni code 7-3
Convert Uni codeChar 7-3
Convert Uni codeChar acters 7-4
copysi gn 8-7
copysi gnf 8-8
cos 8-8
cosh 8-8
Count Fr eeBl ocks 4-2
ctime 8-31
ctine_newt on 8-31
Qurrent Exception 5-6

D

END W TH_LOCKED Bl NARY 1-10
warnings about use 1-11
W TH_LOCKED Bl NARY 1-10
DebugCstr 2-6
Debugger 2-6
DebugStr 2-6
Deepd one 3-10
Def i neExcepti on 5-7
Del et eTChj ectlterator 3-5
difftime 831
D sposPtr 4-2
div 8-21
division result type 8-2
Done 3-4
double precision value type 8-3

E

data access functions and macros

END_FCREACH 3-3
end_try 5-10
end_unwi nd 5-10
END W TH_LOCKED BI NARY 1-10
Ensurel nternal 3-10
EQ 2-5
Equal Byt es 4-2
erf 8-8
erfc 88
exAbort exception 5-5
exAl i gnnent exception 5-5
exBusError exception 5-5
exception blocks 5-4 to 5-5
exception data 5-3
exception destructor type 5-6
exception functions and macros 5-6 to 5-12
cl eanup 5-9
Current Exception 5-6
Def i neExcepti on 5-7
end_try 5-10
end_unwi nd 5-10
new on_cat ch 5-10
newt on_catch_all 5-10
newton_try 5-11
on_unwi nd 5-11
ret hrow 5-7
Subexcepti on 5-8
summary of 5-13
Thr ow 5-8
Thr owMsg 5-8
unwi nd_failed 5-12
unwi nd_pr ot ect 5-12
exceptions
about 5-1to 5-6
blocks 5-4 to 5-5

IN-3

INDEX

catch blocks 5-4
class of 5-6
data 5-3
defining 5-1 to 5-3
destructor 5-6
exAbort 5-5
exAl i gnment 5-5
exBusError 5-5
exDi vi deByZer o 5-5
exlllegal Instr 5-5
exMsgExcepti on 5-5
exQut O St ack 5-5
exPer nm ssi onVi ol ati on 5-5
exRoot Excepti on 5-5
exSki a 5-5
exWiteProtected 5-5
functions and macros 5-6 to 5-12
Newton system 5-5
types 5-6
volatile values in 5-5
exception structure type 5-6
exception types 5-6
exDi vi deByZer o exception 5-5
exl |l egal I nstr exception 5-5
exMsgExcept i on exception 5-5
exQut O St ack exception 5-5
exp 89
exp2 89
exPer mi ssi onMi ol at i on exception 5-5
expnl 8-9
exRoot Except i on exception 5-5
exSKi a exception 5-5
exWi t ePr ot ect ed exception 5-5

F

fabs 8-9

FALSEREF 2-1
fdim8-9

FillBytes 4-3
FillLongs 4-3
floor 89

f max 8-10

fmn 810

fnod 8-10

FOREACH 3-2
FCREACH W TH_TAG 3-3
FraneHasPat h 3-10
FrameHasSl ot 3-10
frames 1-7

free 8-24

frexp 8-10
functions and macros

IN-4

_ANSI _RAND 8-20
_ANSI _srand 8-20
abs 8-20

acos 8-6

acosh 8-6
AddArraySl ot 3-5
Al ocateArray 3-6
Al ocat eBi nary 3-6
Al | ocat eFrane 3-6
annuity 8-17
ArrayMiunger 3-6
ArrayPosition 3-7
ArrayRenove 3-7
ArrayRermoveCount 3-8
ASC I String 3-8
asctime 8-30

ascti me_newt on 8-30
asin 86

asi nh 8-6

atan 8-7

atan2 8-7

at anh 8-7

at of 8-20

atoi 8-20

atol 8-21

Bi nar yMinger 3-8
Bl ockMove 4-1
bsear ch 8-21

call oc 8-23

ceil 87

dassC 39

cl eanup 5-9

cl ock 8-31

d one 3-9

Coer ceToDoubl e 3-9
Coer ceTol nt 3-10
conpound 8-17

Convert Fr onuni code 7-2

Convert ToUni code 7-3

Convert Uni codeChar 7-3
Convert Uni codeChar acters 7-4

copysi gn 8-7

copysi gnf 8-8

cos 8-8

cosh 8-8

Count Fr eeBl ocks 4-2
ctime 831
ctine_new on 8-31
Qurrent Excepti on 5-6
DebugCstr 2-6
Debugger 2-6
DebugStr 2-6

Deepd one 3-10

Def i neException 5-7

Del et eTOoj ect I terator 3-5

INDEX

difftime 8-31

D sposPtr 4-2

div 821

Done 3-4

END FOREACH 3-3
end_try 5-10
end_unwi nd 5-10
END W TH_LOCKED BI NARY 1-10
Ensurel nternal 3-10
EQ 2-5

Equal Byt es 4-2
erf 8-8

erfc 8-8

exp 89

exp2 89

expnl 8-9

fabs 8-9

fdi m8-9
FillBytes 4-3

Fi || Longs 4-3

fl oor 8-9

f max 8-10

fmn 810

fmod 8-10
FOREACH 3-2
FCREACH W TH_TAG 3-3
FraneHasPat h 3-10
FranmeHasSl ot 3-10
free 8-24

frexp 8-10

QC 3-11

Get ArraySl ot 3-11
Cet FranePat h 3-11
Cet FrameSl ot 3-12
Get Pt r Nane 4-4
GetPtrSize 44
Get Vari abl e 6-14
gntine 8-32
HasChars 7-4
HasDigits 7-5
HasSpaces 7-5
hypot 8-11

| sArray 3-12

| sBinary 3-12

| sChar 2-4

| SFALSE 2-5
isfinite 8-11

| sFranme 3-12

I sFuncti on 3-12

I sl nstance 3-13
Islnt 2-4

| sMagi cPtr 1-11,2-4
i snan 8-11

ISNIL 2-5

i snornmal 8-11

I sNunmber 3-13

IsPtr 2-4

| sPunct Synbol 7-5

| sReadOnly 3-13

I sReal 3-13

| sReal Ptr 1-11,2-4
IsString 3-13

| sSubcl ass 3-13

| sSynbol 3-14

| STRUE 2-5

| abs 8-21

Lar gest Freel nHeap 4-4
| dexp 8-11

I div 822

Length 3-14

| ocal ti ne 8-32

| ocal ti ne_newt on 8-32
| og 8-11

| 0ogl0 8-12

| oglp 8-12

| og2 8-12

| ogb 8-12

MakeBool ean 2-2
MakeChar 2-2

Makel nt 2-2

MakeReal 2-2
MakeString 2-2
MakeSynbol 2-3

mal | oc 8-24

MaxHeapS ze 4-4
menchr 8-25

mencnp 8-25

nencpy 8-25

Menterror 4-4

nenmove 8-25

nmenset 8-26

nkti ne 8-32

nodf 8-12

nodf f 8-13

near byi nt 8-13
NewNanedPt r 4-5

NewPt r 4-5

NewPt r A ear 4-5
NewTChj ect I terator 3-5
new on_cat ch 5-10
newt on_catch_al |l 5-10
newton_try 5-11

Next 3-4

nextafterd 8-13
nextafterf 8-13

NOTN L 2-5

NSCal | 6-2

NSCal | G obal Fn 6-4
NSCal | G obal FnWt hAr gArray 6-5
NSCal | Wt hArgArray 6-3

NSSend 6-6
NSSendl f Def i ned 6-8

NSSendl f Def i nedWt hAr gArray 6-10

NSSendPr ot o 6-10

INDEX

NSSendPr ot ol f Def i ned 6-12

NSSendPr ot ol f Def i nedWt hAr gArray 6-14

NSSendPr ot oWt hArgArray 6-12
NSSendWt hAr gArray 6-7

on_unwi nd 5-11
pow 8-13

gsort 8-22

rand 8-22

randonx 8-14

real l oc 8-24

Real | ocPtr 4-6
Ref Tol nt 2-3

Ref ToUni Char 2-3
rel ati on 8-14
remai nder 8-14
RenoveS ot 3-14
renquo 8-14

Repl aceChj ect 3-14
Reset 3-4

r et hrow 5-7

rint 8-15

rinttol 8-15
round 8-15

roundt ol 8-15
scal b 8-15

Set ArraySl ot 3-14
Set d ass 3-15

Set FranePat h 3-15
Set FranmeSl ot 3-16
Set Lengt h 3-16
Set Pt r Nane 4-7
Set Vari abl e 6-15
signbit 8-15

sin 8-16

si nh 8-16
SortArray 3-16
sprintf 8-18

sgrt 8-16

srand 8-22

sscanf 8-19
Statistics 3-17
StrBegi nsWth 3-17
StrCapitalize 3-17

StrCapitali zeWrds 3-17

strcat 8-26
strchr 8-27
strcnp 8-27
strcoll 8-27
strcpy 8-27
strcspn 8-27
St r Downcase 3-17

IN-6

StrEndsWth 3-18
strftime 8-33

Stri pPunct Synbol s 7-5

strlen 8-28

St r Munger 3-18
strncat 8-28
strncnp 8-28
strncpy 8-28
strpbrk 8-29
StrPosition 3-18
strrchr 8-29
StrRepl ace 3-19
strspn 8-29
strstr 8-29
strtod 8-23
strtok 8-29
strtol 8-23
strtoul 8-23
StrUpcase 3-19
st rxfrm 8-30
Subexception 5-8
Substring 3-19
SYM 2-3

Synbol Conpar eLex 3-20

syncnp 3-20

Syst enRAMSI ze 4-7
Tag 34

tan 8-16

tanh 8-16

Thr ow 5-8

Thr owBadTypeW t hFr aneDat a 3-20

Thr owMsg 5-8

Thr owRef Excepti on 3-21

tinme 8-33

t ol ower 8-5

Tot al A one 3-21

Tot al Freel nHeap 4-7
Tot al Usedl nHeap 4-7
t oupper 8-5
TrinBtring 3-21
trunc 8-17

Urenset 7-6

unwi nd_fail ed 5-12
unwi nd_prot ect 5-12
Ustrcat 7-7

Ustrchr 7-7
Ustrcnp 7-7
Ustrcpy 7-7
Ustrlen 7-8
Ustrncat 7-8

Ust rncpy 7-8
va_arg 8-18

va_end 8-18
va_start 8-18

Val ue 3-5

INDEX

vsprintf 8-19

W TH_LOCKED BI NARY 1-10

XCRByt es 4-8

Zer 0Byt es 4-8
functions and macros for using C++ with NewtonScript

DebugCstr 2-6

Debugger 2-6

DebugStr 2-6

EQ 2-5

| sChar 2-4

| SFALSE 2-5

Isint 2-4

| sMagi cPtr 2-4

ISNL 2-5

IsPtr 2-4

| sReal Ptr 2-4

| STRUE 2-5

MakeBool ean 2-2

MakeChar 2-2

Makel nt 2-2

MakeReal 2-2

MakeString 2-2

MakeSynbol 2-3

NOTN L 2-5

Ref Tol nt 2-3

Ref ToUni Char 2-3

summary of 2-7 to 2-8

SYM 2-3

G

immediate objects 1-7
IsArray 3-12

I sBinary 3-12

| sChar 2-4

| SFALSE 2-5
isfinite 8-11

| sFrane 3-12

I sFuncti on 3-12

I sl nstance 3-13
Islnt 2-4

I shMagi cPtr 1-11,2-4
i snan 8-11

ISNL 2-5

i snormal 8-11

I sNunber 3-13
IsPtr 2-4

I sPunct Synbol 7-5
| sReadOnly 3-13

| sReal 3-13

| sReal Ptr 1-11,2-4
IsString 3-13

| sSubcl ass 3-13

| sSynbol 3-14

| STRE 2-5

L

QC 3-11

Get ArraySl ot 3-11
Get FranePat h 3-11
Get FraneSl ot 3-12
Get Pt r Nane 4-4
CGetPtrSi ze 4-4
Cet Vari abl e 6-14
global data 1-5
gntinme 8-32

H

HasChars 7-4
HasDigits 7-5
HasSpaces 7-5
HUGE_VAL 8-2
hypot 8-11

| abs 8-21

Lar gest Fr eel nHeap 4-4
| dexp 8-11

Idiv 822

Length 3-14

I ocal tine 8-32

| ocal ti me_newt on 8-32
| og 8-11

| ogl0 8-12

| oglp 8-12

| 0og2 8-12

| ogb 8-12

long division result type 8-3

M

magic pointers 1-11
MakeBool ean 2-2
MakeChar 2-2
Makel nt 2-2
MakeReal 2-2
MakeString 2-2

IN-7

INDEX

MakeSynbol 2-3

mal | oc 8-24

MaxHeapSi ze 4-4

nmenchr 8-25

mencnp 8-25

mencpy 8-25

MenError 4-4

nmemmove 8-25

memory allocation and deallocation 1-4

memory management functions and macros 4-1 to 4-8
Bl ockMove 4-1
Count Fr eeBl ocks 4-2
D sposPtr 4-2
Equal Byt es 4-2
FillBytes 4-3
Fi |l Longs 4-3
CGet Pt r Name 4-4
GetPtrSize 4-4
Lar gest Freel nHeap 4-4
MaxHeapSi ze 4-4
Menterror 4-4
NewNanedPtr 4-5
NewPt r 4-5
NewPt rd ear 4-5
Real | ocPtr 4-6
Set Pt r Nane 4-7
summary of 4-9
Syst enRANSI ze 4-7
Tot al Freel nHeap 4-7
Tot al Usedl nHeap 4-7
XCRByt es 4-8
Zer 0Byt es 4-8

nmenset 8-26

nktine 8-32

nmodf 8-12

nmodf f 8-13

N

name-mangling 1-4
near byi nt 8-13
NewNaredPt r 4-5
NewPt r 4-5
NewPt rd ear 4-5
NewTChj ectlterator 3-5
newt on_cat ch 5-10
newt on_catch_al | 5-10
newton_try 5-11
Newton object system
about 1-6 to ??
array objects 1-7
binary objects 1-7, 1-10 to 1-11, 1-18
frames 1-7

IN-8

immediate objects 1-7
object classes 3-1 to 3-5
object system functions 3-5 to 3-21
object types 1-6 to 1-7
path expressions 1-12
primitive object classes 1-7
reference objects 1-7
reference types 1-7 to 1-8
Ref 1-7
Ref Struct 1-8
Ref Var 1-8
symbols 1-6 to 1-7, 1-12
NewtonScript
accessing slot values 6-14 to 6-15
calling C++ functions from 6-15
calling from C++ 1-2, 6-1 to 6-14
magic pointers 1-11
object types 1-6 to 1-7
symbols 1-6 to 1-7, 1-12
NewtonScript interpreter functions and macros 6-1 to
6-16
Get Vari abl e 6-14
NSCal | 6-2
NSCal | G obal Fn 6-4
NSCal | A obal FnWt hAr gArray 6-5
NSCal | Wt hArgArray 6-3
NSSend 6-6
NSSendl f Def i ned 6-8
NSSendl f Def i nedWt hAr gArray 6-10
NSSendPr ot 0 6-10
NSSendPr ot ol f Def i ned 6-12
NSSendPr ot ol f Def i nedWt hArgArray 6-14
NSSendPr ot oWt hAr gArray 6-12
NSSendW t hAr gArray 6-7
Set Vari abl e 6-15
summary of 6-17 to 6-19
Newton system exceptions 5-5
Next 3-4
nextafterd 8-13
nextafterf 8-13
N LREF 2-1
NOTN L 2-5
NSCal | 6-2
NSCal | A obal Fn 6-4
NSCal | G obal FnWt hAr gArray 6-5
NSCal | Wt hArgArray 6-3
NSSend 6-6
NSSend! f Def i ned 6-8
NSSendl f Def i nedWt hAr gArray 6-10
NSSendPr ot o 6-10
NSSendPr ot ol f Def i ned 6-12
NSSendPr ot ol f Def i nedWt hAr gArray 6-14
NSSendPr ot oWt hAr gArray 6-12
NSSendWt hAr gArray 6-7
NULL 8-2

INDEX

O Set FrameSl ot 3-16
Set Lengt h 3-16

object iterator class 3-4 to 3-5 Sort Array 3-16

object iterator class functions and macros Statistics 3-17
Del et eTChj ect I terator 3-5 St rBegi nsWth 3-17
Done 3-4 StrCapitalize 3-17
END FOREACH 3-3 StrCapitali zeWrds 3-17
FCREACH 3-2 St r Downcase 3-17
FOREACH W TH_TAG 3-3 StrEndsWth 3-18
NewTChj ectlterator 3-5 StrMunger 3-18
Next 3-4 StrPosition 3-18
Reset 3-4 StrRepl ace 3-19
Tag 34 StrUpcase 3-19
Val ue 3-5 Substring 3-19

object references 1-7 to 1-8 summary of 3-22 to 3-24

object system functions and macros 3-5 to 3-21 Synbol Conpar eLex 3-20
AddArraySl ot 3-5 syncnp 3-20
Al ocateArray 3-6 Thr owBadTypeW t hFr armreDat a 3-20
Al | ocat eBi nary 3-6 Thr owRef Except i on 3-21
Al | ocat eFrane 3-6 Tot al d one 3-21
ArrayMinger 3-6 TrinBtring 3-21
ArrayPosi tion 3-7 object types 1-6 to 1-7
ArrayRermove 3-7 on_unwi nd 5-11

ArrayRenmoveCount 3-8
ASC I String 3-8
Bi nar yMunger 3-8

dassd 39 P

Qd one 3-9

Coer ceToDoubl e 3-9 path expressions 1-12
Coer ceTol nt 3-10 persistent storage 1-18
Deepd one 3-10 pow 8-13

Ensur el nternal 3-10 primitive object classes 1-7

FraneHasPat h 3-10
FranmeHasSl ot 3-10

QC 3-11

Get ArraySl ot 3-11 Q

Get FranePat h 3-11

Get FraneSl ot 3-12 gsort 8-22

I sArray 3-12

I sBinary 3-12

| sFrame 3-12

| sFuncti on 3-12 R

I sl nstance 3-13

I sNunber 3-13 rand 8-22

| sReadOnly 3-13 RAND MAX 8-2

| sReal 3-13 randonx 8-14
IsString 3-13 real | oc 8-24

| sSubcl ass 3-13 Real | ocPtr 4-6
| sSynbol 3-14 Ref 1-7

Length 3-14 Ref Ar g type 1-8
Renoved ot 3-14 reference objects 1-7
Repl ace(hj ect 3-14 reference types 1-7 to 1-8
Set ArraySl ot 3-14 Ref 1-7

Set d ass 3-15 Ref Struct 1-8
Set FranePat h 3-15 Ref Var 1-8

IN-9

INDEX

Ref Struct 1-8 Stri pPunct Synbol s 7-5
Ref Struct type 1-8 strlen 8-28
Ref Tol nt 2-3 StrMunger 3-18
Ref Toni Char 2-3 strncat 8-28
Ref type 1-8 strncnp 8-28
Ref Var 1-8 strncpy 8-28
Ref Var type 1-8 strpbrk 8-29
rel ation 8-14 StrPosition 3-18
relational operator type 8-3 strrchr 8-29
remai nder 8-14 StrRepl ace 3-19
RermoveS ot 3-14 strspn 8-29
renguo 8-14 strstr 829
Repl ace(j ect 3-14 strtod 8-23
Reset 3-4 strtok 8-29
ret hrow 5-7 strtol 8-23
rint 815 strtoul 8-23
rinttol 8-15 StrUpcase 3-19
round 8-15 strxfrm8-30
roundtol 8-15 Subexcepti on 5-8
Substring 3-19
SYM 2-3
Synbol Conpar eLex 3-20
S symbols 1-6 to 1-7, 1-12
syncnp 3-20
scal b 8-15 system exceptions
Set ArraySl ot 3-14 exAbort 5-5
Setd ass 3-15 exAl i gnnent 5-5
Set FranePat h 3-15 exBusError 5-5
Set FraneSl ot 3-16 exDi vi deByZer o 5-5
Set Lengt h 3-16 exlllegal Instr 5-5
Set Pt r Nane 4-7 exMsgExcepti on 5-5
Set Vari abl e 6-15 exQut O St ack 5-5
signbit 8-15 exPerm ssi onVi ol ati on 5-5
sin 8-16 exRoot Except i on 5-5
sinh 8-16 exSkia 5-5
size type 8-2 exWiteProtected 5-5
Sort Array 3-16 Syst enRAVSI ze 4-7
sprintf 8-18
sgrt 8-16
srand 8-22
sscanf 8-19 T
static variables 1-5
Statistics 3-17 Tag 3-4
StrBegi nsWth 3-17 tan 8-16
StrCapitalize 3-17 tanh 8-16
StrCapitali zeWrds 3-17 Thr ow 5-8
strcat 8-26 Thr owBadTypeW t hFr ameDat a 3-20
strchr 8-27 Thr owMsg 5-8
strcnp 8-27 Thr owRef Excepti on 3-21
strcol | 8-27 time 8-33
strcpy 8-27 TChj ect I terator class 3-4
strcspn 8-27 tol ower 8-5
St r Downcase 3-17 Tot al A one 3-21
StrEndsWth 3-18 Tot al Freel nHeap 4-7
strftinme 8-33 Tot al Usedl nHeap 4-7

IN-10

INDEX

t oupper 8-5
TrinBtring 3-21
TRUEREF 2-1
trunc 8-17

type-checking functions and macros

I sMagi cPtr 1-11

I sReal Ptr 1-11
types

clock_t 8-4

div_t 82

double t 8-3

Idiv_t 83

rel op 83

size_t 82

time_t 84

tm8-4

Uni Char 7-1

wchar _t 8-2

U

Urenset 7-6
Uni Char type 7-1

Unicode constants and data type 7-1 to 7-2

Unicode encoding types 7-1

Unicode functions and macros 7-2 to 7-8

Convert Fr onuni code 7-2
Convert Tolni code 7-3
Convert Uni codeChar 7-3

Convert Uni codeChar acters 7-4

HasChars 7-4
HasDigits 7-5
HasSpaces 7-5
| sPunct Synbol 7-5
Stri pPunct Synbol s 7-5
summary of 7-9 to 7-10
Urenset 7-6
Ustrcat 7-7
Ustrchr 7-7
Ustrcnp 7-7
Ustrcpy 7-7
Ustrlen 7-8
Ustrncat 7-8
Ustrncpy 7-8
unwi nd_fail ed 5-12
unwi nd_pr ot ect 5-12

using C++ with NewtonScript

constants 2-1

debugging functions and macros 2-6 to ??
functions and macros 2-1 to ??

overview 1-1to 1-6

type-checking functions and macros 2-4
type-conversion functions and macros 2-1 to 2-3

value-checking functions and macros 2-5

Ustrcat 7-7
Ustrchr 7-7
Ustrcnp 7-7
Ustrcpy 7-7
WUstrlen 7-8
Ustrncat 7-8
Ust rncpy 7-8

Vv

va_arg 8-18
va_end 8-18
va_start 8-18
Val ue 3-5
vsprintf 819

w

wide char type 8-2
W TH_LOCKED BI NARY 1-10
wrapper functions 1-16

XCRByt es 4-8

Z

Zer oByt es 4-8

IN-11

	Contents
	Figures, Tables, and Listings
	About This Book
	How to Use This Book
	Related Books
	Conventions
	Developer Products and Support

	C++ Toolkit Introduction
	Using C++ With NewtonScript
	Calling NewtonScript from C++
	Calling C++ from NewtonScript
	C++ Modules

	C++ Code Restrictions
	Methods, Functions, and Name-Mangling
	Memory Allocation
	Static Variables
	Global Data
	Allocating Persistent Storage

	Function Arguments and Return Values

	The Newton Object System
	Newton Symbols and Object Types
	Table�1-1 Newton object types

	Object References
	Table�1-2 Summary of C++ Toolkit reference types
	Using Ref as The Function Return Type
	Table of Object Reference Use
	Table�1-3 Examples of object reference use

	Accessing Data In a Binary Object
	NewtonScript Magic Pointers
	Path Expressions
	Table�1-4 Path expressions
	Specifying Symbols

	Newton Exceptions and C++

	NewtonScript and C++ Equivalences and Examples
	Table�1-5 NewtonScript expressions and their C++ e...
	A Simple Example in NewtonScript and C++
	An Example of Defining and Calling Several C++ Fun...
	An Example of a Wrapper Function
	An Example of Converting a C++ Array into NewtonSc...
	An Example of Automatic Allocation of RefArgs
	An Example of Allocating Persistent Storage
	An Example of Accessing Binary Data

	C++ and NewtonScript Conversion Reference
	Constants for Using C++ With NewtonScript
	Type Conversion Functions
	MakeBoolean
	MakeChar
	MakeInt
	MakeReal
	MakeString
	MakeSymbol
	RefToUniChar
	RefToInt
	SYM

	Type Checking Functions
	IsChar
	IsInt
	IsMagicPtr
	IsPtr
	IsRealPtr

	Value Checking Functions and Macros
	EQ
	ISNIL
	ISFALSE
	ISTRUE
	NOTNIL

	Debugging Macros
	Debugger
	DebugStr
	DebugCStr

	Newton Object System Reference
	Object System Classes
	Iteration Macros
	FOREACH
	FOREACH_WITH_TAG
	END_FOREACH

	Object Iterator Class
	Reset
	Next
	Done
	Tag
	Value

	Iterator Functions
	NewTObjectIterator
	DeleteTObjectIterator

	C++ Object System Functions
	AddArraySlot
	AllocateArray
	AllocateBinary
	AllocateFrame
	ArrayMunger
	ArrayPosition
	ArrayRemove
	ArrayRemoveCount
	ASCIIString
	BinaryMunger
	ClassOf
	Clone
	CoerceToDouble
	CoerceToInt
	DeepClone
	EnsureInternal
	FrameHasPath
	FrameHasSlot
	GC
	GetArraySlot
	GetFramePath
	GetFrameSlot
	IsArray
	IsBinary
	IsFrame
	IsFunction
	IsInstance
	IsNumber
	IsReadOnly
	IsReal
	IsString
	IsSubclass
	IsSymbol
	Length
	RemoveSlot
	ReplaceObject
	SetArraySlot
	SetClass
	SetFramePath
	SetFrameSlot
	SetLength
	SortArray
	Statistics
	StrBeginsWith
	StrCapitalize
	StrCapitalizeWords
	StrDowncase
	StrEndsWith
	StrMunger
	StrPosition
	StrReplace
	StrUpcase
	Substring
	SymbolCompareLex
	symcmp
	ThrowBadTypeWithFrameData
	ThrowRefException
	TotalClone
	TrimString

	Newton Memory Manager Reference
	About the Newton Memory Manager
	Memory Manager Functions
	BlockMove
	CountFreeBlocks
	DisposePtr
	EqualBytes
	FillBytes
	FillLongs
	GetPtrName
	GetPtrSize
	LargestFreeInHeap
	MaxHeapSize
	MemError
	NewNamedPtr
	NewPtr
	NewPtrClear
	ReallocPtr
	SetPtrName
	SystemRAMSize
	TotalFreeInHeap
	TotalUsedInHeap
	XORBytes
	ZeroBytes

	Newton Exceptions Reference
	About Newton Exceptions
	Defining Exceptions
	Table�5-1 An exception-handling hierarchy

	Exception Data
	Exception Blocks
	Catch Blocks
	Other Exception-handling Blocks

	Volatile Values
	Newton System Software Exceptions
	Table�5-2 Newton system software exceptions�

	Exception Types
	The Exception Structure Type
	The Exception Destructor Type

	Exception Functions and Macros
	CurrentException
	DefineException
	rethrow
	Subexception
	Throw
	ThrowMsg

	Exception-Handling Macros
	cleanup
	end_unwind
	end_try
	newton_catch
	newton_catch_all
	newton_try
	on_unwind
	unwind_failed
	unwind_protect

	NewtonScript Reference
	NewtonScript Interpreter Functions
	Functions for Calling NewtonScript Functions From ...
	NSCall
	NSCallWithArgArray
	NSCallGlobalFn
	NSCallGlobalFnWithArgArray
	NSSend
	NSSendWithArgArray
	NSSendIfDefined
	NSSendIfDefinedWithArgArray
	NSSendProto
	NSSendProtoWithArgArray
	NSSendProtoIfDefined
	NSSendProtoIfDefinedWithArgArray

	Functions for Accessing NewtonScript Slot Values f...
	GetVariable
	SetVariable

	Calling C++ Functions from NewtonScript

	Newton Unicode Reference
	.Unicode Constants and Data Types
	The UniChar Type
	Encoding Type Constants
	Unicode Character and String Constants

	Unicode Functions
	ConvertFromUnicode
	ConvertToUnicode
	ConvertUnicodeChar
	ConvertUnicodeCharacters
	HasChars
	HasDigits
	HasSpaces
	IsPunctSymbol
	StripPunctSymbols
	Table�7-1 Unicode punctuation symbols

	Umemset
	Ustrcat
	Ustrchr
	Ustrcmp
	Ustrcpy
	Ustrlen
	Ustrncat
	Ustrncpy

	Newton C Library Reference
	C Library Constants and Data Types
	C Library Constants
	The NULL Pointer
	The HUGE_VAL Constant
	The Maximum Random Number Value

	Standard Library Types
	The Size Type
	The Wide Char Type
	The Division Result Type
	The Long Division Result Type

	Math Types
	Double-precision Value Type
	Relational Operator Type

	Time Types
	Clock Time Type
	Calendar Time Type
	Calendar Clock Time Structure

	C Library Functions
	Character Conversion Functions
	tolower
	toupper

	Floating-point Math Functions
	acos
	acosh
	asin
	asinh
	atan
	atan2
	atanh
	ceil
	copysign
	copysignf
	cos
	cosh
	erf
	erfc
	exp
	exp2
	expm1
	fabs
	fdim
	floor
	fmax
	fmin
	fmod
	frexp
	hypot
	isfinite
	isnan
	isnormal
	ldexp
	log
	logb
	log1p
	log10
	log2
	modf
	modff
	nearbyint
	nextafterd
	nextafterf
	pow
	randomx
	relation
	remainder
	remquo
	rint
	rinttol
	round
	roundtol
	scalb
	signbit
	sin
	sinh
	sqrt
	tan
	tanh
	trunc

	Financial Functions
	annuity
	compound

	Variable Argument List Macros
	va_start
	va_arg
	va_end

	Standard Input and Output Functions
	sprintf
	sscanf
	vsprintf

	Standard C Library Functions
	_ANSI_rand
	_ANSI_srand
	abs
	atof
	atoi
	atol
	bsearch
	div
	labs
	ldiv
	qsort
	rand
	srand
	strtod
	strtol
	strtoul

	Heap Functions
	calloc
	free
	malloc
	realloc

	Memory Block Manipulation Functions
	memchr
	memcmp
	memcpy
	memmove
	memset

	String Manipulation Functions
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtok
	strxfrm

	Time Functions
	asctime
	asctime_newton
	clock
	ctime
	ctime_newton
	difftime
	gmtime
	localtime
	localtime_newton
	mktime
	strftime
	time

	C++ Function Tables
	Functions and Macros for Using C++ With NewtonScri...
	Table A-1 C++ and NewtonScript conversion function...

	Newton Object System Functions
	Table A-2 C++ Toolkit Object System functions (con...

	C++ Toolkit Memory Manager Functions
	Table A-3 C++ Toolkit Memory Manager functions (co...

	C++ Toolkit Exception-Handling Functions
	Table A-4 C++ Toolkit exception-handling functions...

	C++ NewtonScript Functions
	Table A-5 C++ Toolkit NewtonScript functions�

	C++ Toolkit Unicode Functions
	Table A-6 C++ Toolkit Unicode functions (continued...

	C++ Toolkit ANSI-C Functions
	Table A-7 C++ Library ANSI-C Library functions (co...

