
Dante
Connection Protocol

The Connection protocol is used to communicate between the desktop and Newton.

This document should be read in conjunction with DockProtocol.h which defines the constants and
structures referenced here.

NOTE! This protocol supersedes the 1.0 Newton ROM protocol: refer to the Newton 1.0
Connection Protocol document.

Protocol Overview
Newton communicates with the desktop by exchanging Newton event commands. The general
command structure looks like this:

ULong 'newt' // event header
ULong 'dock' // event header
ULong 'aaaa' // specific command
ULong length // the length in bytes of the following data
UChar data[] // data, if any

Note
• The length associated with each command is the actual length in bytes of the data following

the length field.
• Data is padded with nulls to a 4 byte boundary.
• Multi-byte values are in big-endian order.
• Strings are null-terminated 2-byte UniChar strings unless otherwise specified.
• NewtonScript objects are sent in Newton Streamed Object Format (NSOF) (see the Newton

Formats document, chapter 4).

Desktop Applications
Several desktop applications that provide connection services to Newton are available, some of them in
Apple’s archive. They all implement the protocol defined in this document.

Newton Connection Kit (NCK)! 1.0

Protocol: 1
Functions: backup, restore, install

Newton Connection Kit (NCK)! 2.0

Protocol: 2
Functions: backup, restore, install

http://www.splorp.com/pdf/newtonformats.pdf
http://www.splorp.com/pdf/newtonformats.pdf
http://www.splorp.com/pdf/newtonformats.pdf
http://www.splorp.com/pdf/newtonformats.pdf
http://www.info.apple.com/support/oldersoftwarelist.html%23newton
http://www.info.apple.com/support/oldersoftwarelist.html%23newton

Newton Package Installer (NPI)! 1.1! released June 20, 1994

Protocol: 1
Functions: install package only

Newton Backup Utility (NBU)! 1.0 ! released January 25, 1996

Protocol: 2
Functions: backup, restore, install

Newton Connection Utilities (NCU)! 1.0 ! released May 13, 1997

Protocol: 2
Functions: backup, restore, synchronize, install, import, export, keyboard passthrough

Ruby Desktop Connection Library (RDCL)! 0.2

Protocol: 2! link
Functions: command line utility

Newton Connection for Mac OS X (NCX)! 2.0.1! released July 19, 2013

Protocol: 1 & 2! link
Functions: backup, restore, install, import, export, keyboard passthrough, screenshot

Newton 2.0 Dante Protocol
The protocol described here is a superset of the 1.0 protocol. Most commands from the 1.0 protocol
are still valid, but some have been superseded.

In this protocol, once a session has been established the connection remains open and commands may
be issued by either Newton or desktop. This is a departure from the 1.0 Newton protocol in which each
session accomplished one function then disconnected.

Command Summary
The following is a summary of the commands that have been added to the 1.0 protocol, and their four-letter
definitions:

kDDefaultStore 'dfst'
kDAppNames 'appn'
kDImportParameterSlipResult 'islr'
kDPackageInfo 'pinf'
kDSetBaseID 'base'
kDBackupIDs 'bids'
kDBackupSoupDone 'bsdn'
kDSoupNotDirty 'ndir'
kDSynchronize 'sync'
kDCallResult 'cres'

kDRemovePackage 'rmvp'
kDResultString 'ress'
kDSourceVersion 'sver'
kDAddEntryWithUniqueID 'auni'
kDGetPackageInfo 'gpin'
kDGetDefaultStore 'gdfs'
kDCreateDefaultSoup 'cdsp'

https://github.com/ekoeppen/RDCL
https://github.com/ekoeppen/RDCL
http://newtonresearch.org/connection/
http://newtonresearch.org/connection/

kDGetAppNames 'gapp'
kDRegProtocolExtension 'pext'
kDRemoveProtocolExtension 'rpex'
kDSetStoreSignature 'ssig'
kDSetSoupSignature 'ssos'
kDImportParametersSlip 'islp'
kDGetPassword 'gpwd'
kDSendSoup 'snds'
kDBackupSoup 'bksp'
kDSetStoreName 'ssna'
kDCallGlobalFunction 'cgfn'
kDCallRootMethod 'crmf'
kDSetVBOCompression 'cvbo'
kDRestorePatch 'rpat'

kDOperationDone 'opdn'
kDOperationCanceled 'opca'
kDOpCanceledAck 'ocaa'
kDRefTest 'rtst'
kDUnknownCommand 'unkn'

Refer to the Newton 1.0 Connection Protocol document for a list of commands used by the original
protocol, and to DockProtocol.h for a full list of dock commands.

Session Initiation
Every session starts like this:

Desktop	 	 Newton
 < kDRequestToDock
kDInitiateDocking >
 < kDNewtonName
kDDesktopInfo >
 < kDNewtonInfo
kDWhichIcons > optional
 < kDResult
kDSetTimeout > optional
 < kDPassword

If the password sent from the Newton is wrong, the desktop responds with kDPWWrong.

kDPWWrong >
 < kDPassword

 The password exchange can occur up to 3 times before the desktop gives up.

kDPWWrong >
 < kDPassword

If the desktop decides that the Newton has had enough guesses, a kDResult indicating kDBadPassword
error can be sent instead of a kDPWWrong.

kDPassword >
 < kDResult

If the password sent from the desktop is wrong, the Newton signals a kDResult indicating
kDBadPassword error immediately.

If no password has been specified, the key is returned unencrypted, but the password exchange always
takes place.

Dock Commands

All commands begin with the 'newt', 'dock' event header as shown in the general form. For simplicity,
that's not shown in the descriptions that follow.

kDRequestToDock
Desktop	 <	 Newton

ULong 'rtdk'
ULong length = 4
ULong protocol version

The Newton initiates a session by sending this command to the desktop, which is listening on the
network, serial, etc. The protocol version is the version of the messaging protocol that's being used by
the Newton ROM. The desktop sends a kDInitiateDocking command in response.

kDInitiateDocking
Desktop	 >	 Newton
ULong 'dock'
ULong length = 4
ULong session type

The session type can be one of {none, settingUp, synchronize, restore, loadPackage, testComm,
loadPatch, updatingStores}; see the Session type enum in DockProtocol.h. The Newton responds with
information about itself.

kDNewtonName

Desktop	 <	 Newton
ULong 'name'
ULong length
struct NewtonInfo
UniChar name[]

The Newton's name can be used to locate the proper synchronize file. The version info includes things
like machine type (e.g. J1), ROM version, etc; see the NewtonInfo struct declaration in
DockProtocol.h

kDDesktopInfo

Desktop	 >	 Newton
ULong 'dinf'
ULong length
ULong protocol version
ULong desktop type
ULong encrypted key 1
ULong encrypted key 2
ULong session type
ULong allow selective sync
NSOF desktop apps

This command is used to negotiate the real protocol version. The protocol version sent with the
kDRequestToDock command is now fixed at version 9 (the version used by the 1.0 ROMs) so we can
support package loading with NPI 1.0, Connection 2.0 and NTK 1.0. Connection 3.0 will send this
command with the real protocol version it wants to use to talk to the Newton. The Newton will
respond with a number equal to or lower than the number sent to it by the desktop. The desktop can
then decide whether it can talk the specified protocol or not.

The desktop type identifies the sender – 0 for Macintosh and 1 for Windows.

The password key is used as part of password verification.

Session type will be the real session type and should override what was sent in kDInitiateDocking. In
fact, it will either be the same as was sent in kDInitiateDocking or kSettingUpSession to indicate
that although the desktop has accepted a connection, the user has not yet specified an operation.

AllowSelectiveSync is a boolean. The desktop should say no when the user hasn't yet done a full sync
and, therefore, can't do a selective sync.

DesktopApps is an array of frames that describes who the Newton is talking with. Each frame in the
array looks like this:

{ name: "Newton Backup Utility", id: 1, version: 1 }

There might be more than one item in the array if the Newton is connecting with a DIL app. The built-
in Connection app expects 1 item in the array that has id:
 1: NBU
 2: NCU
It won't allow connection with any other id.

kDNewtonInfo

Desktop	 <	 Newton
ULong 'ninf'
ULong length = 12
ULong protocol version
ULong encrypted key 1
ULong encrypted key 2

This command is used to negotiate the real protocol version. See kDDesktopInfo above for more info.
The password key is used as part of password verification.

kDWhichIcons
Desktop	 >	 Newton
ULong 'wicn'
ULong length = 4
ULong icon mask

This command is used to customize the set of icons shown on the Newton. The icon mask indicates
which icons should be shown; see the Icon mask enum in DockProtocol.h. For example, to show all
icons you would use this:

kBackupIcon + kSyncIcon + kInstallIcon + kRestoreIcon + kImportIcon +
kKeyboardIcon

kDSetTimeout
Desktop	 >	 Newton
ULong 'stim'
ULong length = 4
ULong timeout in seconds

This command sets the timeout for the connection (the time the Newton will wait to receive data
before it disconnects). This time is typically set to 30 seconds.

kDResult

Desktop	 < >	 Newton
ULong 'dres'
ULong length = 4
SLong error code

This command is sent by either Newton or PC in response to any of the commands that don't request data. It
lets the requester know that things are still proceeding OK.

kDPassword

Desktop	 < >	 Newton
ULong 'pass'
ULong length = 8
ULong encrypted key 1
ULong encrypted key 2

When sent by the Newton, this command returns the key received in the kDDesktopInfo message
encrypted using the password.

When sent by the desktop, this command returns the key received in the kDNewtonInfo message
encrypted using the password.

kDPWWrong
Desktop	 >	 Newton
ULong 'pwbd'
ULong length = 0

If the password sent from the Newton is wrong, the desktop indicates this with a kDPWWrong response.
If too many attempts at entering a password have been made, the desktop can instead respond with a
kDResult command indicating a kDBadPassword error.

Sync and Selective Sync (Backup)
After the session is started (see above) these commands would be sent:

Desktop	 	 Newton
 < kDRequestToSync
kDGetSyncOptions >
 < kDSyncOptions
kDLastSyncTime > this one’s fake (0) just to get the newton time
 < kDCurrentTime
kDSetCurrentStore >
 < kDResult
kDLastSyncTIme >
 < kDCurrentTime

The following would appear only if syncing system info:

kDGetPatches >
 < kDPatches

The following would appear only if syncing 1.x style packages on locked 1.x cards:

kDGetPackageIDs >
 < kDPackageIDList
kDBackupPackages >
 < kDPackage
kDBackupPackages >

 < kDPackage
kDBackupPackages >
 < kDResult

Note that the above only syncs 1.x style packages on locked 1.x cards. To complete the package sync the
packages soup should also by synced.

The sync would continue like this:

kDSetSoupGetInfo >
 < kDSoupInfo
kDLastSyncTIme >
 < kDCurrentTime
kDGetSoupIDs >
 < kDSoupIDs
kdGetChangedIDs >
 < kDChangedIDs
kDDeleteEntries >
 < kDResult
kDAddEntry >
 < kDAddedID
kDReturnEntry >
 < kDEntry

Repeat the above for each store and soup followed by:

kDOperationComplete >

Optionally the desktop could send this instead of the operation complete:

kDSyncResults >

Dock Commands

All commands begin with the 'newt', 'dock' event header as shown in the general form. For simplicity,
that's not shown in the descriptions that follow.

kDSynchronize
Desktop	 <	 Newton

ULong 'sync'
ULong length = 0

This command is sent to the desktop when the user taps the Synchronize button on the Newton. The
user wishes to synchronize Newton data with desktop applications.

kDGetSyncOptions
Desktop	 >	 Newton
ULong 'gsyn'
ULong length = 0

This command is sent when the desktop wants to get the selective sync or selective restore info from
the Newton.

kDSyncOptions

Desktop	 <	 Newton
ULong 'sopt'
ULong length

NSOF info frame

This command is sent whenever the user on the Newton has selected selective sync. The frame sent
completely specifies which information is to be snychronized.

{ packages: TRUEREF,
 syncAll: TRUEREF,
 stores: [{store-info}, {store-info}] }

Each store frame in the stores array contains the same information returned by the kDStoreNames
command with the addition of soup information. It looks like this:

{ name: "Treasure Island",
 signature: 159604293,
 totalsize: 15982592,
 usedsize: 3346692,
 kind: "Flash storage card",
 soups: [“Names”,”Notes”,...],
 signatures: [411528, 843359,...],
 info: {store-info-frame}
}

If the user has specified to sync all information the frame will look the same except there won't be a
soups slot--all soups are assumed.

Note that the user can specify which stores to sync while specifying that all soups should be synced.

If the user specifies that packages should be synced the packages flag will be true and the packages
soup will be specified in the store frame(s).

kDSyncResults

Desktop	 >	 Newton
ULong 'sres'
ULong length
NSOF sync results

This command can optionally be sent at the end of synchronization. If it is sent, the results are
displayed on the Newton. The array looks like this:

[["store name", restored, "soup name", count, "soup name" count],
 ["store name", restored, ...]]

restored is true if the desktop detected that the Newton had been restore to since the last sync.

count is the number of conflicting entries that were found for each soup. Soups are only in the list if
they had a conflict. When a conflict is detected, the Newton version is saved and the desktop version is
moved to the archive file.

File Browsing
File browsing is used by the Newton to select a file to import, a package to load, or a backup to restore.
(For synchronize, the process is completely driven from the desktop side.)

After the session has started (see above) these commands would be sent:

Desktop	 	 Newton
 < kDRequestToBrowse

kDGetInternalStore > optional
 < kDInternalStore
kDResult >
 < kDGetDevices Windows only
kDDevices > Windows only
 < kDGetFilters Windows only
kDFilters > Windows only
 < kDGetDefaultPath
kDPath >
 < kDGetFilesAndFolders
kDFilesAndFolders->

Note that we must start the transaction with a kDRequestToDock to force 1.0 and 2.0 versions of
Connection to display the correct message.

When the user changes the path by tapping on a folder, picking a new level from the path popup, or
picking a new drive on the drive popup in the Dock browser slip:

 < kDSetPath
kDFilesAndFolders >

On Windows only, when the user changes the drive by picking a drive on the drive popup, the desktop
will change the drive and set the directory to the current directory for that drive, and return the new
path to the newton:

 < kDSetDrive
kDPath >
 < kDGetFilesAndFolders
kDFilesAndFolders >

On Macintosh only, if the folder is an alias, it's like this:

 < kDSetPath
kDPath >
 < kDGetFilesAndFolders
kDFilesAndFolders >

When the user taps on the File Info button:

 < kDGetFileInfo
kDFileInfo >

On Macintosh only, if the selected item is an alias, before doing import, getfileinfo, or setpath:

	

 < kDResolveAlias name of alias
kDAliasResolved > 0 or 1, 0 => can't resolve

On Windows only, if the user picks a new filter from the list:

	

 < kDSetFilter
kDFilesAndFolders >

Dock Commands

All commands begin with the 'newt', 'dock' event header as shown in the general form. For simplicity,
that's not shown in the descriptions that follow.

kDRequestToBrowse
Desktop	 <	 Newton

ULong 'rtbr'
ULong length
NSOF file type

This command is sent to a desktop that the Newton wishes to browse files on. File type can be
'import, 'packages, 'syncFiles or an array of strings to use for filtering.

SIMON’S NOTE
 I have never encountered the array of strings.

kDGetDevices Windows Only
Desktop	 <	 Newton

ULong 'gdev'
ULong length = 0

This command asks the Windows desktop system to return an array of device names.

kDDevices	 Windows Only
Desktop	 >	 Newton
ULong 'devs'
ULong length
NSOF array of device frames

This command returns an array of frames describing devices. These are the devices which will appear in
the devices popup in the Windows file browsing dialog. Each frame in the array should look like:

{ name: "c:mydisk",
 disktype: 1 }

where disktype is one of (floppy = 0, hardDrive = 1, cdRom = 2, netDrive = 3): see the Desktop disk
drive types enum in DockProtocol.h.

A corresponding icon is displayed in the popup. This may not be possible in which case this slot will be
optional.

kDGetFilters Windows Only
Desktop	 <	 Newton

ULong 'gflt'
ULong length = 0

This command asks the Windows desktop to send a list of filters to display in the file browser. A
kDFilters command is expected in response.

kDFilters	 Windows Only
Desktop	 >	 Newton
ULong 'filt'
ULong length
NSOF array of strings

This command returns an array of filters to the Newton. It's sent in response to a kDGetFilters
command. The filter should be an array of strings which are displayed in the filter popup. If the filter
array is NILREF no popup is displayed.

kDSetFilter Windows Only
Desktop	 <	 Newton

ULong 'sflt'
ULong length = 4
ULong index

This command changes the current filter being used. A kDFilesAndFolders command is expected in
return. index is a 0 based long indicating which item in the filters array sent from the desktop should
be used as the current filter..

kDSetDrive Windows Only
Desktop	 <	 Newton

ULong 'sdrv'
ULong length
NSOF drive string

This command asks the desktop to change the drive on the desktop and set the directory to the current
directory for that drive. The string contains the drive letter followed by a colon e.g. "C:".

kDGetDefaultPath
Desktop	 <	 Newton

ULong 'dpth'
ULong length = 0

This commands requests the desktop system to return the default path. This is the list that goes in the
folder popup for the Mac and in the directories list for Windows.

kDSetPath
Desktop	 <	 Newton

ULong 'spth'
ULong length
NSOF array of strings

This command tells the desktop that the user has changed the path. The desktop responds with a new
list of files and folders. The path is sent as an array of strings rather than an array of frames as all of the
other commands are for performance reasons. For the Mac, the array would be something like:

["Desktop", {name:"My hard disk", whichVol:0}, "Business"]

to set the path to "My hard disk:business:". "Desktop" will always be at the start of the list, since that's
the way Standard File works. So if the user wanted to set the path to somewhere in the Desktop Folder
he would send something like

["Desktop", {name:"Business", whichVol:-1}]

 to set the path to "My hard disk:Desktop Folder:business:"

The second item in the array, will always be a frame instead of a string and will contain an additional
slot whichVol to indicate to the desktop whether that item is a name of a volume or a folder in the
Desktop Folder and if so its volRefNum.

For Windows the array would be something like:

["c:\", "business"]

to set the path to "c:\business."

kDPath

Desktop	 >	 Newton
ULong 'path'
ULong length
NSOF array of folder frames

This command returns the initial strings for the folder popup in the Mac version of the window and for
the directories list in the Windows version. It is also returned after the user taps on a folder alias. In
this case the path must be changed to reflect the new location. Each element of the array is a frame
that takes the form:

{ name: "MacintoshHD",
 type: kDesktopDisk,
 diskType: kHardDrive,
 whichVol: 0 } // optional - see below

where type is one of (desktop = 0, file = 1, folder = 2, disk = 3): see the Desktop file types enum in
DockProtocol.h. If the type is kDesktopDisk, there is an additional slot diskType with the values
(floppy = 0, hardDrive = 1, cdRom = 2, netDrive = 3): see the Desktop disk drive types enum in
DockProtocol.h. Finally, for the second frame in the array i.e. the one after Desktop, there will be an
additional slot whichVol, which will be a 0 if the item is disk or a volRefNum if the item is a folder on
the desktop.

For example, the Mac might send:

[{name: "Desktop", type: kDesktop},
 {name: "My HD", type: kDesktopDisk, diskType: kHardDrive, whichvol: 0},
 {name: "Business", type: folder}]

or for some folder on the desktop it it might send:

[{name: "Desktop", type: kDesktop},
 {name: "Business", type: kDesktopFolder, whichvol: -1},
 {name: "My Folder", type: kDesktopFolder}]

for Windows it might be:

[{name: "c:\", type: kDesktopFolder},
 {name: "Business", type: kDesktopFolder}]

kDGetFilesAndFolders
Desktop	 <	 Newton

ULong 'gfil'
ULong length= 0

This command requests that the desktop system return the files and folders necessary to open a
standard file like dialog.

kDFilesAndFolders

Desktop	 >	 Newton
ULong 'file'
ULong length
NSOF array of file/folder frames

This command returns an array of information that's used to display a standard file like dialog box on
the Newton. Each element of the array is a frame describing one file, folder or device. An individual
frame would look like:

{ name: "Whatever",
 type: kDesktopFolder,
 disktype: 0, // optional if type = disk
 whichVol: 0, // optional if name is on the desktop
 alias: nil } // optional if it's an alias

The frames should be in the order in the array that they are to be displayed in on the Newton. For
example, the array might look like this:

[{name: "Applications", type: kDesktopFolder},
 {name: "important info", type: kDesktopFile},
 {name: "System", type: kDesktopFolder}]

If the type is a disk, then the frame will have an additional slot disktype with the values (floppy = 0,
hardDrive = 1, cdRom = 2, netDrive = 3): see the Desktop disk drive types enum in DockProtocol.h.
Also, if the current location is the desktop, there is an additional slot whichVol to indicate the location
of the inidvidual files, folders and disks with the values 0 for disks and a negative number for the
volRefNum for files and folders on the desktop.

If the item is an alias there is an alias slot. The existence of this slot indicates that the item is an alias.

kDGetFileInfo

Desktop	 <	 Newton
ULong 'gfin'
ULong length
NSOF filename

This command asks the desktop to return info about the specified file. See kDFileInfo for info about
what's returned.

The filename is normally a string, but if the selected item is at the Desktop level, a frame

{ name:"Business", whichVol:-1 }

will be sent instead, to indicate the volRefNum for the file.

kDFileInfo
Desktop	 >	 Newton
ULong 'finf'
ULong length
NSOF info frame

This command is sent in response to a kDGetFileInfo command. It returns a frame that looks like
this:

{ kind: "Microsoft Word document", size: 20480,
 created: 3921837, modified: 3434923,
 icon: <binary object of icon>,
 path: "hd:files:another folder:" }

kind is a description of the file.
size is the number of bytes (actual, not the amount used on the disk).
created! is the creation date in Newton date format.
modified! is the modification date of the file.
icon is an icon to display. This is optional.
path is the "user understandable" path description

kDGetInternalStore

Desktop	 <	 Newton
ULong 'gist'
ULong length = 0

This command requests the Newton to return info about the internal store. The result is described
with the kDInternalStore command.

kDInternalStore
Desktop	 >	 Newton
ULong 'isto'
ULong length
NSOF store frame

This command returns information about the internal store. The info is in the form of a frame that
looks like this:

{ name: "Internal",
 signature: 27675205,
 totalSize: 3608096,
 usedSize: 535972,
 kind: "Internal"
}

This is the same frame returned by kDStoreNames except that the store info isn't returned.

kDResolveAlias
Desktop	 <	 Newton

ULong 'rali'
ULong length = 0

kDAliasResolved

Desktop	 >	 Newton
ULong 'alir'
ULong length = 4
ULong result: 0 or 1

This command is sent by the desktop in response to the kDResolveAlias command. If the value is 0,
the alias can't be resolved. If the data is 1 (or non-zero) the alias can be resolved.

Restore Originated on Newton
Restore uses the file browsing interface described above. After the user taps the Restore button on the
Newton Dock slip, the following commands are used:

Desktop	 	 Newton
 < kDRestoreFile
kDResult >
 < kDGetRestoreOptions
kDRestoreOptions >
 < kDRestoreOptions
kDSourceVersion >

Selective restore proceeds as a normal restore would except when it wants to restore a package. In this
case it does this:

kDRestorePackage >
 < kDResult

If the user picks a full restore it proceeds like this:

	

 < kDRestoreFile
kDResult >
 < kDRestoreAll
kDSourceVersion >

Dock Commands
All commands begin with the 'newt', 'dock' event header as shown in the general form. For simplicity,
that's not shown in the descriptions that follow.

kDRestoreFile

Desktop	 <	 Newton
ULong 'rsfl'
ULong length
NSOF filename string

This command asks the desktop to restore the file specified by the last path command and the
filename. If the selected item is at the Desktop level, a frame

{ name:"Business", whichVol:-1 }

is sent. Otherwise, a string is sent.

kDGetRestoreOptions

Desktop	 <	 Newton
ULong 'grop'
ULong length = 0

This command is sent to the desktop if the user wants to do a selective restore. The desktop should
return a kDRestoreOptions command.

kDRestoreOptions
Desktop	 >	 Newton
ULong 'ropt'
ULong length
NSOF restore info frame

This command is sent to the newton to specify which applications and packages can be restored. It is
sent in response to a kDRestoreFile command from the Newton. If the user elects to do a selective
restore the Newton returns a similar command to the desktop indicating what should be restored.

The info frame specifies which applications and packages should be restored:

{ storeType: kRestoreToNewton,
 packages: ["pkg1",...],
 applications: ["app1",...] }

storeType indicates whether the data will be restored to a card or internally to the Newton: see the
Backup file origin enum in DockProtocol.h.

kDRestoreAll

Desktop	 <	 Newton
ULong 'rall'
ULong length = 4
ULong merge

This command is sent to the desktop if the user elects to restore all information. merge is 0 to not
merge, 1 to merge.

kDRestorePackage
Desktop	 >	 Newton
ULong 'rpkg'
ULong length
NSOF array of packages

This command sends all the entries associated with a package to the newton in a single array. Packages
are made up of at least 2 entries: one for the package info and one for each part in the package. All of
these entries must be restored at the same time to restore a working package. A kDResult is returned
after the package has been successfully restored.

File Importing
File importing uses the file browsing interface described above. After the user taps the Import button
on the Newton Dock slip, the following commands are used:

Desktop	 	 Newton
 < kDImportFile
kDTranslatorList > when there’s more than one
 < kDSetTranslator translator available
kDImporting >
 < kDResult

When the data is ready to be sent to the Newton:

kDSetStoreToDefault >
 < kDResult
kDSetCurrentSoup >
 < kDResult
kDAddEntry >
 < kDAddedID
kDAddEntry >
 < kDAddedID
kDSoupsChanged >

Dock Commands
All commands begin with the 'newt', 'dock' event header as shown in the general form. For simplicity,
that's not shown in the descriptions that follow.

kDImportFile

Desktop	 <	 Newton

ULong 'impt'
ULong length
NSOF filename string

This command asks the desktop to import the file specified by the last path command and the filename
string. The response to this can be either a list of translators (if there is more than one applicable
translator) or an indication that importing is in progress. If the selected item is at the Desktop level, a
frame

{ name:"Business", whichVol:-1 }

is sent. Otherwise, a string is sent.

kDTranslatorList

Desktop	 >	 Newton
ULong 'trnl'
ULong length
NSOF array of strings

This command returns an array of translators that can be used with the specified file. The list can
include DataViz translators and tab templates. The array should be in the order that the translators
should be displayed in the list.

kDSetTranslator
Desktop	 <	 Newton

ULong 'tran'
ULong length = 4
ULong index

This command specifies which translator the desktop should use to import the file. The translator
index is the index into the translator list sent by the desktop in the kDTranslatorList command. The
desktop should acknowledge this command with an indication that the import is proceeding.

kDImporting
Desktop	 >	 Newton
ULong 'dimp'
ULong length = 0

This command is sent to let the Newton know that an import operation is starting. The Newton will
display an appropriate message after it gets this message.

kDSetStoreToDefault

Desktop	 >	 Newton
ULong 'sdef'
ULong length = 0

This command can be used instead of kDSetCurrentStore. It sets the current store to the one the
user has picked as the default store (internal or card).

kDSoupsChanged

Desktop	 >	 Newton
ULong 'schg'
ULong length
NSOF array of soup change info

This command returns information about what was imported into the Newton. Each array element
specifies a soup and how many entries were added to it. There will typically be only one frame in the
array. The frame will look like this:

[{soupName: "Notes", count: 7},
 {soupName: "Names", count: 3}]

SIMON’S NOTE
 This doesn’t appear to be used.

Package Loading
Package loading uses the file browsing interface described above. After the user taps the Load Package
button on the Newton Dock slip, the following commands are used:

Desktop	 	 Newton
 < kDLoadPackageFile
kDLoadPackage >
 < kDResult

Dock Commands

All commands begin with the 'newt', 'dock' event header as shown in the general form. For simplicity,
that's not shown in the descriptions that follow.

kDLoadPackageFile

Desktop	 <	 Newton
ULong 'lpfl'
ULong length
NSOF filename

This command asks the desktop to load the package specified by the last path command and the
filename string. If the selected item is at the Desktop level, a frame

{ name:"Business", whichVol:-1 }

is sent. Otherwise, a string is sent.

kDLoadPackage
Desktop	 >	 Newton
ULong 'lpkg'
ULong length
UChar package data []

This command will load a package into the Newton's RAM. The package data should be padded to an
even multiple of 4 by adding zero bytes to the end of the package data.

kDGetPackageInfo
Desktop	 >	 Newton
ULong 'gpin'
ULong length
NSOF package name

The package info for the specified package is returned. See the kDPackageInfo command described
below Note that multiple packages could be returned because there may be multiple packages with the
same title but different package ids. Note that this finds packages only in the current store.

kDPackageInfo

Desktop	 <	 Newton
ULong 'pinf'
ULong length
NSOF array of info frames

This command is sent in response to a kDGetPackageInfo command. An array is returned that
contains a frame for each package with the specified name (there may be more than one package with
the same name but different package id). The returned frame looks like this:

{ name: "package name passed in",
 packageSize: 123,
 packageID: 123,
 packageVersion: 1,
 format: 1,
 deviceKind: 1,
 deviceNumber: 1,
 deviceID: 1,
 modTime: 49228866,
 isCopyProtected: true,
 length: 1723,
 safeToRemove: true }

kDRemovePackage
Desktop	 >	 Newton
ULong 'rmvp'
ULong length
NSOF package name

This command tells the Newton to delete a package. It can be used during selective restore or any
other time.

Functions Initiated by the Desktop While Connected
With the advent of the new protocol, the Newton and the desktop can be connected, but with no
command specified. A command can be requested by the user on either the Newton or the Desktop.
Commands requested by the Newton user are discussed above. This section describes the commands
sent from the Desktop to the Newton in response to a user request on the desktop.

Dock Commands
All commands begin with the 'newt', 'dock' event header as shown in the general form. For simplicity,
that's not shown in the descriptions that follow.

kDDesktopControl

Desktop	 >	 Newton
ULong 'dsnc'
ULong length = 0

To indicate that the desktop is in control, each of the following commands should be preceded by a
kDDesktopControl command, to which the Newton does not reply. Control is relinquished when the
desktop sends a kDOperationDone command.

kDRequestToSync

Desktop	 >	 Newton
ULong 'ssyn'
ULong length = 0

This command is sent when the desktop wants to start a sync operation, when both the Newton and
the desktop were waiting for the user to specify an operation.

kDRequestToRestore
Desktop	 >	 Newton
ULong 'rrst'
ULong length = 0

This command is sent when the desktop wants to start a restore operation, when both the Newton and
the desktop were waiting for the user to specify an operation.

kDRequestToInstall
Desktop	 >	 Newton
ULong 'rins'
ULong length = 0

This command is sent when the desktop wants to start a load package operation, when both the
Newton and the desktop were waiting for the user to specify an operation.

During an install session, packages are loaded with the kDLoadPackage command, so the command
sequence looks like:

Desktop	 	 Newton
kDDesktopControl >
kDRequestToInstall >
 < kDResult
kDLoadPackage >
 < kDResult
kDLoadPackage >
 < kDResult
kDOperationDone >

An install session can also be cancelled by either Newton or desktop as usual:

Desktop	 	 Newton
 < kDOperationCanceled
kDOpCanceledAck >

Remote Query
All of the commands in this section are based on the NewtonScript query functions. Please see the
Newton Programmer's Guide for details about the functions performed by the commands. The query
command returns an id representing the query’s cursor. Each of the other commands take this cursor as
a parameter. Entries are returned with the kDEntry command.

Dock Commands

All commands begin with the 'newt', 'dock' event header as shown in the general form. For simplicity,
that's not shown in the descriptions that follow.

kDQuery
Desktop	 >	 Newton
ULong 'qury'
ULong length
NSOF parameter frame

The parameter frame must contain a querySpec slot and may contain a soupName slot.

Performs the specified query on the current store. The query spec is a full query spec including valid
test, etc. functions. The soup name is a string that's used to find a soup in the current store to query. If
the soup name is an empty string or a NILREF the query is done on the current soup. A kDLongData is
returned with a cursor ID that should be used with the rest of the remote query commands.

kDLongData
Desktop	 <	 Newton

ULong 'ldta'
ULong length = 4
ULong long data

Newton returns a long value. The interpretation of the data depends on the command which prompted
the return of the long value.

kDCursorGotoKey

Desktop	 >	 Newton
ULong 'goto'
ULong length = 4 + key size
ULong cursor id
NSOF key

The entry at the specified key location is returned. NILREF is returned if there is no entry with the
specified key.

kDEntry

Desktop	 <	 Newton
ULong 'ntry'
ULong length
NSOF soup entry

kDCursorEntry
Desktop	 >	 Newton
ULong 'crsr'
ULong length = 4
ULong cursor id

Requests the entry at the current cursor.

kDCursorMap
Desktop	 >	 Newton

ULong 'cmap'
ULong length = 4 + function size
ULong cursor id
NSOF function

Applies the specified function to each of the cursor's entries in turn and returns an array of the results.
A kDRefResult is returned. See MapCursor in NPG.

kDRefResult

Desktop	 <	 Newton
ULong 'ref '
ULong length
NSOF result

kDCursorMove
Desktop	 >	 Newton
ULong 'move'
ULong length = 8
ULong cursor id
ULong count

Moves the cursor forward count entries from its current position and returns that entry. Returns
NILREF if the cursor is moved past the last entry.

kDCursorNext
Desktop	 >	 Newton
ULong 'next'
ULong length = 4
ULong cursor id

Moves the cursor to the next entry in the set of entries referenced by the cursor and returns the entry.
Returns NILREF if the cursor is moved past the last entry.

kDCursorPrev

Desktop	 >	 Newton
ULong 'prev'
ULong length = 4
ULong cursor id

Moves the cursor to the previous entry in te set of entries referenced by the cursor and returns the
entry. If the cursor is moved before the first entry NILREF is returned..

kDCursorReset

Desktop	 >	 Newton
ULong 'rset'
ULong length = 4
ULong cursor id

Resets the cursor to its initial state. A kDResult of 0 is returned.

kDCursorResetToEnd
Desktop	 >	 Newton
ULong 'rend'
ULong length = 4

ULong cursor id

Resets the cursor to the rightmost entry in the valid subset. A kDResult of 0 is returned.

kDCursorCountEntries

Desktop	 >	 Newton
ULong 'cnt '
ULong length = 4
ULong cursor id

Returns the count of the entries matching the query specification. A kDLongData is returned.

kDCursorWhichEnd
Desktop	 >	 Newton
ULong 'whch'
ULong length = 4
ULong cursor id

Returns kDLongData with a 0 for unknown, 1 for start and 2 for end.

kDCursorFree
Desktop	 >	 Newton
ULong 'cfre'
ULong length = 4
ULong cursor id

Disposes the cursor and returns a kDResult with a 0 or error code.

Keyboard Passthrough
Keyboard passthrough can be initiated by both desktop:

Desktop	 	 Newton
kDStartKeyboardPassthrough >
 < kDStartKeyboardPassthrough
kDKeyboardString >
kDKeyboardString >

and Newton:

Desktop	 	 Newton
 < kDStartKeyboardPassthrough
kDKeyboardString >
kDKeyboardString >

At any time keyboard passthrough can be cancelled by the desktop:

Desktop	 	 Newton
kDOperationCanceled >
 < kDOpCanceledAck

or by the Newton:

Desktop	 	 Newton
 < kDOperationCanceled

kDOpCanceledAck >

Dock Commands

All commands begin with the 'newt', 'dock' event header as shown in the general form. For simplicity,
that's not shown in the descriptions that follow.

kDStartKeyboardPassthrough
Desktop	 <>	 Newton

ULong 'kybd'
ULong length = 0

This command is sent to enter keyboard passthrough mode. It can be followed only by
kDKeyboardChar, kDKeyboardString, kDHello and kDOperationCanceled commands.

kDKeyboardChar
Desktop	 >	 Newton
ULong 'kbdc'
ULong length = 4
UniChar character
UShort state

This command sends 1 unicode character to the Newton for processing.

The keyboard state is defined as follows:
! Bit 1 = command key down

SIMON’S NOTE
 The keyboard state appears to be ignored.

kDKeyboardString
Desktop	 >	 Newton
ULong 'kbds'
ULong length
UniChar string[]

This command sends a string of characters to the Newton for processing. The characters are 2-byte
unicode characters in big-endian order and must be null-terminated. If there are an odd number of
characters the command should be padded, as usual.

Miscellaneous Additions

Dock Commands

All commands begin with the 'newt', 'dock' event header as shown in the general form. For simplicity,
that's not shown in the descriptions that follow.

kDGetAppNames

Desktop	 >	 Newton
ULong 'gapp'
ULong length = 4

ULong what to return

This command asks the Newton to send information about the applications installed on the Newton.
See the kDAppNames description below for details of the information returned. The what to return
parameter determines what information is returned; see the Info to return with kDAppNames enum in
DockProtocol.h.

0: return names and soups for all stores
1: return names and soups for current store
2: return just names for all stores
3: return just names for current store

kDAppNames

Desktop	 <	 Newton
ULong 'appn'
ULong length
NSOF result frame

This command returns the names of the applications present on the newton. It also, optionally, returns
the names of the soups associated with each application. The array looks like this:

[{name: "app name", soups: ["soup1", "soup2"]},
 {name: "another app name", ...}, ...]

Some built-in names are included. "System information" includes the system and directory soups. If
there are packages installed, a "Packages" item is listed. If a card is present and has a backup there will
be a "Card backup" item. If there are soups that don't have an associated application (or whose
application I can't figure out) there's an "Other information" entry.

The soup names are optionally returned depending on the value received with kDGetAppNames.

kDSetVBOCompression
Desktop	 >	 Newton
ULong 'cvbo'
ULong length = 4
ULong what to compress

This command controls which VBOs are sent compressed to the desktop. VBO can always be sent
compressed, never compressed or only package VBOs sent compressed; see the VBO compression
enum in DockProtocol.h.

0: don’t compress VBOs
1: compress packages only
2: compress VBOs

kDRestorePatch
Desktop	 >	 Newton
ULong 'rpat'
ULong length
NSOF patch data

This command is used to restore the patch backed up with kDGetPatches. The Newton returns a
kDResult of 0 (or an error if appropriate) if the patch wasn't installed. If the patch was installed the
Newton restarts.

kDSourceVersion

Desktop	 >	 Newton
ULong 'sver'
ULong length = 16
ULong version
ULong manufacturer
ULong machine type
ULong patch data

This command tells the Newton the version that the subsequent data is from; see the Source OS
version enum in DockProtocol.h.

kOnePointXData = 1
kTwoPointXData = 2

For example, if a 1.x data file is being restored the desktop would tell the Newton that version 1 data is
coming. Same for importing a 1.x NTF file. Otherwise, it should indicate that 2.x data is comming.
When the connection is first started the version defaults to 2.x. This information is necessary for the
Newton to know whether or not it should run the conversion scripts. A kDResult command with value
0 is sent by the Newton in response to this command. This commands affects only data added to the
Newton with kDAddEntry and kDAddEntryWithUniqueID commands. In particular, note that data
returned by kDReturnEntry isn't converted if it's a different version than was set by this command.

manufacturer and machine type tell the Newton the type of Newton that's the source of the data
being restored. These are sent at the beginning of a connection as part of the kDNewtonName
command.

kDGetPassword
Desktop	 >	 Newton
ULong 'gpwd'
ULong length
NSOF title string

This command displays the password slip to let the user enter a password. The string is displayed as the
title of the slip. A kDPassword command is returned.

Protocol Extension Operations
kDRegProtocolExtension

Desktop	 >	 Newton
ULong 'pext'
ULong length
ULong command
NSOF function

This command installs a protocol extension into the Newton. The extension lasts for the length of the
current connection (in other words, you have to install the extension every time you connect). The
function is a NewtonScript closure that would have to be compiled on the desktop. See the Dante
Connection (ROM) API IU document for details. A kDResult with value 0 (or the error value if an
error occurred) is sent to the desktop in response.

kDRemoveProtocolExtension

Desktop	 >	 Newton
ULong 'prex'
ULong length
ULong command

This command removes a previously installed protocol extension.

Import Operations
kDImportParametersSlip

Desktop	 >	 Newton
ULong 'islp'
ULong length
NSOF info frame

The following is a possible example of what would be displayed on the Newton following the
kDImportParametersSlip command:

<missing image>

The slip will, at minimum, display 2 text string fields corresponding to the slip title and a filename. Up
to 5 additional fields, plus the CloseBox, could be displayed. While the slip is displayed, kDHello
commands are sent to the desktop. When the user taps on the "Import" button or the CloseBox, a
kDImportParameterSlipResult is sent to the desktop. Each of the other 5 fields is shown if the slot
defining it exists in the frame parameter.

The frame contains the following slots used to configure the display of the slip:

{
 slipTitle: "PDF Import", // REQUIRED string for slip title
 fileName: "Results.pdf", // REQUIRED name of file being imported
 appListInfo: {
 title: "Import into", // title above textlist
 listItems: [“Notes”,”Works”], // name of applications listed in textlist
 selected: [1] }, // array in indexes of items in the
 listitems array to select. e.g. [1,3]
 would select 1st and 3rd items
 conflictsInfo: {
 text: "string", // string for labelpicker label
 labelCommands: [“one”,”two”] }, // array of strings
 // corresponding to available choices
 // in picker list
 datesInfo: {
 title: "string1", // title above datedurationtextpicker
 text: "string2", // datedurationtextpicker label
 startTime: 48828712, // start time (minutes from 1/1/1904)
 stopTime: 48828927 }, // stop time (minutes from 1/1/1904)
 importInfo: {
 title: "Import" , // REQUIRED string for button label
 importParametersDoneScript: func() nil } // function object to call
 // after button is tapped
}

kDImportParameterSlipResult
Desktop	 <	 Newton

ULong 'islr'
ULong length
NSOF result frame

This command is sent after the user closes the slip displayed by kDImportParametersSlip. The result
is a frame containing the following three slots:

{
 appList : [“Notes,”Works”], // strings of the items selected
 // in the textlist of applications
 conflicts : "string", // string of labelpicker entry line
 dates : [48828712, 48828927] // beginning and ending dates
 // of the selected interval
 // expressed in minutes
}

If the user cancels, the result sent is a NILREF.

Store Operations
kDSetStoreName

Desktop	 >	 Newton
ULong 'ssna'
ULong length
NSOF name string

This command requests that the name of the current store be set to the specified name.

kDSetStoreSignature
Desktop	 >	 Newton
ULong 'ssig'
ULong length
ULong signature

This command sets the signature of the current store to the specified value. A kDResult with value 0
(or the error value if an error occurred) is sent to the desktop in response.

kDGetDefaultStore
Desktop	 >	 Newton
ULong 'gdfs'
ULong length = 0

This command returns info about the default store. This info is the same as the info returned by the
kDGetStoreNames command (see kDStoreNames for details). The default store is the one used by
kDLoadPackage.

kDDefaultStore

Desktop	 <	 Newton
ULong 'dfst'
ULong length
NSOF store frame

This command returns a store info frame describing the default store. This frame contains the same
info returned for all stores by the kDStoreNames command except that it doesn't include the store
info. It contains the name, signature, total size, used size and kind.

kDCreateDefaultSoup

Desktop	 >	 Newton

ULong 'cdsp'
ULong length
UniChar soup name string

This command creates a soup on the current store. It uses a registered soupdef to create the soup
meaning that the indexes, etc. are determined by the ROM. A kDResult is returned. If no soupdef
exists for the specified soup an error is returned.

kDSetStoreGetNames

Desktop	 >	 Newton
ULong 'ssgn'
ULong length
NSOF store frame

This command is the same as kDSetCurrentStore except that it returns the names of the soups on
the stores as if you'd send a kDGetSoupNames command. It sets the current store on the Newton. A
store frame is sent to uniquely identify the store to be set:

{ name: "Gilligan’s Island",
 kind: "Flash storage card",
 signature: 734830,
 info: {store-info-frame} // this one is optional
}

A kDSoupNames is sent by the Newton in response.

Soup Operations
kDSetSoupSignature

Desktop	 >	 Newton
ULong 'ssos'
ULong length
ULong signature

This command sets the signature of the current soup to the specified value. A kDResult with value 0
(or the error value if an error occurred) is sent to the desktop in response.

kDSendSoup
Desktop	 >	 Newton
ULong 'snds'
ULong length = 0

This command requests that all of the entries in a soup be returned to the desktop. The Newton
responds with a series of kDEntry commands for all the entries in the current soup followed by a
kDBackupSoupDone command. All of the entries are sent without any request from the desktop (in
other words, a series of commands is sent). The process can be interrupted by the desktop by sending a
kDOperationCanceled command. The cancel will be detected between entries. The kDEntry
commands are sent exactly as if they had been requested by a kDReturnEntry command (they are long
padded).

kDBackupSoup

Desktop	 >	 Newton
ULong 'bksp'
ULong length = 4

ULong last known unique id

This command is used to backup a soup. The result is a series of commands that includes all entries
changed since the last sync time (set by a previous command), all entries with a unique id greater than
the one specified, and the unique ids of all other entries to be used to determine if any entries were
deleted. The changed entries are sent with kDEntry commands. The unique ids are sent with a
kDBackupIDs command. A kDBackupSoupDone command finishes the sequence. If there are any ids >
0x7FFF there could also be a kDSetBaseID command. The changed entries and unique ids are sent in
unique id sequence. The Newton checks for kDOperationCanceled commands occasionally. If the
soup hasn't been changed since the last backup a kDSoupNotDirty command is sent instead of the ids.
A typical sequence could look like this:

Desktop	 	 Newton
kDBackupSoup >
 < kDBackupIDs
 < kDEntry
 < kDEntry
 < kDBackupIDs
 < kDEntry
 < kDSetBaseID
 < kDBackupIDs
 < kDBackupSoupDone

! See the definition of the other commands for details.

kDSoupNotDirty

Desktop	 <	 Newton
ULong 'ndir'
ULong length = 0

This command is sent in response to a kDBackupSoup command if the soup is unchanged from the last
backup.

kDBackupIDs
Desktop	 <	 Newton

ULong 'bids'
ULong length = -1
SShort encoded ids

This command is sent in response to a kDBackupSoup command--see that command for command
sequence details. The length for this command is always set to -1 indicating that the length is unknown.
The ids are specified as a compressed array of 16 bit numbers. Each id should be offset by any value
specified by a previous kDSetBaseID command (this is how we can specify a 32 bit value in 15 bits).
Each id is a number between 0 and 0x7FFF (32767). Negative numbers specify a count of the number of
entries above the previous number before the next break (non-contiguous id). The sequence is ended by
a 0x8000 word. So, if the Newton contains ids

0, 1, 2, 3, 4, 10, 20, 21, 30, 31, 32

the array would look like this:

0, -4, 10, 20, -1, 30, -2, 0x8000

Thus we send 8 words instead of 11 longs. Is it worth it? If there are a lot of entries it should be.

kDSetBaseID
Desktop	 <	 Newton

ULong 'base'
ULong length = 4
ULong new base id

This command sets a new base id for the ids sent with subsequent kDBackupIDs commands. The new
base is a long which should be added to every id in all kDBackupIDs commands until a
kDBackupSoupDone command is received.

kDBackupSoupDone

Desktop	 <	 Newton
ULong 'bsdn'
ULong length = 0

This command terminates the sequence of commands sent in response to a kDBackupSoup command.

Entry Operations
kDAddEntryWithUniqueID

Desktop	 >	 Newton
ULong 'auni'
ULong length
NSOF entry frame

This command is sent when the PC wants to add an entry to the current soup. The entry is added with
the id specified in the data frame. If the id already exists an error is returned.

WARNING!! This function should only be used during a restore operation. In other
situations there's no way of knowing whether the entry's id is unique. If an
entry is added with this command and the entry isn't unique an error is
returned.

General Operations
kDCallGlobalFunction

Desktop	 >	 Newton
ULong 'cgfn'
ULong length
NSOF function name symbol
NSOF function args array

This command asks the Newton to call the specified function and return its result. This function must
be a global function. The return value from the function is sent to the desktop with a kDCallResult
command.

kDCallRootMethod
Desktop	 >	 Newton
ULong 'crmf'
ULong length
NSOF method name symbol
NSOF method args array

This command asks the Newton to call the specified root method. The return value from the method is
sent to the desktop with a kDCallResult command.

kDCallResult

Desktop	 <	 Newton
ULong 'cres'
ULong length
NSOF result ref

This command is sent in response to a kDCallGlobalFunction or kDCallRootMethod command.
The ref is the return value from the function or method called.

kDResultString
Desktop	 >	 Newton
ULong 'ress'
ULong length
SLong error code
NSOF error string

Reports a desktop error to the Newton. The string is included since the Newton doesn't know how to
decode all the desktop errors (especially since the Mac and Windows errors are different).

kDOperationDone
Desktop	 >	 Newton
ULong 'opdn'
ULong length = 0

This command is sent when an operation is completed. It't only sent in situations where there might be
some ambiguity. Currently, there are two situations where this is sent. When the desktop finishes a
restore it sends this command. When a sync is finished and there are no sync results (conflicts) to send
to the Newton the desktop sends this command. Hmm… not quite true.

kDOperationCanceled

Desktop	 < >	 Newton
ULong 'opca'
ULong length = 0

This command is sent when the user cancels an operation. The receiver should return to the "ready"
state and acknowledge the cancellation with a kDOpCanceledAck command..

kDOpCanceledAck

Desktop	 < >	 Newton
ULong 'ocaa'
ULong length = 0

This command is sent in response to a kDOperationCanceled.

kDHello
Desktop	 < >	 Newton

ULong 'helo'
ULong length = 0

This command is sent during long operations to let the Newton or desktop know that the connection
hasn't been dropped.

kDRefTest

Desktop	 < >	 Newton
ULong 'rtst'
ULong length
NSOF object

This command is first sent from the desktop to the Newton. The Newton immediately echos the
object back to the desktop. The object can be any NewtonScript object (anything that can be sent
through object read/write).

This command can also be sent with no ref attached. If the length is 0 the command is echoed back to
the desktop with no ref included.

kDUnknownCommand
Desktop	 < >	 Newton

ULong 'unkn'
ULong length = 4
ULong bad command

This command is sent when a message is received that is unknown. When the desktop receives this
command it can either install a protocol extension and try again or return an error to the Newton. If
the built-in Newton code receives this command it always signals an error. The bad command
parameter is the 4 char command that wasn't recognized. The data is not returned.

Session Termination
kDDisconnect

Desktop	 < >	 Newton
ULong 'disc'
ULong length = 0

This command is sent by either desktop or Newton when the docking operation is complete.

Compatibility
The protocol version has been incremented so old versions of Newton Connection will no longer work
with this version. The reason for this is that although the protocol itself is upwardly compatible, the
data structures in other parts of the 2.0 Newton have changed to such a degree that old versions of
Newton Connection will no longer work.

However, since it's desirable also to support package downloading from NPI, NCK 1.0 and Connection
2.0 the ROMs will also support the old protocol for downloading packages. To make this work, the 2.0
ROMs will pretend that they are talking the old protocol when they send the kDRequestToDock
message. If a new connection (or other app) is on the other end the protocol will be negotiated up to
the current version. Only package loading is supported with the old protocol.

When a 2.0 ROM Newton is communicating with NPI 1.0, NCK 1.0 or 2.0 Connection the session
would look like this:

Desktop	 	 Newton
 < kDRequestToDock

kDInitiateDocking > session type MUST be loadPackage
 < kDNewtonName
kDSetTimeout > optional
 < kDResult
kDLoadPackage >
 < kDResult
kDDisconnect >

