
About the FDIL Objects 3-1

Preliminary Draft.  Apple Computer, Inc. 11/16/97

C H A P T E R 3

FDIL Interface 3

The Frames Desktop Integration Library (FDIL) is a small library allowing
the creation and manipulation of NewtonScript objects on the Windows and
Macintosh platforms through a C language API. Because the objects the
FDIL manipulates on are NewtonScript-compatible, they can be exchanged
with Newton devices using communications libraries such as the CDIL.

The FDIL can create any type of NewtonScript object, including virtual
binary objects, and frames and arrays with circular references. The FDIL,
unlike NewtonScript, does not provide automatic garbage collection.

About the FDIL Objects 3

The objects the FDIL manipulate mimic the NewtonScript objects. There is a
one-to-one correspondence between NewtonScript and FDIL objects. There
are a number of minor implementation details that differ, however. The
object hierarchy is diagramed in Figure 3-1.

Figure 3-0
Listing 3-0
Table 3-0

C H A P T E R 3

FDIL Interface

3-2 About the FDIL Objects

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Figure 3-1 The FDIL object hierarchy

Each object is represented by an FD_Handle. An FD_Handle is a lightweight
object; in non-debug builds an FD_Handle is a long. Two bits of this value
contain type information, describing the four top-level types of FDIL objects:

■ integers

■ immediates

■ pointer objects

■ magic pointers

Immediate, integer, and magic pointer objects are stored entirely within the
FD_Handle. Pointer objects consists of a chunk of data in addition to the
FD_Handle; the FD_Handle of a pointer object contains a reference to this data.

FDIL objects

Integer Magic
Pointer

Character

Boolean
 (true)

 Special
Immediate
 (nil)

 Reserved
Immediate

Array

Frame
Large Binary
 Object

Real Symbol

String

Immediate
Object

Binary Object

Pointer
Object

C H A P T E R 3

FDIL Interface

About the FDIL Objects 3-3

Preliminary Draft.  Apple Computer, Inc. 11/16/97

The FDIL functions that create pointer objects allocate this additional
memory for you, but unlike NewtonScript, you are responsible for freeing
this memory. Magic pointer objects contain a reference to an object in the
Newton ROM. Only applications providing a Newton development
environment should need to create magic pointer objects.

Integers Objects 3
Integer objects are just that: objects containing integral values within their
FD_Handle. The integers are stored in a 30-bit field, allowing them a range of
-536,870,912...536,870,911. Integers are created with the FD_MakeInt function.
The value stored in an integer object can be retrieved with the FD_GetInt
function. The FD_IsInt function determines if an FDIL object is an integer
object.

Listing 3-1 Using integer objects

FD_Handle myInt = FD_MakeInt(5);
long result = FD_GetInt(myInt); // result == 5
int isInt = FD_IsInt(myInt); // isInt != 0

Note

Since an FD_Handle is a long in the non-debug version of the
library, confusing an FDIL integer with the value it contains
does not trigger a compiler error. You can catch these errors
by compiling your program with the debug library. In the
debug library an FD_Handle is a struct, and confusing an
FDIL integer with its value triggers a compile-time type
error. ◆

Immediate Objects 3
Immediate objects contain their values within their FD_Handle. There are four
types of immediate objects

■ characters

■ special immediates

C H A P T E R 3

FDIL Interface

3-4 About the FDIL Objects

Preliminary Draft.  Apple Computer, Inc. 11/16/97

■ Booleans

■ reserved immediates

Other than characters, the only immediate objects that you need are the true
object and the nil object, which are specified by the kFD_True and kFD_NIL
constants. While you should not need to use them, the following functions
can be used to create, extract data from, and test immediate objects:
FD_MakeImmediate, FD_IsImmediate, and FD_GetImmediate. There are a separate
set of functions that manipulate character objects, and functions to test if an
object is the nil object.

Characters 3

Character objects are immediate objects which contain a 16 bit Unicode
character. Since there is no standard amongst C/C++ development
environments on how to accommodate 16-bit characters, the DIL library
defines the DIL_WideChar type to enforce a standard. A DIL_WideChar is an
unsigned 16-bit value. There are functions to create character objects from
both ASCII (8-bit) characters and from DIL_WideChar characters: FD_MakeChar
and FD_MakeWideChar. And similarly two functions to retrieve 8 and 16 bit
characters from an FDIL character object: FD_GetChar and FD_GetWideChar.
You can test if an object is a character object with FD_IsChar.

Listing 3-2 Using character objects

FD_Handle myChar = FD_MakeChar('a');
FD_Handle myOtherChar = FD_MakeWideChar(L'a');

char asASCII = FD_GetChar(myChar); // == 'a'
DIL_WideChar asUnicode = FD_GetWideChar(myChar); // == L'a'

int isChar = FD_IsChar(myChar); // isChar != 0
isChar = FD_IsChar(kFD_True); // isChar == 0

Unicode-ASCII Translation 3

The FDIL performs automatic translation from Unicode to Macintosh and
Windows character sets, and the other way around. The FDIL uses the
Macintosh character set when performing character translations on a

C H A P T E R 3

FDIL Interface

About the FDIL Objects 3-5

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Macintosh, and the Windows character set when on a Windows machine.
You can however set this programmatically with the FD_SetWideCharEncoding.

Every character in the Macintosh and Windows character sets has a Unicode
equivalent, however the inverse is not true. Unicode characters that do not
exist in the Macintosh or Windows character set, are mapped to 0x1A.

There are a number of functions that perform Unicode to ASCII conversion
at the string level, see “Strings” (page 3-8).

Booleans 3

In theory there are two Boolean objects: the true object, and the false object.
In practice, only the true object is used; the nil object is used to signify falsity.
The true object can be specified with the constant kFD_True. You can test if an
object is a Boolean with the FD_IsBoolean function.

Special Immediates 3

There is only one special immediate object that you encounter, the nil object.
This object, which you can refer to with the constant kFD_NIL, is used to
signify the lack of information or Boolean falsehood. There are two functions
which test if an object is the nil object: FD_IsNIL and FD_NotNIL.

Reserved Immediates 3

Reserved immediates are only used internally by the FDIL. You should never
see such an object.

Pointer Objects 3
A pointer object is an object whose FD_Handle contains a reference to the data
comprising the object. The pointer objects consist of the aggregate types:
arrays and frames, and two types of raw binary objects: simple binary objects
and large binary objects.

C H A P T E R 3

FDIL Interface

3-6 About the FDIL Objects

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Binaries 3

A binary object consist of a series of raw bytes. You may store any data you
wish in a binary object. The object may also contain a class symbol
identifying the data. There are three types of binary objects for with there is
special support: reals, strings, and symbols. There are special functions for
creating these objects, and accessing their data.

You can create an empty binary object with the FD_MakeBinary function. This
function allocates a specified number of bytes, which you are responsible for
disposing when the binary object is no longer needed. FD_MakeBinary returns
an FD_Handle. To access the block of data that has been allocated for this
binary object, use the FD_GetBinaryData function. FD_GetBinaryData returns a
pointer to that block of data, a void *. You need to cast this pointer to the
appropriate type before using it. The FD_IsBinary function tests if an FDIL
object is a binary object.

You can change the size of a binary object with the FD_SetLength function.
However, any pointers to a binary object’s contents are invalidated by calling
FD_SetLength, since the data might have been moved.

Binary objects are limited to a size of 16 MB.

Listing 3-3 Using a binary object

// this is some data we want to send to a Newton device
static const char kMyCRCTable[] = {... };

// create a binary object to hold the data
FD_Handle myCRCTable = FD_MakeBinary(

sizeof(kMyCRCTable),
"CRCTable"); //the obj.’s class

// get a pointer to the data
char* dest = (char*) FD_GetBinaryData(myCRCTable);

// copy over the bytes
memcpy(dest, kMyCRCTable, sizeof(kMyCRCTable));

//send the data..

//... and later reclaim the memory

C H A P T E R 3

FDIL Interface

About the FDIL Objects 3-7

Preliminary Draft.  Apple Computer, Inc. 11/16/97

FD_Dispose(myCRCTable);

Reals 3

A real is a binary object that contains a double precision floating point
number. It is an 8-byte binary object containing an IEEE-754 floating point
value.

IMPORTANT

When using the FDIL library, it is important that you set any
applicable compiler options for generating IEEE-754 floating
point compatible code. ◆

You can create a real from a double with the FD_MakeReal function, and
retrieve a double with the FD_GetReal function. The FD_IsReal function tests if
an FDIL object is a real. The following example demonstrates how real
objects are manipulated.

Listing 3-4 Using real number objects

FD_Handle myReal = FD_MakeReal(5);
double result = FD_GetReal(myReal); // result == 5.0
int isReal = FD_IsReal(myReal); // isReal != 0

isReal = FD_IsReal(kFD_NIL); // isReal == 0
FD_Dispose (myReal); // remember that reals are pointer objects

Symbols 3

A symbol object is a variable-size object used as a token or as an identifier.
Most often it is used as a slot name or object class. It is composed of ASCII
characters with values between 32 and 127 inclusive, excluding the vertical
bar (|) and backslash (\) characters. A symbol must be shorter than 254
characters. When symbols are compared to each other, a case-insensitive
comparison is performed.

Symbols are a pooled resource. When a symbol is created, it stored in an
internal table. If a new symbol is subsequently created with the same string,
a reference to the first symbol is returned; therefore only one version of the
symbol exists. Note that this comparison of strings is case-insensitive. A
symbol is not disposed of when passed to FD_Dispose. It is not removed from

C H A P T E R 3

FDIL Interface

3-8 About the FDIL Objects

Preliminary Draft.  Apple Computer, Inc. 11/16/97

that internal table, because other references to this symbol may exist
elsewhere in your program.

Symbols are created with the FD_MakeSymbol function, you can test if an object
is a symbol with FD_IsSymbol, and get a pointer to the string in the internal
table with FD_GetSymbol. The string accessed through an FD_GetSymbol call
must be treated as read-only.

Listing 3-5 Using symbol objects

// these two calls create new symbols internally
FD_Handle mySymbol1 = FD_MakeSymbol("mySlotName1");
FD_Handle mySymbol2 = FD_MakeSymbol("mySlotName2");

// these two calls return refernces to the already-existant symbols
FD_Handle mySymbol3 = FD_MakeSymbol("mySlotName1");
FD_Handle mySymbol4 = FD_MakeSymbol("MySlOtNaMe2");

int result = FD_IsSymbol(mySymbol4); // result != 0
result = FD_IsSymbol(kFD_NIL); // result == 0

const char* symbolText = FD_GetSymbol(mySymbol4);
// Note that symbolText is set to "mySlotName2" not "MySlOtNaMe2"

printf("Slot name is: %s\n", symbolText);

//this does nothing
FD_Dispose (mySymbol1);

Strings 3

An FDIL string object is a binary object consisting of a NULL-terminated
series of Unicode characters. There are functions for creating string objects
from both a NULL-terminated array of ASCII characters (a C string), and
from a NULL-terminated array of DIL_WideChars: FD_MakeString and
FD_MakeWideString. And similarly, there are two functions to retrieve the
contents of a string object, copying the characters to an 8 or 16 bit character
buffer: FD_GetString and FD_GetWideString.

There is another function, FD_ASCIIString, to simply convert a string’s data
to 8-bit strings. After passing a string object to FD_ASCIIString, you can call

C H A P T E R 3

FDIL Interface

About the FDIL Objects 3-9

Preliminary Draft.  Apple Computer, Inc. 11/16/97

FD_GetBinaryData on this new object, cast the result to a char*, and treat the
result as a normal C string pointer.

You may receive a rich string from a Newton device. A rich string is a string
with imbedded ink data. You cannot create a rich string, nor interpret the
data in the ink portion of a rich string. When translating rich strings, a
0xF700 or 0x1A character is inserted in the place of the embedded ink,
depending on whether you are extracting 16-bit or 8-bit characters.

You can test if an object is a string with FD_IsString and if an object is a rich
string with FD_IsRichString.

There are two further functions that convert character arrays to and from
Unicode: FD_ConvertFromWideChar and FD_ConvertToWideChar. For more
information about Unicode to ASCII translation, see “Unicode-ASCII
Translation” (page 3-4).

Listing 3-6 Using string objects

// Create two string objects. These two objects are basically
// equivalent. The first is more convinient, and the second
// allows for a wider range of input.
FD_Handle myString1 = FD_MakeString("Some text");
FD_Handle myString2 = FD_MakeWideString(L"Some wide text");

//test the identity of some objects
int result = FD_IsString(myString1); // result != 0

result = FD_IsString(myString2); // result != 0
result = FD_IsString(kFD_NIL); // result == 0

FD_Handle myString3 = MyGetStringFromNewt();
if (FD_IsRichString(myString3))

MyShowAlert("Warning: string can't be completely translated. Some
information may be lost");

// get C strings from FDIL string objects in 2 ways:
// this first way copies over exactly the number of chars. requested
// to a separate buffer
FD_Handle myString4 = FD_MakeString("Hello");

char buffer[10];
FD_GetString(myString4, buffer, 10); // buffer == "Hello\0"
FD_GetString(myString4, buffer, 3); // buffer == "Hel" (no NULL

C H A P T E R 3

FDIL Interface

3-10 About the FDIL Objects

Preliminary Draft.  Apple Computer, Inc. 11/16/97

// terminator!)

// this second way converts from 16 to 8 bit in place
FD_Handle myString5 = FD_MakeString("Hello");
FD_Handle asASCII = FD_ASCIIString(myString5);
const char* textPtr = (const char*) FD_GetBinaryData(asASCII);
printf("%s, world!\n", textPtr);

FD_Dispose(myString1);
FD_Dispose(myString2);
FD_Dispose(myString3);
FD_Dispose(myString4);
FD_Dispose(myString5);
FD_Dispose(asASCII);

Large Binaries 3

A large binary object mimics the functionality of a virtual binary object
(VBO). It contains a large amount of unformatted binary data, that is paged
in from a backing store, and optionally compressed. Each large binary object
has an associated set of storage procedures that actually page the data in and
out from the backing store. The FDIL provides functions to store the large
binary object in main memory and on disk, and a set of functions that simply
discard the data. You may write your own functions to store the data; see
“Creating Your Own Large Binary Storage Procedures” (page 3-11).

You set which functions are used with FD_SetLargeBinaryProcs. By default,
the main memory storage procedures are used. When you call
FD_SetLargeBinaryProcs, all large binary objects created from that point on
use the storage procedures you specify. This includes large binaries created
implicitly by reading from a byte stream using FD_Unflatten.

The FD_MakeLargeBinary function creates a large binary object. You write to
this object with FD_WriteToLargeBinary, and read from one with
FD_ReadFromLargeBinary. These functions read or write a block of data to a
buffer from a specified offset. The FD_IsLargeBinary function tests if an object
is a large binary.

Listing 3-7 Using a large binary object

// a large table

C H A P T E R 3

FDIL Interface

About the FDIL Objects 3-11

Preliminary Draft.  Apple Computer, Inc. 11/16/97

static const char kMyCRCTable[] = {... };

//store this, and all future binary objects on disk
FD_SetLargeBinaryProcs (&kFD_DiskStoreProcs);

//make a large binary object
FD_Handle myFDILCRCTable = FD_MakeLargeBinary(sizeof(kMyCRCTable),

"theObjsClass", kFD_LZCompression);

//copy the whole table into the large binary object
FD_WriteToLargeBinary(myFDILCRCTable, 0, kMyCRCTable,

sizeof(kMyCRCTable));

// ... read the bytes 200 through 300
char buffer[100];
FD_ReadFromLargeBinary(myFDILCRCTable, 200, buffer, 100);

FD_Dispose(myCRCTable);

Creating Your Own Large Binary Storage Procedures 3

The FDIL provides a set of procedures that you can use to store large binary
objects in main memory (kFD_MemoryStoreProcs) and on disk
(kFD_DiskStoreProcs), and a set of functions that discard the data
(kFD_NullStoreProcs). You may also create your own. A set of large binary
procedures is a structure of the following format:

typedef struct FD_LargeBinaryProcs
{

DIL_Error (*Create) (void** cookie);
DIL_Error (*SetNumPages) (void** cookie,

long pageCount);
DIL_Error (*ReadPage) (void** cookie,

long pageNum,
FD_PageBuff* pageBufPtr);

DIL_Error (*WritePage) (void** cookie,
long pageNum,
const FD_PageBuff* pageBufPtr);

DIL_Error (*Destroy) (void** cookie);
} FD_LargeBinaryProcs;

The Create function is called when a large binary object is being created, in
response to a call to FD_MakeLargeBianry or FD_Unflatten. The Destroy
function is called when the object is no longer needed.

C H A P T E R 3

FDIL Interface

3-12 About the FDIL Objects

Preliminary Draft.  Apple Computer, Inc. 11/16/97

The cookie argument is intended to allow your various functions to
communicate. It is a pointer to a void *. Typically, your Create function
allocates some memory for use by all your storage functions, and sets the
void * that cookie points to this memory block. This memory is then usually
freed by your Destroy function.

A large binary object is stored in an integral number of pages. If the number
of pages changes due to the object growing or shrinking, SetNumPages is
called with the new number of pages to allow you to modify your own data
structures.

ReadPage and WritePage are called to copy over a page of data to and from a
buffer. These functions are passed in the page number, as well as a pointer to
FD_PageBuff object that describes the buffer to copy data to and from. An
FD_PageBuff object has the following form:

#define kPageChunkSize (1024L)
#define kCompressionExtra (288L)

typedef struct FD_PageBuff
{
long fLength;
char fData[kPageChunkSize + kCompressionExtra]; /* Only fLength bytes

 are used */
}FD_PageBuff;

Your ReadPage function should copy over the required page to the buffer
located at pageBufPtr ->fData and set the pageBufPtr ->fLength field to the
number of bytes copied over. The contents of the page, and its length, should
be the same as those specified in the call to your WritePage function when it
stored this page. If no WritePage call had ever been made for the requested
page, ReadPage should return kFD_LBReadingFromUnwrittenPage. If any other
error occurs while trying to retrieve the page, it should return a non-zero
value not equal to kFD_LBReadingFromUnwrittenPage. Otherwise, it should
return kDIL_NoError. ReadPage is never called with a page number larger
than, or equal to, that specified in a previous call to SetNumPages.

Conversely, your WritePage function is passed the page number to write and
pointer to an FD_PageBuff object describing the buffered data to store. It
should store pageBufPtr ->fLength bytes starting at pageBufPtr ->fData. If an
error occurs while saving the data, WritePage should return a non-zero value.
Otherwise, it should return kDIL_NoError. WritePage is never called with a

C H A P T E R 3

FDIL Interface

About the FDIL Objects 3-13

Preliminary Draft.  Apple Computer, Inc. 11/16/97

page number larger than, or equal to, that specified in a previous call to
SetNumPages.

Remember to call FD_SetLargeBinaryProcs if you want to use these
procedures to store large binaries streamed in with FD_Unflatten, as well as
in those large binaries you create with FD_MakeLargeBinary.

You may use NULL for fields in your FD_LargeBinaryProcs, if there is no need
to implement that particular function.

Listing 3-8 is a C++ example of a set of FD_LargeBinaryProcs that store pages
using the Macintosh Resource Manager. Of course, you should never really
use the Resource Manager as a database; this is an example of writing
FD_LargeBinaryProcs, not how to properly use the Resource Manager.

Listing 3-8 Custom large binary storage procedures

struct ResMgrLBData
{

short fRefNum;
long fNumPages;
Str255 fFileName;

};

DIL_Error ResMgrCreate(void** cookie)
{

ResMgrLBData *myData = new ResMgrLBData;
if (myData == NULL)

return kDIL_OutOfMemory;

tmpnam((char*) myData->fFileName);
c2pstr((char*) myData->fFileName);
short refNum = OpenResFile(myData->fFileName);
if (refNum < 0)
{

delete myData;
return kFD_ErrorCreatingStore;

}

myData->fRefNum = refNum;
myData->fNumPages = 0;

*cookie = myData;

C H A P T E R 3

FDIL Interface

3-14 About the FDIL Objects

Preliminary Draft.  Apple Computer, Inc. 11/16/97

return kDIL_NoError;
}

DIL_Error ResMgrSetNumPages(void** cookie, long pageCount)
{

ResMgrLBData *myData = (ResMgrLBData*) *cookie;

short oldRefNum = CurResFile();
UseResFile(myData->fRefNum);
for (long ii = pageCount; ii < myData->fNumPages; ++ii)
{

SetResLoad(FALSE);
Handle hdl = GetResource('page', ii);
if (hdl)

RemoveResource(hdl);
}
SetResLoad(TRUE);
UseResFile(oldRefNum);

return kDIL_NoError;
}

DIL_Error ResMgrReadPage(void** cookie, long pageNum,
 FD_PageBuff* page)

{
ResMgrLBData *myData = (ResMgrLBData*) *cookie;

short oldRefNum = CurResFile();
UseResFile(myData->fRefNum);
Handle hdl = Get1Resource('page', pageNum);
UseResFile(oldRefNum);
if (!hdl)

// Actually, we should look further; we might be out of memory.
return kFD_LBReadingFromUnwrittenPage;

page->fLength = GetHandleSize(hdl);
BlockMove(*hdl, page->fData, page->fLength);

return kDIL_NoError;
}

DIL_Error ResMgrWritePage(void** cookie, long pageNum,
const FD_PageBuff* page)

{

C H A P T E R 3

FDIL Interface

About the FDIL Objects 3-15

Preliminary Draft.  Apple Computer, Inc. 11/16/97

ResMgrLBData*myData = (ResMgrLBData*) *cookie;

short oldRefNum = CurResFile();
UseResFile(myData->fRefNum);
Handle hdl = Get1Resource('page', pageNum);
UseResFile(oldRefNum);
if (hdl)
{

SetHandleSize(hdl, page->fLength);
if (MemError())

return kDIL_OutOfMemory;
}
else
{

hdl = NewHandle(page->fLength);
if (!hdl)

return kDIL_OutOfMemory;
UseResFile(myData->fRefNum);
AddResource(hdl, 'page', pageNum, "\p");
short error = ResError();
UseResFile(oldRefNum);
if (error)

return ResError();
}

BlockMove(page->fData, *hdl, page->fLength);

ChangedResource(hdl);
if (ResError())

return ResError();

UpdateResFile(myData->fRefNum);
if (ResError())

return ResError();

return kDIL_NoError;
}

DIL_Error ResMgrDestroy(void** cookie)
{

ResMgrLBData *myData = (ResMgrLBData*) *cookie;

CloseResFile(myData->fRefNum);
FSDelete(myData->fFileName, 0);

C H A P T E R 3

FDIL Interface

3-16 About the FDIL Objects

Preliminary Draft.  Apple Computer, Inc. 11/16/97

delete myData;
*cookie= NULL;

return kDIL_NoError;
}

const FD_LargeBinaryProcs gResMgrStoreProcs = {
ResMgrCreate,
ResMgrSetNumPages,
ResMgrReadPage,
ResMgrWritePage,
ResMgrDestroy

};

Arrays 3

An array object is a variable-size object whose contents are divided into a
series of other objects. Each division is called a “slot”. Each slot consists of an
FDIL object, that is, an FD_Handle. Objects can be inserted into an array or
appended to the end of an array.

You create an array with FD_MakeArray. This call sets the array’s initial
length and class. The array’s slots are initialized to kFD_NIL. You can access
the value of a particular slot with FD_GetArraySlot and FD_SetArraySlot.
New slots are added to the end of an array with FD_AppendArraySlot. You
can also insert a slot in an arbitrary position with FD_InsertArraySlot; any
objects between that position and the end of the array are moved down one
spot in order to make room. A single object or a range of objects can be
removed from an array with FD_RemoveArraySlot and
FD_RemoveArraySlotCount; the remaining objects moving up in the array to
take their place. The length of the array can be directly manipulated with
FD_SetLength; this function adds slots at the end of an array initialized to
kFD_NIL, or removes slots from the end of the array.

The FD_IsArray function tests if an object is an array. You can dispose of an
array with FD_Dispose, as you would any other FDIL object. You can also call
FD_DeepDispose to recursively dispose of all the objects in the array.

Array objects are limited to a size of 16 MB / sizeof (FD_Handle).

C H A P T E R 3

FDIL Interface

About the FDIL Objects 3-17

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Listing 3-9 Using array objects

FD_Handle myArray1 = FD_MakeArray(10, "myArraysClass");
FD_Handle myArray2 = FD_MakeArray(0, NULL); //Zero’s OK,

//NULL for default class

FD_Handle hello = FD_MakeString("Hello");
FD_Handle comma = FD_MakeString(", ");
FD_Handle world = FD_MakeString("world");
FD_Handle period = FD_MakeString(".");

FD_InsertArraySlot(myArray2, 0, world);
// myArray2 holds ["world"]

FD_InsertArraySlot(myArray2, 0, hello); // moves "world" over
// myArray2 holds ["Hello", "world"]

FD_InsertArraySlot(myArray2, 1, comma);
// myArray2 holds ["Hello", ", ", "world"]

FD_AppendArraySlot(myArray2, period);
// myArray2 holds ["Hello", ", ", "world", "."]

FD_InsertArraySlot(myArray2, 9, kFD_NIL); /* FD_GetError returns
kFD_ValueOutOfRange */

FD_Handle theComma = FD_RemoveArraySlot(myArray2, 1);
FD_Dispose(theComma);
// myArray2 holds ["Hello", "world", "."]

//get an array element
FD_Handle theHello = FD_GetArraySlot(myArray2, 0);

// print every element
for (long i = 0; i < FD_GetLength(myArray2); i++)
{

printf("%s ", (char *) FD_GetBinaryData(FD_ASCIIString(
FD_GetArraySlot(myArray2, i))));

};

//get rid of the array and everything in it
FD_DeepDispose(myArray1);
FD_DeepDispose(myArray2);

C H A P T E R 3

FDIL Interface

3-18 About the FDIL Objects

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Frames 3

A frame is an aggregate object where each element, called a “slot,” contains
any FDIL object, and is indexed by name. The slot name itself is a symbol.
Rather than using an integer index to retrieve a value that’s been added to a
frame (as you would with an array), you specify the slot name to get the slot
value.

FD_MakeFrame creates a new, empty frame, and FD_IsFrame tests if an object is
a frame. A slot is added with FD_SetFrameSlot; if the slot already exists the
value of that slot changed. You access slots with FD_GetFrameSlot; if the slot
does not exist, kFD_NIL is returned. You can remove slots with
FD_RemoveFrameSlot. You can test if a frame has a particular slot with
FD_FrameHasSlot.

You can iterate through a frame’s slots with the FD_GetIndFrameSlot and
FD_GetIndFrameSlotName functions. These functions allow you to access a
slots value and name, respectively, by an integer index.

Frame objects are limited to a size of 16 MB / sizeof (FD_Handle).

Listing 3-10 Using frame objects

/* Create a frame with the following format:
{ name: { first: "Bob", last: "Anderson"},

address : "51 Partlow Road",
address2 : "Fine, NY 13639",
phones : ["555-1234","555-4321"],

} */

FD_Handle myFrame = FD_MakeFrame();

FD_Handle nameFrame = FD_MakeFrame();
FD_SetFrameSlot(nameFrame, "first", FD_MakeString("Bob"));
FD_SetFrameSlot(nameFrame, "last", FD_MakeString("Anderson"));
FD_SetFrameSlot(myFrame, "name", nameFrame);

FD_SetFrameSlot(myFrame, "address", FD_MakeString("51 Partlow Road"));
FD_SetFrameSlot(myFrame, "address2", FD_MakeString("Fine, NY 13639"));

FD_Handle phones = FD_MakeArray(0,NULL);
FD_AppendArraySlot(phones, FD_MakeString("555-1234"));
FD_AppendArraySlot(phones, FD_MakeString("555-4321"));

C H A P T E R 3

FDIL Interface

About the FDIL Objects 3-19

Preliminary Draft.  Apple Computer, Inc. 11/16/97

FD_SetFrameSlot(myFrame, "phones", phones);

// get the last name
FD_Handle lastName = FD_GetFrameSlot(FD_GetFrameSlot (myFrame,

"name"),
"last");

// get rid of the first phone number
// Note that here we get a reference to the phones slot via the frame.
// We could have done the same by using our local variable “phones”.
// They refer to the same object.
FD_Handle firstPhone = FD_RemoveArraySlot(FD_GetFrameSlot(myFrame,

 "phones"),
0);

FD_Dispose (firstPhone);

// iterate over all frame slots
FD_Handle slotName, slotValue;
for (int i = 0; i < FD_GetLength(myFrame); i++)
{

slotName = FD_GetIndFrameSlotName (myFrame, i);
slotValue = FD_GetIndFrameSlot (myFrame, i);

};

//get rid of the frame and all imbedded objects
FD_DeepDispose (myFrame);

Magic Pointer Objects 3
A magic pointer object contains a pointer to objects in a Newton devices
ROM. You should only need to create magic pointer objects if you are writing
a Newton development environment. The only likely way to run into a
magic pointer object in your code is reading an NTK stream file with the
FD_Unflatten function. You should never see a magic pointer object from
data sent from a Newton device, through a CDIL pipe. Magic pointers are
resolved before being sent from a Newton device.

Magic pointer objects are created with FD_MakeMagicPointer. You can access
this value with FD_GetMagicPointer. And you can test if an object is a magic
pointer with FD_IsMagicPointer.

C H A P T E R 3

FDIL Interface

3-20 Using the FDIL

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Using the FDIL 3

Initializing the Library 3
Before calling any FDIL function, you should initialize the library by calling
FD_Startup. When you are done using the library, call FD_Shutdown; this
function deallocates all memory used by the FDIL. Usually you just call
FD_Startup once, but you can call it multiple times as long as an equal
number of calls to FD_Shutdown are made.

Object Comparison 3
The FD_Equal function compares two FDIL objects. Objects of different types
are never equal. Note that this is unlike NewtonScript, where the integer 3
and the real 3.0 are considered equal. All pointer objects: binaries, arrays,
frames, and large binaries, are equal only if they refer to the same object.

Object Duplication 3
The FD_Clone and FD_DeepClone create duplicates of an FDIL object. If the
object is an aggregate object, that is an array or frame, FD_Clone only copies
the top level objects. FD_DeepClone also makes copies of any nested objects,
recursively.

Object Printing 3
The FD_PrintObject function prints formatted FDIL objects. FD_PrintObject
actually just converts the object into formatted text. You must supply a
function to actually print the formatted text.

C H A P T E R 3

FDIL Interface

Using the FDIL 3-21

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Error Handling 3
All functions set an internal error code indicating the success of that
operation. A few functions also return that error code directly. You can access
the internal error code value with the FD_GetError function. You should call
FD_GetError after every FDIL function code that does not return an error
code. The functions listed in “FDIL Reference” (page 3-29) list the possible
error codes that each particular function might create.

Object Streaming 3
The FD_Flatten function converts any FDIL object, including aggregate
objects such as frames and arrays, to a flat stream of bytes in Newton Stream
Object Format (NSOF). FD_Flatten then calls a callback function you provide
to actually write the data. You could, for instance, send the data to a Newton
device over a CDIL pipe with the CD_Write function, or store it to disk. The
FD_UnFlatten function conversely converts from an NSOF byte stream to an
FDIL object, calling a callback function you provide to get the NSOF byte
stream. For a description of NSOF, see Chapter 4, “Newton Streamed Object
Format,” in Newton Formats.

Writing an FDIL Object to a Newton Device or to Disk 3

The FD_Flatten function is passed an FDIL object, a callback function to
actually deal with the byte stream, and an extra parameter it passes on to the
callback function. The FD_Flatten function converts your FDIL object to a
byte stream, which your callback then either stores, or sends.

Listing 3-11 shows two calls to FD_Flatten, each with a corresponding write
callback function. One writes the byte stream to disk, and the other sends the
byte stream to a Newton device through a CDIL pipe.

Listing 3-11 Call to FD_Flatten and callback functions to write a streamed FDIL
object to disk and to CDIL pipe.

// Write to file
DIL_Error err = FD_Flatten(myFDILObject,WriteToDiskCallback,myFilePtr);
DIL_Error WriteToDiskCallback(const void* buf,long amt,void* userData)

C H A P T E R 3

FDIL Interface

3-22 Using the FDIL

Preliminary Draft.  Apple Computer, Inc. 11/16/97

{
FILE* fp = (FILE*) userData;
size_t itemsWritten = fwrite(buf, 1, amt, fp);
if (itemsWritten != amt)

return kDIL_ErrorWritingToPipe;
return kDIL_NoError;

}

// Write to Newton device through a pipe
DIL_Error err = FD_Flatten(myFDILObject,WriteToPipeCallback,myPipePtr);
DIL_Error WriteToPipeCallback(const void* buf,long amt,void* userData)
{

CD_Handle* pipePtr = (CD_Handle *) userData;
return CD_Write(*pipePtr, buf, amt);

}

Reading FDIL Objects from a Newton Device or from Disk 3

The FD_Unflatten function takes a read callback function and an extra
argument that it passes to this callback function and returns an FDIL object.
The read callback function is responsible for copying over a specified
number of bytes of an NSOF byte-stream to a buffer. FD_Unflatten converts
the contents of that buffer to an FDIL object.

Listing 3-12 shows two calls to FD_Unflatten. Each with a corresponding call
back function. One set of calls reads the byte stream from a disk, the other
reads the byte stream from a Newton device through a CDIL pipe.

Listing 3-12 Call to FD_Unflatten and two callback functions to read a streamed
FDIL object both from disk and from CDIL pipe.

FD_Handle obj;
DIL_Error err;

// Read an object from a disk file
obj = FD_Unflatten(ReadFromDiskCallback, myFilePtr);
err = FD_GetError();
DIL_Error ReadFromDiskCallback(void* buf, long amt, void* userData)
{

FILE* fp = (FILE*) userData;
size_t itemsRead = fread(buf, 1, amt, fp);
if (itemsRead != amt)

C H A P T E R 3

FDIL Interface

Using the FDIL 3-23

Preliminary Draft.  Apple Computer, Inc. 11/16/97

return kDIL_ErrorReadingFromPipe;
return kDIL_NoError;

}

// Read an object from a Newton device through a pipe
obj = FD_Unflatten(ReadFromPipeCallback, myPipePtr);
err = FD_GetError();
DIL_Error ReadFromPipeCallback(void* buf, long amt, void* userData)
{

CD_Handle* pipePtr = (CD_Handle *) userData;
return CD_Read(*pipePtr, buf, amt);

}

Object Classes 3
All objects have a class. An object’s class is primarily for your use as a
programmer in giving a meaning to your data. The class of integer,
immediate, and magic pointer objects is immutable. Pointer objects have
default classes, but you can change them with the FD_SetClass function.

Table 3-1 Default object classes

Object type Class

Integer kFD_SymInteger

Character kFD_SymChar

Boolean kFD_SymBoolean

Other immediate kFD_SymWeird_Immediate

Frame kFD_SymFrame

Array kFD_SymArray

String kFD_SymString

Symbol kFD_SymSymbol

Binary kFD_NIL

Large binary kFD_NIL

Magic pointer kFD_SymMagicPointer

C H A P T E R 3

FDIL Interface

3-24 Using the FDIL

Preliminary Draft.  Apple Computer, Inc. 11/16/97

The FD_IsSubClass function determines if an object’s class is a subclass of a
given class. This function uses the same algorithm used in the NewtonScript
language, namely:

■ Every class is a subclass of the empty class "".

■ Every class is a subclass of itself.

■ A class x is a subclass of y, if y is a prefix of x at a period (.) boundary. For
example, "foo.bar" is a subclass of "foo".

■ For compatibility with the version of NewtonScript found on Newton 1.x
OS devices, the following classes are considered subclasses of "string":
"address"

"company"

"name"

"title"

"phone"

Furthermore the following classes are considered subclasses of "phone":
"homePhone"

"workPhone"

"faxPhone"

"otherPhone"

"carPhone"

"beeperPhone"

"mobilePhone"

"homeFaxPhone"

Memory Management 3
You are responsible for calling the FD_Dispose function to free any memory
allocated to a pointer object, when that object is no longer needed. This
memory can be allocated in one of three ways: the FD_MakeXXX functions that
create pointer objects, the FD_Clone and FD_DeepClone functions, or from a
byte stream via FD_Unflatten.

You have to be careful not to lose the last reference to a pointer object. A
reference to a pointer object can exist either as variable or within an array or
frame. When you set the value of an array or frame slot, you might be losing
the last reference to the object that previously occupied that slot. The

C H A P T E R 3

FDIL Interface

Using the FDIL 3-25

Preliminary Draft.  Apple Computer, Inc. 11/16/97

FD_RemoveArraySlot, FD_SetArraySlot, FD_SetFrameSlot, and
FD_RemoveFrameSlot return the object being replaced or removed, for you to
dispose of. The FD_RemoveArraySlotCount function, however, cannot return all
the objects removed, since it potentially removes multiple objects.

The FD_DeepDispose function recursively deallocates the memory in arrays
and frames, and their component objects.

You can use the FD_IsFree function to determine if an object has been
disposed of. It returns non-zero if passed an object that is a pointer object
whose memory has been freed. However, it is possible that the memory
returned to the system by calling FD_Dispose on a pointer object is later
reused. If this occurs, calling FD_IsFree inaccurately returns zero, indicating
that the memory has not been freed. For this reason you should not call
FD_IsFree in a shipping version of your application.

The FD_AllocatedMemory function returns the number of bytes used by the
FDIL. You can use this function to track the memory consumption of a
particular object, as demonstrated in Listing 3-13, or of the FDIL component
in general.

Listing 3-13 Checking memory consumption of a particular object

long allocated1 = FD_AllocatedMemory();
FD_Handle myObj = FD_MakeFrame();
long allocated2 = FD_AllocatedMemory();
printf("An empty frame uses %ld bytes.\n", allocated2 - allocated1);

The Internal Representation of an FDIL Object 3
An FDIL object is represented as a long value called a ref. The lowest two bits
determine the object’s basic type, as follows:

00 = integer
01 = pointer object
10 = immediate object
11 = magic pointer

If the ref is an integer, the value is contained in the upper 30 bits. If the object
is an immediate, the next two low order bits represent the object’s type:

C H A P T E R 3

FDIL Interface

3-26 Using the FDIL

Preliminary Draft.  Apple Computer, Inc. 11/16/97

0010 = special immediate
0110 = character immediate
1010 = Boolean immediate
1110 = reserved immediate

In an immediate object, the upper 28 bits contain the object’s value. For
example, these upper 28 bits hold the 16-bit Unicode character in a character
object.

A pointer’s upper 30 bits contain an index into an internal object table. In the
debug version of the library, an FDIL object is a struct containing both the ref
and a pointer to the heap object; see “The Debug Version of the FDIL”
(page 3-26).

A magic pointer object’s upper 30 bits contain the magic pointer value.

The Debug Version of the FDIL 3
In the debug version of the library, all functions that create a pointer object
also note the file and line number where the object was created in an internal
table, and contain a pointer to the actual heap object.

The Debug Version of FDIL Objects 3

In the normal version of the library, an FDIL object is a long. In the debug
version an FDIL object is a struct of the following format:

typedef struct FD_Handle
{

long ref;
struct FD_ObjectHeader** entry;

}

The ref field is the same long as in the non-debug FD_Handle. For a
description of this ref object, see “The Internal Representation of an FDIL
Object” (page 3-25). If the object is a pointer object, the entry field points,
indirectly, to an FD_ObjectHeader struct. This struct has the following format:

struct FD_ObjectHeader
{

long flags;
long size; // size of user portion; does not

// include this header

C H A P T E R 3

FDIL Interface

Using the FDIL 3-27

Preliminary Draft.  Apple Computer, Inc. 11/16/97

#ifdef FD_TrackMemory
const char* file;
int line;

#endif
union
{

FD_Handle oClass;
FD_Handle map;

}u;
// followed by object data: either bytes or an array of FD_Handle
};

The flags field contains a bit field describing the object. The lowest 2 bits of
this field specifies the object’s type, as follows:

00 = raw binary object
01 = array
10 = large binary object
11 = frame

The size field specifies the object’s size. For binary objects, this is the number
of user bytes in the object. For arrays and frames, this is the number of
elements in the object times sizeof(FD_Handle). For large binary objects, this
is sizeof(FD_LargeBinaryData).

When an object is created, the file name and line number of the function call
that created it are stored in the file and line fields. The
FD_CheckForMemoryLeaks function uses these fields to report to you where all
currently existing objects were allocated; see “Finding Memory Leaks”
(page 3-28).

The next field is the object’s class, oClass, if the object is anything but a
frame, or the frame map, map, if the object is a frame. If the object is a frame
it’s class is stored in a slot named "class" containing a symbol. A frame’s
map is simply an array of symbols containing the slot names used in the
frame. There is one difference between a frame map and a regular array. A
frame map contains the value zero in its oClass field.

Following the oClass or map field, is the data in the pointer object. For a
binary object, this is the actual raw binary data. For an array or frame, this is
an array of FD_Handles for the constituent objects. For a large binary object,
this is an FD_LargeBinaryData struct. The format of a FD_LargeBinaryData is
not described here.

C H A P T E R 3

FDIL Interface

3-28 Using the FDIL

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Finding Memory Leaks 3

In the debug version, all functions that create a pointer object also note the
file and line number where the object was created in an internal table. You
can then call the FD_CheckForMemoryLeaks function at a point where all
memory should have been freed, such as when your program exists, before
calling FD_Shutdown. FD_CheckForMemoryLeaks reports the file name and line
number, of the function call that created any unfreed pointer objects.

The functions that can cause the creation of a pointer object are:

FD_MakeReal
FD_MakeString
FD_MakeWideString
FD_MakeSymbol
FD_MakeArray
FD_MakeFrame
FD_MakeBinary
FD_MakeLargeBinary
FD_Clone
FD_DeepClone
FD_Unflatten

Listing 3-14 Checking for memory leaks

FD_Startup(); // Line 21 of MyApp.c
FD_MakeFrame(); // Line 22 of MyApp.c

FD_CheckForMemoryLeaks("\n", MyPrintFn, NULL);
// Prints a message saying that a
// frame was allocated at line 22
// of MyApp.c.

FD_Shutdown();

C H A P T E R 3

FDIL Interface

FDIL Reference 3-29

Preliminary Draft.  Apple Computer, Inc. 11/16/97

FDIL Reference 3

Type Definitions 3

FD_Handle 3

An FDIL object. In non-debug builds, an FD_Handle is a long. In debug builds
this is a larger object, containing information about where the object was
created; see “The Debug Version of the FDIL” (page 3-26).

DIL_Error 3

A long integer containing an error code, as listed in “Error codes” (page 3-34).

DIL_WideChar 3

A 2-byte object suitable for holding a Unicode character; see “Characters”
(page 3-4).

FD_LargeBinaryProcs 3

A set of large binary procedures; it is a structure of the following format:

struct FD_LargeBinaryProcs
{

DIL_Error (*Create) (void** cookie);
DIL_Error (*SetNumPages) (void** cookie,

long pageCount);
DIL_Error (*ReadPage) (void** cookie,

long pageNum,
FD_PageBuff* pageBufPtr);

DIL_Error (*WritePage) (void** cookie,
long pageNum,
const FD_PageBuff* pageBufPtr);

DIL_Error (*Destroy) (void** cookie);
};
typedef struct FD_LargeBinaryProcs FD_LargeBinaryProcs;

C H A P T E R 3

FDIL Interface

3-30 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

For a description of these functions see “Creating Your Own Large Binary
Storage Procedures” (page 3-11).

DIL_WriteProc 3

typedef DIL_Error (*DIL_WriteProc) (const void *buf, long amt,
void *userData)

A function called to write data.

buf A pointer to the data to be written.

amt How many bytes to write. Note that the PDIL calls your
DIL_WriteProc with a value of -1 for this parameter, to
signal that no more data is to be sent, and you should
flush the buffer.

userData A pointer to data you provided to the function that calls
your writing procedure. For instance, it can contain a
FILE* if the DIL_WriteProc writes data to disk, or a
CD_Handle if the DIL_WriteProc sends data to a Newton
device, or NULL if no extra data is needed.

return value An error code.

DISCUSSION

Your DIL_WriteProc is called when the FDIL needs to write some bytes.
Return kDIL_NoError if no error occurred. Otherwise return a
kDIL_ErrorWritingToPipe or kFD_ErrorWritingToStore error code, or any
other non-kDIL_NoError value. Whatever your DIL_WriteProc returns is
reported to the calling client via FD_GetError.

This interface is used by FD_Flatten to write bytes from flattening an object,
by a few debugging functions to report information to you, and by the PDIL.

SPECIAL CONSIDERATIONS

If you write the object to a file, you must open the file in binary mode. Note
that fopen defaults to text mode.

C H A P T E R 3

FDIL Interface

FDIL Reference 3-31

Preliminary Draft.  Apple Computer, Inc. 11/16/97

DIL_ReadProc 3

typedef DIL_Error (*DIL_ReadProc) (void *buf, long amt, void
*userData)

A function called to read data.

buf A pointer to the buffer for data that you have read.

amt How many bytes to read.

userData A pointer to data you provided to the function that calls
your reading procedure. For instance, it can contain a
FILE* if the DIL_ReadProc reads data from disk, or a
CD_Handle if the DIL_ReadProc gets data from a Newton
device, or NULL if no extra data is needed.

return value An error code.

DISCUSSION

Your DIL_WriteProc is called when the FDIL needs to read some bytes.
Return kDIL_NoError if no error occurred. Otherwise return a
kDIL_ErrorReadingFromPipe or kFD_ErrorReadingFromStore error code, or any
other non-kDIL_NoError value. Whatever your DIL_ReadProc returns is
reported to the calling client via FD_GetError.

This interface is used by FD_Unlatten to read bytes of a flattened object, and
by the PDIL.

SPECIAL CONSIDERATIONS

If you read the object from a file, you must open the file in binary mode.
Note that fopen defaults to text mode.

C H A P T E R 3

FDIL Interface

3-32 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

DIL_StatusProc 3

typedef DIL_Error (*DIL_StatusProc) (long *bytesAvailable, void
*userData)

A function called to retrieve the number of bytes available to be read.

bytesAvailable Store the number of bytes available here.

userData A pointer to data you provided to the function that calls
your reading procedure. For instance, it can contain a
FILE* if the DIL_ReadProc reads data from disk, or a
CD_Handle if the DIL_ReadProc gets data from a Newton
device, or NULL if no extra data is needed.

return value An error code.

DISCUSSION

This interface is only used by the PDIL.

C H A P T E R 3

FDIL Interface

FDIL Reference 3-33

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Constants 3

FDIL objects 3

Large Binary Storage Procedures 3

Large Binary Compression Options 3

constant meaning

kFD_NIL The nil object; see “Special
Immediates” (page 3-5)

kFD_True The true object; see “Booleans”
(page 3-5).

constant meaning

kFD_MemoryStoreProcs Store data in RAM.

kFD_DiskStoreProcs Store data on disk.

kFD_NullStoreProcs Discards data.

constant meaning

kFD_NoCompression Don’t compress data.

kFD_LZCompression Use LZ compression. This is the
only type of compression you
should use when calling
FD_MakeLargeBinary.

kFD_ZippyCompression Use Zippy compression. You
should never use this value.

C H A P T E R 3

FDIL Interface

3-34 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Immediate Types 3

Error codes 3

kDIL_NoError (0)
kDIL_ErrorBase (-98000)
kDIL_OutOfMemory (kDIL_ErrorBase - 1)
kDIL_InvalidParameter (kDIL_ErrorBase - 2)
kDIL_InternalError (kDIL_ErrorBase - 3)
kDIL_ErrorReadingFromPipe (kDIL_ErrorBase - 4)
kDIL_ErrorWritingToPipe (kDIL_ErrorBase - 5)
kDIL_InvalidHandle (kDIL_ErrorBase - 6)

kFD_ErrorBase (kDIL_ErrorBase - 400)

/* Hard errors -- you should always be looking for these. */
kFD_UnknownStreamVersion (kFD_ErrorBase - 1)
kFD_StreamCorrupted (kFD_ErrorBase - 2)
kFD_UnsupportedCompression (kFD_ErrorBase - 3)
kFD_CouldNotCompressData (kFD_ErrorBase - 4)
kFD_CouldNotDecompressData (kFD_ErrorBase - 5)
kFD_UnsupportedStoreVersion (kFD_ErrorBase - 6)
kFD_ErrorCreatingStore (kFD_ErrorBase - 7)
kFD_ErrorWritingToStore (kFD_ErrorBase - 8)
kFD_ErrorReadingFromStore (kFD_ErrorBase - 9)

/* Soft errors -- you get these only if you feed in bad data. */
kFD_FDILNotInitialized (kFD_ErrorBase - 19)

kFD_ExpectedInteger (kFD_ErrorBase - 20)
kFD_ExpectedPointerObject (kFD_ErrorBase - 21)
kFD_ExpectedImmediate (kFD_ErrorBase - 22)
kFD_ExpectedMagicPointer (kFD_ErrorBase - 23)

kFD_ExpectedArray (kFD_ErrorBase - 24)
kFD_ExpectedFrame (kFD_ErrorBase - 25)
kFD_ExpectedBinary (kFD_ErrorBase - 26)

constant meaning

kImmedSpecial A special immediate.

kImmedCharacter A character.

kImmedBoolean A Boolean.

kImmedReserved A reserved immediate.

C H A P T E R 3

FDIL Interface

FDIL Reference 3-35

Preliminary Draft.  Apple Computer, Inc. 11/16/97

kFD_ExpectedLargeBinary (kFD_ErrorBase - 27)

kFD_ExpectedReal (kFD_ErrorBase - 28)
kFD_ExpectedString (kFD_ErrorBase - 29)
kFD_ExpectedSymbol (kFD_ErrorBase - 30)
kFD_ExpectedChar (kFD_ErrorBase - 31)

kFD_NULLPointer (kFD_ErrorBase - 40)
kFD_ExpectedPositiveValue (kFD_ErrorBase - 41)
kFD_ExpectedNonNegativeValue (kFD_ErrorBase - 42)
kFD_ValueOutOfRange (kFD_ErrorBase - 43)
kFD_SymbolTooLong (kFD_ErrorBase - 44)
kFD_IllegalCharInSymbol (kFD_ErrorBase - 45)
kFD_InvalidClass (kFD_ErrorBase - 46)
kFD_PointerObjectIsFree (kFD_ErrorBase - 47)

Functions 3

Integer Object Functions 3

FD_MakeInt 3

FD_Handle FD_MakeInt(long val)

Creates an integer object.

val An integer between -536,870,912...536,870,911, inclusive.

return value An integer FDIL object.

ERROR CODES

kFD_FDILNotInitialized
kFD_ValueOutOfRange

SEE ALSO

For an example call to this function, see Listing 3-1 (page 3-3).

C H A P T E R 3

FDIL Interface

3-36 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

FD_IsInt 3

int FD_IsInt(FD_Handle obj)

Determines whether or not an FDIL object is an interger object.

obj The object to test.

return value Zero or non-zero.

SEE ALSO

For an example call to this function, see Listing 3-1 (page 3-3).

ERROR CODES

kFD_FDILNotInitialized

FD_GetInt 3

long FD_GetInt(FD_Handle obj)

Returns the long value stored in the object.

obj An FDIL integer object.

return value A long.

SEE ALSO

For an example call to this function, see Listing 3-1 (page 3-3).

ERROR CODES

kFD_FDILNotInitialized
kFD_ExpectedInteger

C H A P T E R 3

FDIL Interface

FDIL Reference 3-37

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Immediate Object Functions 3

FD_MakeImmediate 3

FD_Handle FD_MakeImmediate(long type, long value)

Creates the specified type of immediate object.

type One of the following constants: kImmedSpecial,
kImmedCharacter, kImmedBoolean, or kImmedReserved.

value The value of the immediate object.

return value An immediate FDIL object.

DISCUSSION

This is a low-level function that you should rarely, if ever, call. The kinds of
immediate objects applications are likely to require are character objects
(which can be created with the FD_MakeChar and FD_MakeWideChar functions),
NIL objects (which can be accessed through the kFD_NIL constant), or Boolean
objects (the sole type of which can be access through the kFD_True constant).

Note that FD_MakeImmediate does not perform ASCII to Unicode conversion
when creating a character object. That higher-level operation is performed
only by FD_MakeChar.

ERROR CODES

kFD_FDILNotInitialized
kFD_ValueOutOfRange

FD_IsImmediate 3

int FD_IsImmediate(FD_Handle obj)

Determines whether or not an FDIL object is an immediate object.

obj The object to test.

return value Zero or non-zero.

C H A P T E R 3

FDIL Interface

3-38 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

SPECIAL CONSIDERATIONS

In NewtonScript the term “immediate” includes integers. Therefore, the
NewtonScript function IsImmediate differs from FD_IsImmediate.

ERROR CODES

kFD_FDILNotInitialized

FD_GetImmediate 3

DIL_Error FD_GetImmediate(FD_Handle obj, long* type, long* value)

Returns the components of an immediate object.

obj An FDIL immediate object.

type A pointer to where the type should be stored. This value
will be set to kImmedSpecial, kImmedCharacter,
kImmedBoolean, or kImmedReserved.

value A pointer to where the value should be stored. If this
value is NULL, the immediate value is simply not
returned, no error is signaled.

return value An error code.

ERROR CODES

kFD_FDILNotInitialized
kFD_ExpectedImmediate

Character Object Functions 3

FD_MakeChar 3

FD_Handle FD_MakeChar(char val)

Creates a character object.

val An ASCII character.

return value A character FDIL object.

C H A P T E R 3

FDIL Interface

FDIL Reference 3-39

Preliminary Draft.  Apple Computer, Inc. 11/16/97

SEE ALSO

For an example call to this function, see Listing 3-2 (page 3-4).

ERROR CODES

kFD_FDILNotInitialized

FD_MakeWideChar 3

FD_Handle FD_MakeWideChar(DIL_WideChar val)

Creates a character object.

val A Unicode character.

return value A character FDIL object.

SEE ALSO

For an example call to this function; see Listing 3-2 (page 3-4).

ERROR CODES

kFD_FDILNotInitialized

FD_IsChar 3

int FD_IsChar(FD_Handle obj)

Determines whether or not an FDIL object is a character object.

obj The object to test.

return value Zero or non-zero.

SEE ALSO

For an example call to this function, see Listing 3-2 (page 3-4).

ERROR CODES

kFD_FDILNotInitialized

C H A P T E R 3

FDIL Interface

3-40 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

FD_GetChar 3

char FD_GetChar(FD_Handle obj)

Returns the character value stored in the object.

obj An FDIL character object.

return value An ASCII character.

SEE ALSO

For an example call to this function, see Listing 3-2 (page 3-4).

ERROR CODES

kFD_FDILNotInitialized
kFD_ExpectedChar

FD_GetWideChar 3

DIL_WideChar FD_GetWideChar(FD_Handle obj)

Returns the character value stored in the object.

obj An FDIL character object.

return value A Unicode character.

SEE ALSO

For an example call to this function, see Listing 3-2 (page 3-4).

ERROR CODES

kFD_FDILNotInitialized
kFD_ExpectedChar

C H A P T E R 3

FDIL Interface

FDIL Reference 3-41

Preliminary Draft.  Apple Computer, Inc. 11/16/97

FD_ConvertFromWideChar 3

DIL_Error FD_ConvertFromWideChar(char* dest, const
DIL_WideChar* src, long numChars)

Converts the characters in the buffer specified by src from Unicode to ASCII,
storing the resulting characters in the buffer specified by dest.

dest A buffer for the converted ASCII characters.

src An array of DIL_WideChar objects to translate.

numChars How many characters to convert.

return value An error code.

DISCUSSION

Only numChars characters are converted and transferred. No regard is given
for NULL terminators.

Unicode characters which have no corresponding character in the
destination character set are converted to 0x1A.

FD_ConvertFromWideChar is written in such a way that dest and src can refer to
the start of the same buffer.

SPECIAL CONSIDERATIONS

The characters in src are considered to be in big-endian format.

ERROR CODES

kFD_FDILNotInitialized
kFD_NULLPointer
kFD_ExpectedNonNegativeValue

C H A P T E R 3

FDIL Interface

3-42 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

FD_ConvertToWideChar 3

DIL_Error FD_ConvertToWideChar(DIL_WideChar* dest, const
char* src, long numChars)

Converts the characters in the buffer specified by src from ASCII to Unicode,
storing the resulting characters in the buffer specified by dest.

dest An buffer for the converted DIL_WideChar string.

src An array of ASCII characters to copy.

numChars How many characters to convert.

return value An error code.

DISCUSSION

Only numChars characters are converted and transferred. No regard is given
to NULL terminators.

FD_ConvertToWideChar is written such that dest and src can refer to the start of
the same buffer.

SPECIAL CONSIDERATIONS

The characters in dest are in big-endian format.

ERROR CODES

kFD_FDILNotInitialized
kFD_NULLPointer
kFD_ExpectedNonNegativeValue

FD_SetWideCharEncoding 3

DIL_Error FD_SetWideCharEncoding(long encoding)

Changes the character set to use when converting Unicode and 8-bit
characters.

encoding One of following constants: kFD_MacEncoding,
kFD_WindowsEncoding, or kFD_DefaultEncoding (which is

C H A P T E R 3

FDIL Interface

FDIL Reference 3-43

Preliminary Draft.  Apple Computer, Inc. 11/16/97

equal to kFD_MacEncoding on Macintosh platforms, and
kFD_WindowsEncoding on Windows platforms).

return value An error code.

DISCUSSION

By default, the Macintosh version of the FDIL converts using the Macintosh
character set, and the Windows version of the FDIL converts using the
Windows character set. Currently, these are the only two character sets
supported.

ERROR CODES

kFD_FDILNotInitialized
kFD_ValueOutOfRange

Boolean Object Functions 3

FD_IsBoolean 3

int FD_IsBoolean(FD_Handle obj)

Determines whether or not an FDIL object is a Boolean object.

obj The object to test.

return value Zero or non-zero.

ERROR CODES

kFD_FDILNotInitialized

C H A P T E R 3

FDIL Interface

3-44 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Nil Object Functions 3

FD_IsNIL 3

int FD_IsNIL(FD_Handle obj)

Determines whether the given object is the nil object.

obj An FDIL object.

return value Zero or non-zero.

DISCUSSION

This function is the inverse of FD_NotNIL.

ERROR CODES

kFD_FDILNotInitialized

FD_NotNIL 3

int FD_NotNIL(FD_Handle obj)

Determines whether the given object is anything but the nil object.

obj An FDIL object.

return value Zero or non-zero.

DISCUSSION

This function is the inverse of FD_IsNIL.

ERROR CODES

kFD_FDILNotInitialized

C H A P T E R 3

FDIL Interface

FDIL Reference 3-45

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Pointer Object Functions 3

FD_IsPointerObject 3

int FD_IsPointerObject(FD_Handle obj)

Determines whether or not an FDIL object is a pointer object.

obj The object to test.

return value Zero or non-zero.

ERROR CODES

kFD_FDILNotInitialized

FD_GetLength 3

long FD_GetLength(FD_Handle obj)

Returns the length of the given object.

obj An FDIL pointer object.

return value The length of the object.

DISCUSSION

Only pointer objects have a length. For frames and arrays, the length is the
number of elements they contain. For binary objects and large binary objects,
the length is the number of bytes in the object.

ERROR CODES

kFD_FDILNotInitialized
kFD_ExpectedPointerObject

C H A P T E R 3

FDIL Interface

3-46 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

FD_SetLength 3

DIL_Error FD_SetLength(FD_Handle obj, long newSize)

Sets the length of the object.

obj An FDIL pointer object.

newSize The size to set the object’s length to.

return value An error code.

DISCUSSION

Only non-frame pointer objects can have their lengths changed. For arrays,
newSize specifies the number of slots that should be in the array. For binaries
and large binaries, newSize specifies the number of bytes that should be
allocated to the object.

SPECIAL CONSIDERATIONS

If an array is grown as a result of settings its length, additional slots are
appended to the end of the array and set to kFD_NIL. If the array is reduced,
slots are removed from the end of the array. If those slots contained pointer
objects, it is up to you to make sure that the objects are deleted or otherwise
handled before the references to them in the array are lost.

All pointers to data within a binary object obtained with FD_GetBinaryData
are invalidated if the object’s size is changed.

ERROR CODES

kFD_FDILNotInitialized
kDIL_OutOfMemory
kFD_ExpectedPointerObject
kFD_ValueOutOfRange

C H A P T E R 3

FDIL Interface

FDIL Reference 3-47

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Binary Object Functions 3

FD_MakeBinary 3

FD_Handle FD_MakeBinary(long size, const char* cls)

Creates a raw, unformatted binary object of the given size.

size The length to make the binary object.

cls Either NULL in which case the binary object is given a
default class, or a string that is passed to FD_MakeSymbol
and becomes the object’s class.

return value A binary FDIL object.

DISCUSSION

The contents of the binary object can be accessed with FD_GetBinaryData.

SEE ALSO

For an example call to this function, see Listing 3-3 (page 3-6).

ERROR CODES

kFD_FDILNotInitialized
kDIL_OutOfMemory
kFD_ValueOutOfRange

FD_IsBinary 3

int FD_IsBinary(FD_Handle obj)

Determines whether or not an FDIL object is a binary object.

obj The object to test.

return value Zero or non-zero.

SEE ALSO

For an example call to this function, see Listing 3-3 (page 3-6).

C H A P T E R 3

FDIL Interface

3-48 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

ERROR CODES

kFD_FDILNotInitialized

FD_GetBinaryData 3

void* FD_GetBinaryData(FD_Handle obj)

Returns a pointer to the raw binary data stored in the binary object.

obj An FDIL binary object.

return value A void* to where the data is stored.

DISCUSSION

FD_GetBinaryData cannot be used to get a pointer to the contents of a large
binary object. Instead, use FD_ReadFromLargeBinary and
FD_WriteToLargeBinary to access and modify a large binary’s contents.

SPECIAL CONSIDERATIONS

Any pointers obtained with FD_GetBinaryData are invalidated by calling
FD_SetLength on that binary object.

SEE ALSO

For an example call to this function, see Listing 3-3 (page 3-6).

ERROR CODES

kFD_FDILNotInitialized
kFD_ExpectedBinary

C H A P T E R 3

FDIL Interface

FDIL Reference 3-49

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Real Object Functions 3

FD_MakeReal 3

FD_Handle FD_MakeReal(double val)

Creates a real number object from the given value.

val Any valid IEEE-754 floating point value.

return value A real FDIL object.

DISCUSSION

When using the FDIL library, it is important that you set any applicable
compiler options for generating IEEE-754 floating point compatible code. For
example, when compiling a 68K program with CodeWarrior, make sure the
"8-byte Doubles" option is turned on.

SEE ALSO

For an example call to this function, see Listing 3-4 (page 3-7).

ERROR CODES

kFD_FDILNotInitialized
kDIL_OutOfMemory

FD_IsReal 3

int FD_IsReal(FD_Handle obj)

Determines whether or not an FDIL object is a real number object.

obj The object to test.

return value Zero or non-zero.

SEE ALSO

For an example call to this function, see Listing 3-4 (page 3-7).

C H A P T E R 3

FDIL Interface

3-50 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

ERROR CODES

kFD_FDILNotInitialized

FD_GetReal 3

double FD_GetReal(FD_Handle obj)

Returns the double value stored in the object.

obj An FDIL real number object.

return value A double.

SEE ALSO

For an example call to this function, see Listing 3-4 (page 3-7).

ERROR CODES

kFD_FDILNotInitialized
kFD_ExpectedReal

Symbol Object Functions 3

FD_MakeSymbol 3

FD_Handle FD_MakeSymbol(const char* str)

Returns a symbol object, creating one if necessary.

str A NULL-terminated series of less than 254 ASCII
characters with values between 32-127, excluding the
vertical bar (‘|’) and backslash (‘\’) characters.

return value A symbol FDIL object.

DISCUSSION

Symbols are a pooled resource. Once created, a symbol is added to an
internal table. Subsequent requests to create a new symbol from the same
text results in a reference to the previously created symbol to be returned;
where “the same text” implies a case-insensitive comparison.

C H A P T E R 3

FDIL Interface

FDIL Reference 3-51

Preliminary Draft.  Apple Computer, Inc. 11/16/97

SEE ALSO

For an example call to this function, see Listing 3-5 (page 3-8).

ERROR CODES

kFD_FDILNotInitialized
kDIL_OutOfMemory
kFD_NULLPointer
kFD_SymbolTooLong
kFD_IllegalCharInSymbol

FD_IsSymbol 3

int FD_IsSymbol(FD_Handle obj)

Determines whether or not an FDIL object is a symbol object.

obj The object to test.

return value Zero or non-zero.

SEE ALSO

For an example call to this function, see Listing 3-5 (page 3-8).

ERROR CODES

kFD_FDILNotInitialized

FD_GetSymbol 3

const char* FD_GetSymbol(FD_Handle obj)

Returns a pointer to the NULL-terminated string of characters of the symbol
object.

obj An FDIL symbol object.

return value A pointer to the string that is the name of the symbol.

DISCUSSION

The array returned should be treated as read-only.

C H A P T E R 3

FDIL Interface

3-52 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

SEE ALSO

For an example call to this function, see Listing 3-5 (page 3-8).

ERROR CODES

kFD_FDILNotInitialized
kFD_ExpectedSymbol

String Object Functions 3

FD_MakeString 3

FD_Handle FD_MakeString(const char* str)

Creates a binary object containing a NULL-terminated Unicode string.

str A NULL-terminated series of ASCII characters; in other
words, a “C string.”

return value A string FDIL object.

SEE ALSO

For an example call to this function, see Listing 3-6 (page 3-9).

ERROR CODES

kFD_FDILNotInitialized
kDIL_OutOfMemory
kFD_NULLPointer

FD_MakeWideString 3

FD_Handle FD_MakeWideString(const DIL_WideChar* unicodeStr)

Creates a binary object containing a NULL-terminated Unicode string.

unicodeStr NULL-terminates series of Unicode characters

return value A string FDIL object.

SEE ALSO

For an example call to this function, see Listing 1-6 (page 18).

C H A P T E R 3

FDIL Interface

FDIL Reference 3-53

Preliminary Draft.  Apple Computer, Inc. 11/16/97

ERROR CODES

kFD_FDILNotInitialized
kDIL_OutOfMemory
kFD_NULLPointer

FD_IsString 3

int FD_IsString(FD_Handle obj)

Determines whether or not an FDIL object is a string object.

obj The object to test.

return value Zero or non-zero.

DISCUSSION

This function returns true if FD_IsSubclass(obj,"string") would return true.

SEE ALSO

For an example call to this function, see Listing 3-6 (page 3-9).

ERROR CODES

kFD_FDILNotInitialized

FD_IsRichSting 3

int FD_IsRichString(FD_Handle obj)

Determines whether or not an FDIL object is a rich string object.

obj The object to test.

return value Zero or non-zero.

DISCUSSION

Rich string objects are string containing embedded ink. These object cannot
be created by the FDIL, nor can the ink be extracted or interpreted. However,
you may receive such objects from a Newton device and may need to detect
strings that cannot be completely interpreted.

C H A P T E R 3

FDIL Interface

3-54 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

SEE ALSO

For an example call to this function, see Listing 3-6 (page 3-9).

ERROR CODES

kFD_FDILNotInitialized

FD_GetString 3

DIL_Error FD_GetString(FD_Handle obj, char* buffer, long bufLen)

Copies over bufLen characters from a string object, converting from Unicode
to ASCII.

obj An FDIL string object.

buffer Pointer to buffer for the C string.

bufLen The size of the string buffer.

return value An error code.

DISCUSSION

At most bufLen characters are copied over. If obj has more than bufLen
characters, buffer points to an array of characters that is not
NULL-terminated.

SEE ALSO

For an example call to this function, see Listing 3-6 (page 3-9).

ERROR CODES

kFD_FDILNotInitialized
kFD_ExpectedString
kFD_NULLPointer
kFD_ExpectedNonNegativeValue

C H A P T E R 3

FDIL Interface

FDIL Reference 3-55

Preliminary Draft.  Apple Computer, Inc. 11/16/97

FD_GetWideString 3

DIL_Error FD_GetWideString(FD_Handle obj, DIL_WideChar* buffer,
long bufLen)

Copies over bufLen characters from a string object.

obj An FDIL string object.

buffer Pointer to buffer for the string.

bufLen The size of the string buffer.

return value An error code.

DISCUSSION

At most bufLen characters are copied over. If obj has more than bufLen
characters, buffer points to an array of characters that is not
NULL-terminated.

ERROR CODES

kFD_FDILNotInitialized
kFD_ExpectedString
kFD_NULLPointer
kFD_ExpectedNonNegativeValue

FD_ASCIIString 3

FD_Handle FD_ASCIIString(FD_Handle obj)

Converts a string binary object to a binary object whose data consists of a
NULL-terminated array of ASCII characters.

obj An FDIL string object.

return value A binary object.

DISCUSSION

To convert a string object to a C string, use this function to do the Unicode to
ASCII conversion, then pass this binary object to FD_GetBinaryData, and cast
the pointer returned to a char*. For example:

FD_Handle myString = FD_MakeString("Hello");

C H A P T E R 3

FDIL Interface

3-56 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

FD_Handle asASCII = FD_ASCIIString(myString);
const char* textPtr = (const char*) FD_GetBinaryData(asASCII);

SEE ALSO

For an example call to this function, see Listing 3-6 (page 3-9).

ERROR CODES

kFD_FDILNotInitialized
kDIL_OutOfMemory
kFD_ExpectedString

Large Binary Object Functions 3

FD_MakeLargeBinary 3

FD_Handle FD_MakeLargeBinary(long size, const char * objClass,
long compressed)

Creates a large binary object of the given size.

size The size of the large binary object.

objClass Either NULL in which case the large binary object is
given a default class, or a string that is passed to
FD_MakeSymbol and becomes the object’s class.

compressed A value indicating whether to compress the data when
storing it, and what compression scheme to use. This
compression is done for you; you do not need to supply
functions to compress the data. Specify
kFD_NoCompression if you do not want the data
compressed, and kFD_LZCompression to compress the
data.

return value A large binary FDIL object.

DISCUSSION

The large binary object stores the data using the storage procedures set with
FD_SetLargeBinaryProcs, or the default kFD_MemoryStoreProcs.

C H A P T E R 3

FDIL Interface

FDIL Reference 3-57

Preliminary Draft.  Apple Computer, Inc. 11/16/97

SEE ALSO

For an example call to this function, see Listing 3-7 (page 3-10).

ERROR CODES

kFD_FDILNotInitialized
kDIL_OutOfMemory
kFD_ErrorCreatingStore
kFD_ValueOutOfRange

FD_IsLargeBinary 3

int FD_IsLargeBinary(FD_Handle obj)

Determines whether or not an FDIL object is a large binary object.

obj The object to test.

return value Zero or non-zero.

ERROR CODES

kFD_FDILNotInitialized

FD_ReadFromLargeBinary 3

DIL_Error FD_ReadFromLargeBinary(FD_Handle obj, long offset,
void* buffer, long count)

Reads bytes from the large binary object.

obj An FDIL large binary object.

offset Where to start reading from, in bytes from the
beginning of the binary object.

buffer Where to store the data.

count How many bytes to read.

return value An error code.

SEE ALSO

For an example call to this function, see Listing 3-7 (page 3-10).

C H A P T E R 3

FDIL Interface

3-58 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

ERROR CODES

an error from a user-defined large binary procedure
kFD_FDILNotInitialized
kFD_ExpectedLargeBinary
kFD_ExpectedNonNegativeValue
kFD_NULLPointer
kFD_CouldNotDecompressData
kFD_ErrorReadingFromStore

FD_WriteToLargeBinary 3

DIL_Error FD_WriteToLargeBinary(FD_Handle obj, long offset, const
void* buffer, long count)

Writes bytes to a large binary object.

obj An FDIL large binary object.

offset Where to start writing from, in bytes from the beginning
of the binary object.

buffer Where the data is stored.

count How many bytes to write.

return value An error code.

SEE ALSO

For an example call to this function, see Listing 3-7 (page 3-10).

ERROR CODES

an error from a user-defined large binary procedure
kFD_FDILNotInitialized
kFD_ExpectedLargeBinary
kFD_ExpectedNonNegativeValue
kFD_NULLPointer
kFD_CouldNotCompressData
kFD_ErrorWritingToStore

C H A P T E R 3

FDIL Interface

FDIL Reference 3-59

Preliminary Draft.  Apple Computer, Inc. 11/16/97

FD_SetLargeBinaryProcs 3

DIL_Error FD_SetLargeBinaryProcs(const FD_LargeBinaryProcs*
procsPtr)

Sets the default set of procedures to use when creating a large binary object.

procsPtr A pointer to a struct with function pointers to the
functions that create a large binary object and page it in
and out of memory. You can pass in the constant
kFD_MemoryStoreProcs to store large binary objects in
main memory, kFD_DiskStoreProcs to store the object on
disk, or kFD_NullStoreProcs to simply discard the data.

FD_SetLargeBinaryProcs copies over the struct this
pointer points to. This struct need not be permanent
data.

return value An error code.

DISCUSSION

If you do not call this function, the default kFD_MemoryStoreProcs is used.

SEE ALSO

You can create your own large binary procedures, see “Creating Your Own
Large Binary Storage Procedures” (page 3-11).

ERROR CODES

kFD_FDILNotInitialized
kFD_NULLPointer

C H A P T E R 3

FDIL Interface

3-60 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Array Object Functions 3

FD_MakeArray 3

FD_Handle FD_MakeArray(long size, const char* cls)

Creates an array large enough to hold the given number of elements.

size The initial size, number of slots, of the array.

cls Either NULL in which case the array’s is given a default
class, or a string that is passed to FD_MakeSymbol and
becomes the array’s class.

return value An array FDIL object.

SEE ALSO

For an example call to this function, see Listing 3-9 (page 3-17).

ERROR CODES

kFD_FDILNotInitialized
kDIL_OutOfMemory
kFD_ValueOutOfRange

FD_IsArray 3

int FD_IsArray(FD_Handle obj)

Determines whether or not an FDIL object is an array object.

obj The object to test.

return value Zero or non-zero.

SEE ALSO

For an example call to this function, see Listing 3-9 (page 3-17).

ERROR CODES

kFD_FDILNotInitialized

C H A P T E R 3

FDIL Interface

FDIL Reference 3-61

Preliminary Draft.  Apple Computer, Inc. 11/16/97

FD_InsertArraySlot 3

DIL_Error FD_InsertArraySlot(FD_Handle array, long pos,
FD_Handle item)

Inserts the given object into the array at the specified position.

array An FDIL array object.

pos Where to insert the item.

item The item to insert.

return value An error code.

DISCUSSION

Any objects between that position and the end of the array are moved down
in the array to make room. Calling this function with pos ==
FD_GetSize(array) -1, is equivalent to appending an object to the array.

SEE ALSO

For an example call to this function, see Listing 3-9 (page 3-17).

ERROR CODES

kFD_FDILNotInitialized
kDIL_OutOfMemory
kFD_ExpectedArray
kFD_ValueOutOfRange

FD_AppendArraySlot 3

DIL_Error FD_AppendArraySlot(FD_Handle array, FD_Handle item)

Appends the given element to the end of the array.

array An FDIL array object.

item The item to insert.

return value An error code.

SEE ALSO

For an example call to this function, see Listing 3-9 (page 3-17).

C H A P T E R 3

FDIL Interface

3-62 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

ERROR CODES

kFD_FDILNotInitialized
kDIL_OutOfMemory
kFD_ExpectedArray
kFD_ValueOutOfRange

FD_RemoveArraySlot 3

FD_Handle FD_RemoveArraySlot(FD_Handle array, long pos)

Removes the object at the given position in the array.

array An FDIL array object.

pos Which item to remove.

return value The item to removed.

DISCUSSION

Any objects between that position and the end of the array are moved
forward in the array to fill in the vacated slot. The removed object is returned
to the caller so that the caller can dispose of it, if desired.

ERROR CODES

kFD_FDILNotInitialized
kFD_ExpectedArray
kFD_ValueOutOfRange

FD_RemoveArraySlotCount 3

DIL_Error FD_RemoveArraySlotCount(FD_Handle array, long pos,
long count)

Removes count slots from the array starting at the given position.

array An FDIL array object.

pos Where to begin removing array slots from.

count How many slots to remove.

return value An error code.

C H A P T E R 3

FDIL Interface

FDIL Reference 3-63

Preliminary Draft.  Apple Computer, Inc. 11/16/97

DISCUSSION

Any objects between that position and the end of the array are moved
forward in the array to fill in the vacated slots.

SPECIAL CONSIDERATIONS

The objects in the removed slots are not disposed of. You must address this
before losing all references to those objects.

ERROR CODES

kFD_FDILNotInitialized
kFD_ExpectedArray
kFD_ValueOutOfRange

FD_SetArraySlot 3

FD_Handle FD_SetArraySlot(FD_Handle array, long pos, FD_Handle
item)

Sets the array slot at the given position to contain the specified new element.

array An FDIL array object.

pos Which array slot to set.

item The new value of that array slot.

return value The object that used to be in the pos array slot.

DISCUSSION

The object being replaced in the array is returned to the caller so that it can
dispose of the object. No other array elements are affected, and the size of the
array remains unchanged.

ERROR CODES

kFD_FDILNotInitialized
kFD_ExpectedArray
kFD_ValueOutOfRange

C H A P T E R 3

FDIL Interface

3-64 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

FD_GetArraySlot 3

FD_Handle FD_GetArraySlot(FD_Handle array, long pos)

Returns the object in the given slot of the array.

array An FDIL array object.

pos Which array slot to access.

return value The item in that array slot.

SEE ALSO

For an example call to this function, see Listing 3-9 (page 3-17).

ERROR CODES

kFD_FDILNotInitialized
kFD_ExpectedArray
kFD_ValueOutOfRange

Frame Object Functions 3

FD_MakeFrame 3

FD_Handle FD_MakeFrame()

Creates an empty frame.

return value A frame FDIL object.

DISCUSSION

This function creates an empty frame, data can be added to this frame with
FD_SetFrameSlot.

SEE ALSO

For an example call to this function, see Listing 3-10 (page 3-18).

ERROR CODES

kFD_FDILNotInitialized

C H A P T E R 3

FDIL Interface

FDIL Reference 3-65

Preliminary Draft.  Apple Computer, Inc. 11/16/97

kDIL_OutOfMemory

FD_IsFrame 3

int FD_IsFrame(FD_Handle obj)

Determines whether or not an FDIL object is a frame object.

obj The object to test.

return value Zero or non-zero.

SEE ALSO

For an example call to this function, see Listing 3-10 (page 3-18).

ERROR CODES

kFD_FDILNotInitialized

FD_SetFrameSlot 3

FD_Handle FD_SetFrameSlot(FD_Handle frame, const char* slotName,
FD_Handle item)

Adds a key/value pair to the frame, where the key is specified by slotName
and the value is specified by item.

frame An FDIL frame object.

slotName A C string for the slot name.

item An FDIL object to store in that slot.

return value An FDIL object or kFD_NIL if the slot does not exist.

DISCUSSION

If a pair with the specified key already exists in the frame, its corresponding
value object is replaced with item, and the old value is returned for you to
dispose of.

SEE ALSO

For an example call to this function, see Listing 3-10 (page 3-18).

C H A P T E R 3

FDIL Interface

3-66 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

ERROR CODES

kFD_FDILNotInitialized
kDIL_OutOfMemory
kFD_ExpectedFrame
kFD_NULLPointer

FD_GetFrameSlot 3

FD_Handle FD_GetFrameSlot(FD_Handle frame, const char* slotName)

Retrieves the slot identified by slotName.

frame An FDIL frame object.

slotName A C string for the slot name.

return value An FDIL object if the slot exists, kFD_NIL otherwise.

ERROR CODES

kFD_FDILNotInitialized
kFD_ExpectedFrame
kFD_NULLPointer

FD_FrameHasSlot 3

int FD_FrameHasSlot(FD_Handle frame, const char* slotName)

Returns whether or not a slot with the given name exists in the frame.

frame An FDIL frame object.

slotName A C string for the slot name.

return value Zero or non-zero.

ERROR CODES

kFD_FDILNotInitialized
kFD_ExpectedFrame
kFD_NULLPointer

C H A P T E R 3

FDIL Interface

FDIL Reference 3-67

Preliminary Draft.  Apple Computer, Inc. 11/16/97

FD_RemoveFrameSlot 3

FD_Handle FD_RemoveFrameSlot(FD_Handle frame, const char*
slotName)

Removes the slot/value pair identified by slotName.

frame An FDIL frame object.

slotName A C string for the slot name.

return value The FDIL object in the slot, if the slot exists, kFD_NIL,
otherwise.

DISCUSSION

This function does not dispose of the object that was removed from the
frame.

ERROR CODES

kFD_FDILNotInitialized
kFD_ExpectedFrame
kFD_NULLPointer

FD_GetIndFrameSlot 3

FD_Handle FD_GetIndFrameSlot(FD_Handle frame, long pos)

Allows traversal of the list of slots in a frame.

frame An FDIL frame object.

pos An index into the frame, see DISCUSSION.

return value The object in the position pos.

DISCUSSION

By calling FD_GetIndFrameSlot with values of pos ranging from zero to
FD_GetLength(frame) - 1 (inclusive), you can retrieve the contents of all the
slots in the frame.

The order in which the objects are returned is not defined. In particular, you
should not expect to retrieve them in the order in which they were inserted.

C H A P T E R 3

FDIL Interface

3-68 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

SEE ALSO

For an example call to this function, see Listing 3-10 (page 3-18).

ERROR CODES

kFD_FDILNotInitialized
kFD_ExpectedFrame
kFD_ValueOutOfRange

FD_GetIndFrameSlotName 3

FD_Handle FD_GetIndFrameSlotName(FD_Handle frame, long pos)

Allows traversal of the list of slots in the frame, getting the name for each
one.

frame An FDIL frame object.

pos An index into the frame, see DISCUSSION.

return value An FDIL string object with the slot’s name.

DISCUSSION

By calling FD_GetIndFrameSlotName with values of pos ranging from zero to
FD_GetLength(frame)-1 (inclusive), you can retrieve the names of all the slots
in the frame.

The order in which the slot names are returned is not defined. In particular,
you should not expect to retrieve them in the order in which they were
inserted.

SEE ALSO

For an example call to this function, see Listing 3-10 (page 3-18).

ERROR CODES

kFD_FDILNotInitialized
kFD_ExpectedFrame
kFD_ValueOutOfRange

C H A P T E R 3

FDIL Interface

FDIL Reference 3-69

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Magic Pointer Object Functions 3

FD_MakeMagicPointer 3

FD_Handle FD_MakeMagicPointer(long val)

Creates a magic pointer object.

val The pointer value.

return value A magic pointer FDIL object.

DISCUSSION

You should only need to create magic pointer objects if you are creating a
Newton development environment.

ERROR CODES

kFD_FDILNotInitialized
kFD_ValueOutOfRange

FD_IsMagicPointer 3

int FD_IsMagicPointer(FD_Handle obj)

Determines whether or not an FDIL object is a magic pointer object.

obj The object to test.

return value Zero or non-zero.

ERROR CODES

kFD_FDILNotInitialized

FD_GetMagicPointer 3

long FD_GetMagicPointer(FD_Handle obj)

Returns the value stored in a magic pointer object.

obj An FDIL magic pointer object.

return value A long.

C H A P T E R 3

FDIL Interface

3-70 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

ERROR CODES

kFD_FDILNotInitialized
kFD_ExpectedMagicPointer

Library Initialization Functions 3

FD_Startup 3

DIL_Error FD_Startup()

Initializes the FDIL.

return value An error code.

DISCUSSION

You must call this function before calling any other FDIL function. It is
generally called just once at the beginning of your application, but can be
called more than once as long as an equal number of calls to FD_Shutdown are
also made.

ERROR CODES

kDIL_OutOfMemory

FD_Shutdown 3

DIL_Error FD_Shutdown()

Closes the library.

return value An error code.

DISCUSSION

If this is the last call to FD_Shutdown, then all memory allocated by the FDIL
since FD_Startup was called is deallocated.

ERROR CODES

kFD_FDILNotInitialized

C H A P T E R 3

FDIL Interface

FDIL Reference 3-71

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Object Comparison Function 3

FD_Equal 3

int FD_Equal(FD_Handle obj1, FD_Handle obj2)

Determines whether or not two objects are equal to each other.

obj1 An FDIL object.

obj2 An FDIL object.

return value Zero or non-zero.

DISCUSSION

Objects of different types are never equal. Non-pointer objects are equal if
their types and associated integral values are equal. Pointer objects are equal
only if they refer to the same object.

ERROR CODES

kFD_FDILNotInitialized

Object Duplication Functions 3

FD_Clone 3

FD_Handle FD_Clone(FD_Handle obj)

Creates a copy of the given object.

obj An FDIL object.

return value The new FDIL object.

DISCUSSION

If the object is an aggregate object, that is, an array or a frame, only the
top-level object is cloned. None of the child objects are cloned.

C H A P T E R 3

FDIL Interface

3-72 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

ERROR CODES

kFD_FDILNotInitialized
kDIL_OutOfMemory
kFD_PointerObjectIsFree

FD_DeepClone 3

FD_Handle FD_DeepClone(FD_Handle obj)

Creates a copy of the given object.

obj An FDIL object.

return value The new FDIL object.

DISCUSSION

If the object is an aggregate object, that is, an array or a frame, all child
objects are cloned as well.

ERROR CODES

kFD_FDILNotInitialized
kDIL_OutOfMemory
kFD_PointerObjectIsFree

Object Disposing Functions 3

FD_Dispose 3

DIL_Error FD_Dispose(FD_Handle obj)

Disposes of an object’s allocated memory.

obj An FDIL object.

return value An error code.

DISCUSSION

Upon return obj is no longer valid, if it used to be a pointer object.

C H A P T E R 3

FDIL Interface

FDIL Reference 3-73

Preliminary Draft.  Apple Computer, Inc. 11/16/97

This function simply ignores non-pointer objects, since they contain no data
outside the FD_Handle. Symbol objects are not disposed of either, since they
are a pooled resource.

This function does a shallow-dispose of an object; that is if the object is an
aggregate object such as an array or a frame, memory used by the
component objects is not freed. To perform a deep-disposing of an aggregate
object, use FD_DeepDispose.

ERROR CODES

kFD_FDILNotInitialized
kFD_PointerObjectIsFree

FD_DeepDispose 3

DIL_Error FD_DeepDispose(FD_Handle obj)

Disposes of an object’s allocated memory, and if the object is an array or
frame, disposes of any objects contained within them.

obj An FDIL object.

return value An error code.

DISCUSSION

Upon return obj is no longer valid, if it used to be a pointer object.

This function simply ignores non-pointer objects, since they contain no data
outside the FD_Handle. Symbol objects are not disposed of either, since they
are a pooled resource.

ERROR CODES

kFD_FDILNotInitialized
kFD_PointerObjectIsFree

C H A P T E R 3

FDIL Interface

3-74 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Object Printing Function 3

FD_PrintObject 3

DIL_Error FD_PrintObject(FD_Handle obj, const char* EOLString,
DIL_WriteProc writeFn, void* userData)

Formats and prints an FDIL object.

obj The FDIL object to print.

EOLString The end-of-line sequence used in your development
environment.

writeFn A DIL_WriteProc that prints out the formatted text; see
“DIL_WriteProc” (page 3-30).

As with other functions that call a DIL_WriteProc, this
function calls your DIL_WriteProc with an amt
parameter that is the number of bytes to be written from
the buf parameter. This function adds a NULL byte to
the end of buf, as a convenience, allowing you to treat
buf as a C string. The NULL byte is added in the
(amt+1)th position of buf; that is buf[amt] == 0.

userData A pointer that is passed on to your writeFn.

return value An error code.

ERROR CODES

kFD_FDILNotInitialized
kFD_NULLPointer

C H A P T E R 3

FDIL Interface

FDIL Reference 3-75

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Object Streaming Functions 3

FD_Flatten 3

DIL_Error FD_Flatten(FD_Handle obj, DIL_WriteProc writeFn, void*
userData)

Converts the given object into a flat stream of bytes in Newton Stream Object
Format (NSOF) suitable for saving to disk or for transmission to a Newton
device.

obj An FDIL object.

writeFn A DIL_WriteProc to actually write the streamed bytes;
see “DIL_WriteProc” (page 3-30).

userData A pointer to any data you wish to be passed on to your
writeFn.

return value An error code.

DISCUSSION

FD_Flatten just performs the conversion of objects into bytes; the actual
disposition of the bytes is determined by the writeFn function you provide.

SEE ALSO

This function is discussed in “Object Streaming” (page 3-21).

ERROR CODES

an error returned by a user’s DIL_WriteProc
kFD_FDILNotInitialized
kDIL_OutOfMemory
kDIL_ErrorWritingToPipe
kFD_ErrorReadingFromStore

C H A P T E R 3

FDIL Interface

3-76 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

FD_Unflatten 3

FD_Handle FD_Unflatten(DIL_ReadProc readFn, void* userData)

Converts a flat stream of bytes in Newton Stream Object Format (NSOF) into
an FDIL object.

readFn A DIL_ReadProc to actually read the streamed bytes;
see “DIL_ReadProc” (page 3-31).

userData A pointer to any data you wish to be passed on to your
readFn.

return value An FDIL object.

DISCUSSION

FD_Unflatten does not care where the bytes come from. It is only responsible
for using them to recreate the original objects from which they were formed.

SEE ALSO

This function is discussed in “Object Streaming” (page 3-21).

ERROR CODES

an error returned by a user’s DIL_ReadProc
kFD_FDILNotInitialized
kDIL_OutOfMemory
kDIL_ErrorReadingFromPipe
kFD_UnknownStreamVersion
kFD_StreamCorrupted
kFD_UnsupportedCompression
kFD_UnsupportedStoreVersion
kFD_ErrorCreatingStore
kFD_ErrorWritingToStore

C H A P T E R 3

FDIL Interface

FDIL Reference 3-77

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Object Class Functions 3

FD_GetClass 3

FD_Handle FD_GetClass(FD_Handle obj)

Returns the class of the given object.

obj An FDIL object.

return value An FDIL symbol object that is the class of obj.

ERROR CODES

kFD_FDILNotInitialized
kFD_PointerObjectIsFree

FD_SetClass 3

DIL_Error FD_SetClass(FD_Handle obj, FD_Handle oClass)

Sets the class of given object to the specified class.

obj An FDIL pointer object.

oClass An FDIL symbol object for the class, or kFD_NIL.

return value An error code.

DISCUSSION

Only classes for non-symbol pointer objects can be set or changed. In
general, classes should be specified as symbol objects. However, you can also
set an object’s class to kFD_NIL.

ERROR CODES

kFD_FDILNotInitialized
kFD_ExpectedPointerObject
kFD_InvalidClass

C H A P T E R 3

FDIL Interface

3-78 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

FD_IsSubClass 3

int FD_IsSubClass(FD_Handle obj, const char* class)

Returns whether or not an object is an instance of the given object class.

obj The object to test.

class The class to test.

return value Zero or non-zero.

SEE ALSO

This function is discussed in “Object Classes” (page 3-23).

ERROR CODES

kFD_FDILNotInitialized
kFD_PointerObjectIsFree
kFD_NULLPointer

Error Handling Function 3

FD_GetError 3

DIL_Error FD_GetError()

Returns a value indicating the success or failure of the last operation
performed by an FDIL function.

return value An error code.

DISCUSSION

Robust applications should check the result of FD_GetError after calling any
FDIL function that can reasonably be expected to fail.

SEE ALSO

“Error Handling” (page 3-21).

C H A P T E R 3

FDIL Interface

FDIL Reference 3-79

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Memory Management Functions 3

FD_AllocatedMemory 3

long FD_AllocatedMemory()

Returns the total amount of memory allocated by the FDIL library, including
that occupied by created objects and that used by internal data structures.

return value The amount of memory used in bytes.

DISCUSSION

This function can be useful to track how much memory is used by particular
objects, or by the FDIL sub-system in general.

SEE ALSO

For an example call to this function, see Listing 3-13 (page 3-25).

ERROR CODES

kFD_FDILNotInitialized

FD_IsFree 3

int FD_IsFree(FD_Handle obj)

Determines whether the FDIL object refers to a deleted pointer object.

obj The object to test.

return value Zero or non-zero.

DISCUSSION

FDIL objects containing non-pointer objects such as integers or the nil object
cause this function to return false, 0.

SPECIAL CONSIDERATIONS

This function may return false, even if the object originally referenced by the
given FD_Handle was deleted. This can occur, for example, if a new object was

C H A P T E R 3

FDIL Interface

3-80 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

allocated in such a way that it occupies the same space previously occupied
by the deleted object. The FD_Handle effectively refers to the newly created
object, causing FD_IsFree to return false. Thus, FD_IsFree is mostly useful in
the tracking down of object allocation and deletion bugs, and should not be
called in shipping code.

ERROR CODES

kFD_FDILNotInitialized

FD_CheckForMemoryLeaks 3

long FD_CheckForMemoryLeaks(const char* EOLString,
DIL_WriteProc printFn, void* userData)

Reports any undeleted, user-allocated objects, along with the file name and
line number within the file containing the function call that allocated that
object.

EOLString The end-of-line sequence used in your development
environment.

printFn The print function to use to print information; see
“DIL_WriteProc” (page 3-30).

userData A pointer passed on to your printing function.

return value The number of user-allocated objects left undeleted.

ERROR CODES

kFD_FDILNotInitialized

SPECIAL CONSIDERATIONS

This function only exists in the debug version of the DIL.

C H A P T E R 3

FDIL Interface

FDIL Reference 3-81

Preliminary Draft.  Apple Computer, Inc. 11/16/97

FDIL Summary 3

Type Definitions 3
FD_Handle
DIL_Error
DIL_WideChar
FD_LargeBinaryProcs
DIL_WriteProc
DIL_ReadProc
DIL_StatusProc

Constants 3

FDIL objects 3

kFD_NIL
kFD_True

Large Binary Storage Procedures 3

kFD_MemoryStoreProcs
kFD_DiskStoreProcs
kFD_NullStoreProcs

Large Binary Compression Options 3

kFD_NoCompression
kFD_LZCompression
kFD_ZippyCompression

Immediate Types 3

kImmedSpecial
kImmedCharacter
kImmedBoolean
kImmedReserved

C H A P T E R 3

FDIL Interface

3-82 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Error Codes 3

Functions 3

Integer Object Functions 3
FD_Handle FD_MakeInt(long val)
int FD_IsInt(FD_Handle obj)
long FD_GetInt(FD_Handle obj)

kDIL_NoError kFD_ExpectedPointerObject

kDIL_ErrorBase kFD_ExpectedImmediate

kDIL_OutOfMemory kFD_ExpectedMagicPointer

kDIL_InvalidParameter kFD_ExpectedArray

kDIL_InternalError kFD_ExpectedFrame

kDIL_ErrorReadingFromPipe kFD_ExpectedBinary

kDIL_ErrorWritingToPipe kFD_ExpectedLargeBinary

kFD_ErrorBase kFD_ExpectedReal

kFD_UnknownStreamVersion kFD_ExpectedString

kFD_StreamCorrupted kFD_ExpectedSymbol

kFD_UnsupportedCompression kFD_ExpectedChar

kFD_CouldNotCompressData kFD_NULLPointer

kFD_CouldNotDecompressData kFD_ExpectedPositiveValue

kFD_UnsupportedStoreVersion kFD_ExpectedNonNegativeValue

kFD_ErrorCreatingStore kFD_ValueOutOfRange

kFD_ErrorWritingToStore kFD_SymbolTooLong

kFD_ErrorReadingFromStore kFD_IllegalCharInSymbol

kFD_FDILNotInitialized kFD_InvalidClass

kFD_FDILAlreadyInitialized kFD_PointerObjectIsFree

kFD_ExpectedInteger kFD_LBReadingFromUnwrittenPage

C H A P T E R 3

FDIL Interface

FDIL Reference 3-83

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Immediate Object Functions 3
FD_Handle FD_MakeImmediate(long type, long value)
int FD_IsImmediate(FD_Handle obj)
DIL_Error FD_GetImmediate(FD_Handle obj, long* type, long* value)

Character Object Functions 3
FD_Handle FD_MakeChar(char val)
FD_Handle FD_MakeWideChar(DIL_WideChar val)
int FD_IsChar(FD_Handle obj)
char FD_GetChar(FD_Handle obj)
DIL_WideChar FD_GetWideChar(FD_Handle obj)
DIL_Error FD_ConvertFromWideChar(char* dest,

const DIL_WideChar* src, long numChars)
DIL_Error FD_ConvertToWideChar(DIL_WideChar* dest,

const char* src, long numChars)
DIL_Error FD_SetWideCharEncoding(long encoding)

Boolean Object Function 3
int FD_IsBoolean(FD_Handle obj)

Nil Object Functions 3
int FD_IsNIL(FD_Handle obj)
int FD_NotNIL(FD_Handle obj)

Pointer Object Functions 3
int FD_IsPointerObject(FD_Handle obj)
long FD_GetLength(FD_Handle obj)
DIL_Error FD_SetLength(FD_Handle obj, long newSize)

Binary Object Functions 3
FD_Handle FD_MakeBinary(long size, const char* cls)
int FD_IsBinary(FD_Handle obj)
void* FD_GetBinaryData(FD_Handle obj)

Real Object Functions 3
FD_Handle FD_MakeReal(double val)

C H A P T E R 3

FDIL Interface

3-84 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

int FD_IsReal(FD_Handle obj)
double FD_GetReal(FD_Handle obj)

Symbol Object Functions 3
FD_Handle FD_MakeSymbol(const char* str)
int FD_IsSymbol(FD_Handle obj)
const char* FD_GetSymbol(FD_Handle obj)

String Object Functions 3
FD_Handle FD_MakeString(const char* str)
FD_Handle FD_MakeWideString(const DIL_WideChar* unicodeStr)
int FD_IsString(FD_Handle obj)
int FD_IsRichString(FD_Handle obj)
DIL_Error FD_GetString(FD_Handle obj, char* buffer, long bufLen)
DIL_Error FD_GetWideString(FD_Handle obj, DIL_WideChar* buffer,

long bufLen)
FD_Handle FD_ASCIIString(FD_Handle obj)

Large Binary Object Functions 3
FD_Handle FD_MakeLargeBinary(long size, const char * objClass,

long compressed)
int FD_IsLargeBinary(FD_Handle obj)
DIL_Error FD_ReadFromLargeBinary(FD_Handle obj, long offset,

void* buffer, long count)
DIL_Error FD_WriteToLargeBinary(FD_Handle obj, long offset,

const void* buffer, long count)
DIL_Error FD_SetLargeBinaryProcs(const FD_LargeBinaryProcs* procsPtr)

Array Object Functions 3
FD_Handle FD_MakeArray(long size, const char* cls)
int FD_IsArray(FD_Handle obj)
DIL_Error FD_InsertArraySlot(FD_Handle array, long pos, FD_Handle item)
DIL_Error FD_AppendArraySlot(FD_Handle array, FD_Handle item)
FD_Handle FD_RemoveArraySlot(FD_Handle array, long pos)
DIL_Error FD_RemoveArraySlotCount(FD_Handle array, long pos,

long count)
FD_Handle FD_SetArraySlot(FD_Handle array, long pos, FD_Handle item)
FD_Handle FD_GetArraySlot(FD_Handle array, long pos)

C H A P T E R 3

FDIL Interface

FDIL Reference 3-85

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Frame Object Functions 3
FD_Handle FD_MakeFrame()
int FD_IsFrame(FD_Handle obj)
FD_Handle FD_SetFrameSlot(FD_Handle frame, const char* slotName,

FD_Handle item)
FD_Handle FD_GetFrameSlot(FD_Handle frame, const char* slotName)
int FD_FrameHasSlot(FD_Handle frame, const char* slotName)
FD_Handle FD_RemoveFrameSlot(FD_Handle frame, const char* slotName)
FD_Handle FD_GetIndFrameSlot(FD_Handle frame, long pos)
FD_Handle FD_GetIndFrameSlotName(FD_Handle frame, long pos)

Magic Pointer Object Functions 3
FD_Handle FD_MakeMagicPointer(long val)
int FD_IsMagicPointer(FD_Handle obj)
long FD_GetMagicPointer(FD_Handle obj)

Library Initialization Functions 3
DIL_Error FD_Startup()
DIL_Error FD_Shutdown()

Object Comparison Function 3
int FD_Equal(FD_Handle obj1, FD_Handle obj2)

Object Duplication Functions 3
FD_Handle FD_Clone(FD_Handle obj)
FD_Handle FD_DeepClone(FD_Handle obj)

Object Disposing Functions 3
DIL_Error FD_Dispose(FD_Handle obj)
DIL_Error FD_DeepDispose(FD_Handle obj)

Object Printing Function 3
DIL_Error FD_PrintObject(FD_Handle obj, const char* EOLString,

DIL_WriteProc writeFn, void* userData)

C H A P T E R 3

FDIL Interface

3-86 FDIL Reference

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Object Streaming Functions 3
DIL_Error FD_Flatten(FD_Handle obj, DIL_WriteProc writeFn,

void* userData)
FD_Handle FD_Unflatten(DIL_ReadProc readFn, void* userData)

Object Class Functions 3
FD_Handle FD_GetClass(FD_Handle obj)
DIL_Error FD_SetClass(FD_Handle obj, FD_Handle oClass)
int FD_IsSubClass(FD_Handle obj, const char* class)

Error Handling Function 3
DIL_Error FD_GetError()

Memory Management Functions 3
long FD_AllocatedMemory()
int FD_IsFree(FD_Handle obj)
long FD_CheckForMemoryLeaks(const char* EOLString,

DIL_WriteProc printFn, void* userData)

