
About the DILs 1-1

Preliminary Draft.  Apple Computer, Inc. 11/16/97

C H A P T E R 1

DIL Interface 1

The Desktop Integration Libraries (DILs) 2.0 are a suite of C-language
libraries that desktop applications (for both Windows and Mac OS) can use
for data interchange with Newton devices.

About the DILs 1

There are three libraries that comprise the DILs:

■ The CDIL, Communications DIL, allows for a two-way pipe between the
desktop application and the Newton device. This pipe imposes no
restrictions on the format of the data passed through. Both sides simply
read and write any number of bytes. The CDIL can be configured to use a
variety of services to implement this pipe: MNP serial, ADSP, TCP, and
Communications Toolbox tools.

■ The FDIL, Frames DIL, is a desktop implementation of the NewtonScript
object model. The FDIL allows you to create and manipulate
NewtonScript objects on the desktop machine. This means that the
Newton device and desktop applications can send each other
NewtonScript objects, and the desktop application can access the data in

Figure 1-0
Listing 1-0
Table 1-0

C H A P T E R 1

DIL Interface

1-2 About the DILs

Preliminary Draft.  Apple Computer, Inc. 11/16/97

them. The FDIL also provides the ability to stream these objects, allowing
you to send the objects through a CDIL pipe, or store them in a file.

■ The PDIL, Protocol DIL, is a library that communicates with the Dock
application on a Newton device. The Dock application was called
Connection in pre-Newton 2.1 OS devices. The PDIL knows about the set
of commands (the protocol) used to send information to and receive
information from the Dock application. These operations include:

■ connecting to the Dock application

■ getting a list of stores and soups

■ reading the entries stored in the soups

■ performing soup queries and iterating through soup entries with
cursors

■ adding new and deleting existing soups and soup entries

■ calling global functions and root view methods

■ downloading packages

■ extending the protocol to execute arbitrary NewtonScript function
objects

Interrelationship Between the CDIL, FDIL, and PDIL 1
The PDIL uses the FDIL directly; the PDIL uses entities such as soup entries
and objects retrieved from the Dock application, these are represented with
FDIL objects. This is the only strong link between these libraries. The PDIL
requires that some sort of link be established with the Newton device, this
link can be implemented with the CDIL, but this is not necessary.

C H A P T E R 1

DIL Interface

Using the DIL 1-3

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Listing 1-1 Dependency between the DIL libraries

Compatibility with 1.x DILs 1
While the basic responsibilities of the various DILs (that is, CDIL, FDIL, and
PDIL) remain the same as their 1.0 counterparts, the actual application
program interface (API) have changed significantly. The APIs have been
streamlined and their functionality and interfaces have been enhanced.

Information on converting from using the 1.0 to the 2.0 CDIL can be found in
“CDIL Compatibility” (page 2-2). The FDIL is sufficiently different from the
HLFDIL that no compatibility information can be offered. There was no
shipping version of the 1.0 PDIL.

Using the DIL 1

The DIL is distributed as a single library file since it is considered that these
libraries will be used in conjunction. There are a number of versions of this
file. There is a normal and debug version for each of the three supported
platforms: 68K, PPC, and x86, and dynamic-link versions of the x86 libraries.
The header files however, are independent for the different DIL components.
The four header files are:

DIL.h
CDIL.h

PDIL

User Callbacks

User Comm fns. CDIL FDIL

C H A P T E R 1

DIL Interface

1-4 Using the DIL

Preliminary Draft.  Apple Computer, Inc. 11/16/97

FDIL.h
PDIL.h

You only need to include the appropriate header file for the DIL component
you are using, CDIL, FDIL, and PDIL; you do not need to explicitly include
the DIL.h file itself.

Platform Specific Considerations 1
On the Mac OS, the libraries are static, built with CodeWarrior Pro 1. The
68K platform, are built using the smart code model, 4-byte ints, 8-byte
doubles, 68020 code generations, and SANE floating point numerics. The
68K libraries are in the files:

DIL.68K.Debug
DIL.68K.NoDebug

There are no special considerations on the PowerPC platform, the library
files are:

DIL.PPC.Debug
DIL.PPC.NoDebug

The Windows version of the library comes in static and dynamic link
versions. They were built with Visual C++ 5.0, and should work in any
compatible development environment. The static libraries have been
compiled against the multi-threaded static C Runtime libraries:
“Multi-threaded Debug” for the debug version, and “Multi-threaded” for the
non-debug version. If you use these static-link libraries, you'll need to use
matching settings in your “C/C++” / “Code Generation” settings panel. The
static library files are:

DIL2.lib
DIL2D.lib

There are no special considerations with the dynamic link libraries. The
dynamic library files are:

DIL2.dll
DIL2.lib
DIL2D.dll
DIL2D.lib

C H A P T E R 1

DIL Interface

Using the DIL 1-5

Preliminary Draft.  Apple Computer, Inc. 11/16/97

Note

The dynamic link version of the “DIL2.lib” and “DIL2D.lib”
contain stub functions, and are thus different from the files
with the same name in the static libraries directory. ◆

If you use the Windows static link library you must defined the macro
USING_STATIC_DIL before including any of the DIL header files. If you are
using the Windows dynamic link libraries, you must similarly define the
macro USING_DYNAMIC_DIL before including any DIL header files. Failure to
define either of these symbols results in an error message reminding you to
define one or the other.

Debug Versions of the Library 1
The DIL includes a debug version. To use the debug version of the library,
include the proper library file, and define the macro DIL_ForDebug before
including any of the DIL header files. The debug versions are:

DIL.68K.Debug
DIL.PPC.Debug
DIL2D.dll
DIL2D.lib

The debug versions of the library includes embedded asserts. If something
terribly wrong occurs, the DIL calls the Standard C Library assert facility.
There are also a number of changes in the debug version of the FDIL
component; for information on these changes, see “The Debug Version of the
FDIL” (page 3-26). You should only ship code built with the non-debug
version of the library.

C H A P T E R 1

DIL Interface

1-6 Using the DIL

Preliminary Draft.  Apple Computer, Inc. 11/16/97

