
Newton Q&A: Ask the llama

This column first appeared in volume 24 of DEVELOP (the Apple technical journal
for developers). Copyright ©1995 Apple Computer, Inc. All rights reserved.

Q The online discussion groups for Newton developers have a lot of references
to compatibility these days. My application works fine on the 120, 110, and
100 models. Does that mean I’m compatible?

A Good question. Compatibility doesn’t mean your application works now,
but that it’s written in such a way that it will work on future Newton devices
and operating systems. There are several APIs and methods for doing things
on the 120, 110, and 100 that will work with them but are not necessarily
compatible with future releases of the OS.

There are two main points to observe for the sake of compatibility:

• If it’s not documented, don’t use it.

• Catch exceptions; they can occur (especially if you ignore the first point).

Since compatibility is such an important question, it will be the focus of this
column. The rest of the column will cover the most common breaches of
compatibility. Where applicable, there will be an example of the incompatible
and compatible ways of doing things. After reading this and making copious
notes (especially where you find yourself saying “Oh dear” and “Oh no!”),
you’ll be in a position to make your code compatible. We also recommend
that you try out your application with the Compatibility App Package (which
is on this issue’s CD and is available from various online services).

Note that we refer often to the Newton Toolkit platform file functions. The
Toolkit comes with documentation and platform files can come with release
notes. Both the documentation and release notes describe functions that are
provided in lieu of future APIs. You should use these platform file functions
where applicable. Call the code directly and don’t modify it. That is, use the
call/with syntax; don’t place the code in a slot in your application and use
message sending.

 UNDOCUMENTED GLOBAL FUNCTIONS
There are four common offenders here: CreateAppSoup, SetupCardSoups,
MakeSymbol, and GetAllFolders.

The function kRegisterCardSoupFunc in the platform file replaces both
CreateAppSoup and SetupCardSoups. It’s much simpler to use than the
undocumented functions:

// RIGHT way

constant kSoupName := "MySoup:MYSIG";

constant kSoupIndices := '[];

constant kAppObject := '["Item", "Items"];

call kRegisterCardSoupFunc with

(kSoupName, kSoupIndices, kAppSymbol, kAppObject);

// ******* WRONG way ****** Bad, naughty, nasty, skanky, way *****

CreateAppSoup(kSoupName, kSoupIndices, EnsureInternal([appSymbol]),

EnsureInternal(kAppObject));

AddArraySlot(cardSoups, kSoupName);

AddArraySlot(cardSoups, kSoupIndices);

SetupCardSoups();

The fix for MakeSymbol is to call the Intern function; it does the same thing and
it is documented. There’s no replacement function for GetAllFolders; just don’t
call it.

UNDOCUMENTED GLOBAL VARIABLES
The three most common misused global variables are cardSoups, extras, and
userConfiguration.

There are two uses of cardSoups: one is to register a card soup; the other to
unregister it. Registering is taken care of with kRegisterCardSoupFunc (see
above). Unregistering is done with another platform file function,
kUnRegisterCardSoupFunc:

// RIGHT way

call kUnRegisterCardSoupFunc with (kSoupName);

// ******* WRONG way ****** Bad, naughty, nasty, skanky, way *****

SetRemove(cardSoups, kSoupName);

SetRemove(cardSoups, kSoupIndices);

You should never access the extras global variable. Not only is it
undocumented, but so is the format of the. Both are subject to major revisions.
The platform file function kSetExtrasInfoFunc is provided for setting information
about items in the extras drawer. The most common use of this function is to give
your application a different icon (see the ExtraChange DTS sample code on the
CD).

There are also platform file functions to manipulate userConfiguration:
kGetUserConfigFunc gets a slot from the userConfiguration soup entry;
kSetUserConfigFunc lets you set user configuration information; and
kFlushUserConfigFunc should be called when you’ve changed user
configuration information.

// RIGHT way

local userName := call kGetUserConfigFunc with ('name);

if userName then

begin

if StrEqual(userName, "Doctor") then

call kSetUserConfigFunc with ('name, "The Doctor");

call kFlushUserConfigFunc with ();

end;

// ******* WRONG way ****** Bad, naughty, nasty, skanky, way *****

if userConfiguration.name AND

StrEqual(userConfiguration.name, "Doctor") then

userConfiguration.name := "The Doctor";

UNDOCUMENTED SLOTS AND METHODS
This is a broad category of violations. The most common problem is
keyboardChicken in the root view. But there are others, like
cursor.current, paperRoll.dataSoup, dockerChooser in the root view,
UnionSoup:Add, and anything in a built-in application. Unfortunately, there is
no right way to access most of these. The exceptions are cursor.current and
Add:

// RIGHT way

local currentEntry := cursor:Entry();

myUnionSoup:AddToDefaultStore(anEntry);

// ******* WRONG way ****** Bad, naughty, nasty, skanky, way *****

local currentEntry := cursor.current;

myUnionSoup:Add(anEntry);

Also, don’t rely on the routing slips, such as mailSlip and printSlip, being in
the root view. You can, however, still use those symbols in your routing frame.

UNDOCUMENTED MAGIC POINTERS
If you use one of these, you know it. Just think what would happen if the magic
pointer changed from a view to a string: you would get some pretty bad behavior.
Note that most of this could be dealt with by catching exceptions.

STORE AND SOUP ASSUMPTIONS
All you can assume is that store 0 is the internal store. You can’t rely on there
being only one other store, nor can you rely on the position of a store in the array
returned by GetStores. Also, don’t assume that another store is a card or even
that there is just one store per card.

If you support moving or copying items between stores, you shouldn’t find the
title of the store. Use the constant ROM_cardAction as provided in the platform
file:

// RIGHT way

routingFrame := {

print: ...

...

card: ROM_cardAction

}

In addition, don’t assume that your soup will exist on every store. Currently, if
you register your union soup, it’s automatically created on every store that enters
the Newton; however, this may change in the future:

// RIGHT way

GetUnionSoup(kSoupName):AddToDefaultStore(anEntry);

// ******* WRONG way ****** Bad, naughty, nasty, skanky, way *****

aStore:GetSoup(kSoupName):Add(anEntry);

Remember that AddToDefaultStore or Add could throw exceptions. Wrap your
calls to these functions in exception handlers.

Finally, if you support the soup change mechanism, don’t assume that the change
is adding or deleting an entry. It could be something else, such as a soup being
created or removed from a store.

SCREEN SIZE
Don’t assume the screen is any particular size. It could be larger or smaller than
current devices. It could also be wider than it is tall. Your application size setup
routine (usually in the viewSetupFormScript) should take this into account. Have
maximum and minimum sizes. Close your application if it can’t handle the
current screen size:

// Code to close your application

constant kUnsupportedScreenSize :=

"WiggyWorld does not support this screen size";

DefConst('closeMeFunc, func(x) x:Close()) ;

:Notify(kNotifyQAlert, EnsureInternal(kAppName),

EnsureInternal(kUnsupportedScreenSize));

AddDeferredAction(closeMeFunc, [self]);

UNDOCUMENTED FEATURES OF DATA TYPES
Only rely on the features and details of built-in data types that are documented.
There are three common problem areas: order of slots in a frame, precision of
integers, and implementation of strings.

The order of slots in a frame is undefined. It just so happens that in the current
implementation the first 20 slots are returned in the order added. This is not a
documented feature, so don’t rely on it.

Integers are documented as having at least 30 bits of precision. This doesn’t
mean they’ll always be 30 bits; they could be wider (as anyone who has used
compiled NewtonScript can tell you). Note that compiled NewtonScript integers
may not be 32 bits; they also follow the “at least 30 bits” rule.

The biggest offender is assumptions about how strings are implemented. Don’t
rely on strings being null terminated or being composed of two-byte Unicode
characters. The practical upshot is that you should use StrLen to find the length,
and StrMunger (or &) for length changes. Don’t use Length, SetLength, or

BinaryMunger with strings. Do not set a string using the array accessor. You can
check a character, but do not set a character.

MISCELLANEOUS BITS
Don’t send messages directly to the IOBox; use the kSendFunc platform file
function. Nor should you read the items in the IOBox soups.

Also note that there are platform file functions to register and unregister for Find
that you should use.

Always use SetValue when you’re changing the view or other system values.

Use only the body slot in items that you route. Don’t rely on slots other than
body surviving the routing process. On a related note, do not rely on category
slot of fields in your SetupRoutingSlip method either.

Don’t rely on the closing order of views in the viewQuitScript. If you need to do
some ordered cleanup, you can initiate your own message (for example,
myViewQuitScript) from the view that first receives the viewQuitScript.

Replace system functions and messages at your peril. It’s conceivable for them to
support other data types in the future (for example, to take NIL now where
before they only took a string).

Don’t assume anything about the built-in applications. Don’t assume that they
exist, or that their soups are there, or that the view structure will stay the same. If
you do need to use a system feature (for example, a particular prototype, global
function, or root method), test your assumptions:

local cardFileExists := GetRoot().cardfile;

if cardFileExists then

begin

local cardFileSoup := GetUnionSoup(ROM_cardfilesoupname);

if cardFileSoup then

...

end;

// :-0

if GetRoot().keyboardChicken then

...

end;

Current Newtons have two levels of Undo; this may change. There could be
more or fewer levels and it could change to Undo/Redo. It’s safest to call
AddUndoAction from inside your undo action; this will support Undo/Redo if
we implement it, but will do nothing if we do not.

The llama is
the unofficial mascot of the Developer Technical Support group in Apple’s Newton Systems
Group. Send your Newton-related questions to NewtonMail or eWorld DRLLAMA, or AppleLink
DR.LLAMA. The first time we use a question from you, we’ll send you a T-shirt.

Thanks
to our Newton Partners for the questions used in this column, and to jXopher Bell, Henry Cate,
Bob Ebert, David Fedor, Stephen Harris, Jim Schram, Maurice Sharp, James Speir, and Bruce
Thompson for the answers.

Have more questions?
Need more answers? Take a look at Newton Developer Info on AppleLink.

