
NEWTON

Q&A:

ASK THE

LLAMA

This Column first appeared in volume 20 of DEVELOP (the Apple technical journal for developers).
Copyright ©1994 Apple Computer, Inc. All rights reserved.

My llama senses have been overwhelmed by a call for some information on performance. All the
questions in this issue’s column will relate to performance in some way. There are two important points
to remember: 1) None of these tips will work by themselves; you must measure your code. Use Ticks
use the trace global (see below), use Print. Find out where your code is slow, or where your
application is bloated. 2) There is no silver bullet for a problem; you must experiment with different
solutions. In the words of my wise programming master: “When is a llama not a llama? . . . When it is a
guanacos.” Or, “When you can snatch these coconuts from my hand, then it will be time for me to leave.”

Q I’m building an application that has a large set of static data. I search on a key term (a string) an
all the data associated with that string. Mike Engber’s “Lost In Space” article (in the May 1994 i
of PIE Developers magazine) says that I should include this data in my package and things will
fast. But this doesn’t seem to be the case. I have thousands of frames of data. Each frame conta
one or more slots with strings that contain the key terms. I use FindStringInFrame to find all
references to a key term but this takes a long time. Am I doing something wrong?

A This may seem like a simple question, but it isn’t. The root of the problem is that you’ve made an
assumption that functions provided in the ROM are fast, so they’ll solve your problem. In this
case, you assumed that FindStringInFrame would be fast. You’re both right and wrong.

FindStringInFrame is fast, but it still has to linearly search every slot in every frame recursively.
That means that if you have thousands of entries, it’s checking thousands of frames. You can talk
about how long something will take by calculating the worst case. FindStringInFrame has to search
all your data frames (thousands of items), and for each frame it has to check each slot to see if it is a
string. If so, it then has to check to see if the string you gave it matches the string it’s looking for
(step by step down the string). So if you had n strings (not just data items), and the average length
of a string was m characters, that’s n *m checks. That makes n *m time. In computer science
terms, you would say that FindStringInFrame is an O(n *m) operation (this is called Big-Oh
notation and, in its simplest form, refers to the worst-case time).

This means you should think about other data structures and methods of accessing them. In your
case, a simple change of data representation would result in a massive speedup. The idea is to make
the expression in the Big-Oh notation have the smallest possible value. One way to do this is to
reduce the search time for your key phrases. Since you have a fixed set of data, you can sort them
and use a binary search algorithm. You can store the actual data in arrays and store indexes along
with the key items.

The nice thing about binary search is that you’re always cutting your search space in half. On
average, you only have to check log to the base 2 of the data. In Big-Oh notation, that’s O(log n

Of course
you stilldevelop Newton Q&A Draft 2.3 2/5/95 Page 1

have to do the individual string comparisons, so you end up with O(m log n). So for 1000 items,
FindStringInFrame takes 1,000,000 time units, but the modified method takes 3,000, a speedup of
300 times! It’s unlikely that a function implemented at a low level performs 300 times faster than
custom NewtonScript code.

This excursion into computer science should make you think about your data structures and how
you access them. Of course an academic exercise can take you only so far. You also have to get
your feet wet and test the code. You can use Ticks to get rough estimates of time, and Stats (after a
GC) to get estimates of memory.

Q The following is a viewClickScript from a pickList button in my application. Why does it take s
long to execute?

viewClickScript.func(unit)

begin

currentPickItems := [];

for i := 0 to Length(defaultPickItems) - 1 do

if i = currentSelectedItem then

AddArraySlot(currentPickItems,

{item: defaultPickItems[i], mark: kCheckMarkChar});

else

AddArraySlot(currentPickItems, defaultPickItems[i]);

if :TrackHilite(unit) then

DoPopUp(currentPickItems, :LocalBox().right+3,

:LocalBox().top, self);

end

A There are several possible reasons why your code would execute slowly. Since they potentially
apply to lots of code out there, I’ll go through each one separately. At the end is a rewritten
function that should execute considerably faster.

• Lookup costs. Assuming that currentPickItems, currentSelectedItem, and defaultPickItems are
slots somewhere in your view hierarchy, at best they’re slots in the pick button, at worst in your
base application view. Remember that each access to a variable requires an inheritance lookup:
check locals, then globals, then current context, then the _proto chain, then the _parent chain.
This cost isn’t high for single references but can be deadly in loops. Every cycle through your
loop, you’re doing three lookups; that’s a lot of overhead. The solution is to use local variables
for faster access.

• Unnecessary object creation. The AddArraySlot call will grow, and potentially copy, the array on
the NewtonScript heap, resulting in a lot of unnecessary memory movement. Since you know the
length of the currentPickItems array in advance, you should preallocate the array and use the array
accessor (that is, [n]) to add array elements. You can use the Array function call to allocate the

array:

develop Newton Q&A Draft 2.3 2/5/95 Page 2

local pickItems := Array(Length(defaultPickItems), nil);

• Unnecessary execution. You need to create a new pick list only if the call to TrackHilite succeeds.
You should make the TrackHilite conditional the outer conditional:

if :TrackHilite(unit) then

begin

// construct pick list and DoPopUp

...

end;

• Inefficient variable initialization. It’s inefficient to use a loop for initializing currentPickItems from
defaultPickItems, because currentPickItems has only minor differences. It’s better to use Clone
for initialization. This way you get a new array whose elements are references back to the array
items in defaultPickItems. All you need to do is replace the individual references in
currentPickItems with their new or modified values. It’s the difference between an O(n) operation
(traversing all the array items in defaultPickItems) and an O(1) operation (accessing only the
changed item). In other words, expect about an order of magnitude difference.

• Unnecessary slot. In this case you don’t need to have a currentPickItems slot since its value is
recreated each time the viewClickScript is executed. You’re better off using a local variable.

The modified code is shown below. To illustrate the savings, I ran a brief test using a
defaultPickItems array of 10 elements. Each function is called 100 times (note that TrackHilite was
always true) and found the following code to be over 6 times faster than the original code.

viewClickScript.func(unit)

begin

if :TrackHilite(unit) then

begin

local pickItems := Clone(defaultPickItems);

local selectedItem := currentSelectedItem;

local l := :LocalBox();

if selectedItem then

pickItems[selectedItem] :=

{item: pickItems[selectedItem],

mark: kCheckMarkChar};

DoPopUp(pickItems, l.right+3, l.top, self);

end;

end

Q I’ve written my own IsASCIIAlpha, IsASCIINumeric, etc. functions. They seem to be really sl
Why is that? Here’s my IsASCIIAlpha:

/

/
develop Newton Q&A Draft 2.3 2/5/95 Page 3

returns true if s is an alpha string

// i.e., if s is between a..z or A..Z

// s - string to check

IsASCIIAlpha.func(s)

begin

local c := Upcase(Clone(s));

local i;

for i := 0 to StrLen(c) - 1 do

if (StrCompare(SubStr(c, i, 1), "A") < 0) or

(StrCompare(SubStr(c, i, 1), "Z") > 0) then

return nil;

true;

end;

A First comment. Newton is a Unicode based device. ASCII is a subset of Unicode (from 0x0000 to
0x007F), but Unicode characters up to FFFD are documented. Make sure you realize that your
routing is just checking some of the characters on page 0 (i.e., characters of the form 0x00nn), but
it must deal with all characters.

The main source of the slowness is that you are using string string functions when character
functions would be faster. The distinction is subtle but important. In the code above, you loop
through each length 1 substring of the target string to determine whether it’s an alpha character. All
this takes time. The Upcase call is O(n), as are the SubStr and StrCompare. Of course, the
StrCompare isn’t really that slow, but it’s still slower than you need.

The SubStr call is returning a single character at a time, but in the form of a string. That means
there is a memory allocation for at least two characters (the content and the null terminator) for each
call to SubStr. A better way is to compare each character of the string. In certain circumstances you
can access a character at a time with the array accessor (that is, []). An example of a function that
does this is IsASCIIAlpha3 (see the code on this issue’s CD). In general, when you need either a
single character from a string or character-by-character access, the array-like syntax is faster.

Note that the final fix to the code is that it doesn’t do any preprocessing of the string; instead it uses
a lookup in an pregenerated array of valid alphabetic ASCII characters. That gives it a significant
speed advantage. Since timing in the Inspector is a useful technique, the code to do the timings and
print results is included on the CD. Also note that this function is specifically for ASCII characters,
so characters like é and ß would fail.

Q I’m trying to use the trace global to get information on what methods are called. Unfortunately
lots of output that doesn’t start or end where I want. What can I do?

A There are really two questions here: how to use trace effectively, and how to use the output.
Usually
you woulddevelop Newton Q&A Draft 2.3 2/5/95 Page 4

turn tracing on inside a method, then turn it off later on in the code. Unfortunately, you need to do
more than just set the value of trace; you also have to force the interpreter to notice that trace has
changed. (The PIE Developer Technical Support NewtonScript Q&A on debugging tells you how
to do this.)

// to turn tracing on for functions

trace := 'functions;

// force interpreter to notice change in state of trace variable

Apply(func () nil, []);

// to turn tracing off

trace := nil;

Apply(func () nil, []);

Once you have the trace output, you should cut and paste it into a text processor. There are three
main bits of information you can get from a trace:

• You can look at how many messages are generated from an apparently simple call. You can use
trace in conjunction with function call timings made using Ticks to see why a particular call takes
so long. Using the find feature of your text processor, you can jump to the function call you’re
looking at.

• You can look at the values passed in and returned by function calls.

• Perhaps most useful of all, you can use the text processor to strip away all the extraneous
information (things like the lines specifying return values — that is, lines that contain the string
"=>" as the first non-whitespace entry) so that you’re left with the messages sent. Then you can
sort the messages and get a histogram of the results. This process is easier if you have a text
processor that supports grep-like text substitution (regular expressions) and sorts.

Q I’m using the Newton Toolkit layout editor to organize my data object classes in my application
have 20 classes with one layout per object type. To access the objects, I declare each class layou
the main application. This gives me the benefits of parent inheritance. Unfortunately, even my t
applications are memory hogs. I would expect a time penalty, but why is there such a large spac
penalty?

A The space penalty is much larger than it needs to be. You’re using a layout editor to edit your
classes so that you can graphically edit the classes’ slots. But this has the disadvantage that you
have to specify each class as some sort of view class or prototype, perhaps a simple clView. It’s
the cause of your space problem, because you also carry all the memory and runtime allocation that
goes with a view. Since your layouts are declared to your base application view, and since the
default for a clView is visible, each of your classes is also a full runtime view. That can take a large
amount of space on the NewtonScript heap. For a clView, the penalty is roughly 40 bytes, so that’s

an extra
800 bytes
ofdevelop Newton Q&A Draft 2.3 2/5/95 Page 5

NewtonScript heap that you can free.

A better solution is to avoid using the NewtonScript heap for your class (after all, that’s one of the
advantages of prototype inheritance). You can do this in one of two ways:

• If you still want to use a layout editor to edit your class, you can use a user prototype instead of a
layout. At run time, you’ll have access to the data class using the PT_<filename> syntax
documented in the Newton Toolkit User’s Guide (page 4-25). Remember that the user prototype
will be read-only.

• The other option is to textually define the class. You can do this in your Project Data file, or use
the Load command to read in a different text file. See the PIE Developer Technical Support
NewtonScript Q&A document for more information.

The llama is
the unofficial mascot of the Developer Technical Support group in
Apple’s Personal Interactive Electronics (PIE) division. Send your
Newton-related questions to NewtonMail DRLLAMA or AppleLink
DR.LLAMA. The first time we use a question from you, we’ll send
you a T-shirt.

Thanks
to our PIE Partners for the questions used in this column, and to
jXopher, Bob Ebert, Mike Engber, Kent Sandvik, Jim Schram, and
Maurice Sharp for the answers.

Have more questions?
Need more answers? Take a look at PIE Developer Info on
AppleLink.

develop Newton Q&A Draft 2.3 2/5/95 Page 6

This code will go on the CD:

/* Some code to generate the table used in IsASCIIAlpha4

call func() begin

s := Array(127, nil); // ASCII is 7 bit, so only need 127

for i := 0 to 255 do begin

local c := chr(i);

if (c >= $a and c <= $z) or (c >= $A and c <= $Z) then

s[i] := TRUE;

end;

s

end with ();

*/

IsASCIIAlpha1 := func(s)

begin

local c := Upcase(Clone(s)) ;

local i ;

for i := 0 to StrLen(c) - 1 do

if (StrCompare(SubStr(c, i, 1), "A") < 0) OR

(StrCompare(SubStr(c, i, 1), "Z") > 0) then

return nil ;

true ;

end;

IsASCIIAlpha2 := func(s)

begin

local i ;

local c ;

for i := 0 to StrLen(s) - 1 do

begin

// the assignment of the current character to the local c

// is inlined in the first compare, this is faster.

if not(((c := s[i]) >= $A AND c <= $Z) OR

(c >= $a AND c <= $z)) then

return nil ;

end;

true ;

end;

I

s

A
develop Newton Q&A Draft 2.3 2/5/95 Page 7

SCIIAlpha3 := func(s)

begin

local i ;

local c := Upcase(Clone(s)) ;

for i := 0 to StrLen(c) - 1 do

if (c[i] < $A) OR (c[i] > $Z) then

return nil ;

true ;

end;

// this table was generated using the code above, simple cut

// and paste :-)

constant kAlphaTable := '[NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL,

NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL,

NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL,

NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL,

NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, TRUE, TRUE, TRUE, TRUE,

TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,

TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, NIL, NIL, NIL, NIL, NIL,

NIL, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,

TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,

TRUE, NIL, NIL, NIL, NIL];

IsASCIIAlpha4 := func(s) begin

try

for i := 0 to StrLen(s)-1 do

if not kAlphaTable[ord(s[i])] then

return NIL;

TRUE;

// this code only handles first 127 characters, if the string

// contains a unicode character, the index will be

// out of the bounds of the array. Instead of checking

// the bounds in each loop iteration, use an exception

// handler. This ads no time to the loop, but a bit of setup

// time for the exception

OnException |evt.ex.fr;type.ref.frame| do

if ord(s[i]) > 127 then

nil;

else

develop Newton Q&A Draft 2.3 2/5/95 Page 8

rethrow();

end;

call func()

begin

local longPass := "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";

local longFail := longPass & " ";

local timeFunc := func(targetFunc, s1, s2)

begin

local t := Ticks() ;

for i := 1 to 100 do

begin

call targetFunc with (s1) ;

call targetFunc with (s2) ;

end;

Ticks() - t ;

end;

Print("Long Strings ---------------") ;

print("IsASCIIAlpha1: " & call timeFunc with (IsASCIIAlpha1, longPass,

longFail)) ;

print("IsASCIIAlpha2: " & call timeFunc with (IsASCIIAlpha2, longPass,

longFail)) ;

print("IsASCIIAlpha3: " & call timeFunc with (IsASCIIAlpha3, longPass,

longFail)) ;

print("IsASCIIAlpha4: " & call timeFunc with (IsASCIIAlpha4, longPass,

longFail)) ;

Print("\nShort Strings --------------") ;

print("IsASCIIAlpha1: " &

call timeFunc with (IsASCIIAlpha1, "a", "a ")) ;

print("IsASCIIAlpha2: " &

call timeFunc with (IsASCIIAlpha2, "a", "a ")) ;

print("IsASCIIAlpha3: " &

call timeFunc with (IsASCIIAlpha3, "a", "a ")) ;

print("IsASCIIAlpha4: " &

call timeFunc with (IsASCIIAlpha4, "a", "a ")) ;

end with () ;

"

L

odevelop Newton Q&A Draft 2.3 2/5/95 Page 9

ng Strings ---------------"

"IsASCIIAlpha1: 5078"

"IsASCIIAlpha2: 2389"

"IsASCIIAlpha3: 1981"

"IsASCIIAlpha4: 1176"

"

Short Strings --------------"

"IsASCIIAlpha1: 180"

"IsASCIIAlpha2: 111"

"IsASCIIAlpha3: 107"

"IsASCIIAlpha4: 79"

#2 NIL

develop Newton Q&A Draft 2.3 2/5/95 Page 10

