NEWTON
Q&A:
ASK THE

LLAMA

develop Newton Q&A Draft 2.3 2/5/95 Page 1

This Column first appeared in volume 20 of DEVEL OP (the Apple technical journa for developers)
Copyright ©1994 Apple Computer, Inc. All rights reserved.

My Illama senses have been overwhelmed by a call for some information on performance. All the
questionsin thisissue’ s column will relate to performance in some way. There are two important pc
to remember: 1) None of these tips will work by themselves; you must measure your code. Use T«
use thetrace global (see below), use Print. Find out where your code is slow, or where your
application is bloated. 2) Thereisno silver bullet for a problem; you must experiment with different
solutions. In the words of my wise programming master: “Whenisallamanot allama?. .. Wheni
guanacos.” Or, “When you can snatch these coconuts from my hand, then it will be time for meto |

Q I’'mbuilding an application that has a large set of static data. | search on a key term (a string) an

all the data associated with that string. Mike Engber’s*“ Lost In Soace” article (in the May 1994
of PIE Developers magazine) says that | should include this data in my package and things will
fast. But this doesn’t seem to be the case. | have thousands of frames of data. Each frame conte
one or more gots with strings that contain the key terms. | use FindSringlnFrameto find all
references to a key term but this takes a long time. Am | doing something wrong?

Thismay seem like asimple question, but it isn’t. The root of the problem isthat you' ve made
assumption that functions provided in the ROM are fast, so they’ Il solve your problem. In this
case, you assumed that FindStringlnFrame would be fast. Y ou’ re both right and wrong.

FindStringInFrameisfast, but it still hasto linearly search every dot in every frame recursively
That meansthat if you have thousands of entries, it's checking thousands of frames. Y ou can te
about how long something will take by calculating the worst case. FindStringlnFrame hasto se
all your data frames (thousands of items), and for each frame it has to check each dot to seeiif i
string. If o, it then has to check to seeif the string you gave it matches the string it’s looking f
(step by step down the string). So if you had n strings (not just dataitems), and the average len
of astring was m characters, that’s n *m checks. That makes n * m time. In computer science
terms, you would say that FindStringlnFrameis an O(n * m) operation (thisis called Big-Oh
notation and, in its ssimplest form, refersto the worst-case time).

This means you should think about other data structures and methods of accessing them. In yot
case, asimple change of data representation would result in amassive speedup. Theideaiston
the expression in the Big-Oh notation have the smallest possible value. One way to do thisisto
reduce the search time for your key phrases. Since you have afixed set of data, you can sort th
and use a binary search algorithm. Y ou can store the actual datain arrays and store indexes alor
with the key items.

The nice thing about binary search isthat you’ re always cutting your search spacein half. On

average, you only have to check log to the base 2 of the data. In Big-Oh notation, that's O(log 1
Of cot
you st

develop Newton Q&A

have to do the individual string comparisons, so you end up with O(m log n). So for 1000 iterr
FindStringlnFrame takes 1,000,000 time units, but the modified method takes 3,000, a speedu
300 times! I’ sunlikely that a function implemented at alow level performs 300 times faster the
custom NewtonScript code.

This excursion into computer science should make you think about your data structures and ho
you access them. Of course an academic exercise can take you only so far. Y ou aso have to gel
your feet wet and test the code. Y ou can use Ticks to get rough estimates of time, and Stats (aft
GC) to get estimates of memory.

The following is a viewClickScript from a pickList button in my application. Why does it take ¢
long to execute?

viewd i ckScript. func(unit)

begi n
currentPickitens :=[];
for i :=0to Length(defaultPicklitens) - 1 do
if i =currentSelectedtemthen
AddArrayd ot (current A ckl t ens,
{item defaultP cklitens[i], nmark: kCheckMrkChar});
el se

AddArrayS ot (current P ckltens, defaultPickltens[i]);
if :TrackHlite(unit) then
DoPoplp(current B ckltens, : Local Box().ri ght +3,
: Local Box().top, self);
end

There are several possible reasons why your code would execute slowly. Since they potentially
apply to lots of code out there, I’ll go through each one separately. At the end isarewritten
function that should execute considerably faster.

» Lookup costs. Assuming that currentPickltems, currentSelectedltem, and defaultPickltems
slots somewhere in your view hierarchy, at best they’re dlotsin the pick button, at worst in
base application view. Remember that each access to a variable requires an inheritance look
check locals, then globals, then current context, then the _proto chain, then the _parent cha
This cost isn't high for single references but can be deadly in loops. Every cycle through y«
loop, you' re doing three lookups; that’s alot of overhead. The solution isto uselocal varia
for faster access.

» Unnecessary object creation. The AddArraySlot call will grow, and potentially copy, the ar
the NewtonScript heap, resulting in alot of unnecessary memory movement. Since you kn
length of the currentPickltems array in advance, you should preallocate the array and use th
accessor (that is, [n]) to add array elements. Y ou can use the Array function call to allocater

ar

Draft 2.3 2/5/95 Page 2

develop Newton Q&A

local picklitens := Array(Length(defaul tF ckitens), nil);

* Unnecessary execution. Y ou need to create anew pick list only if the call to TrackHilite suc
Y ou should make the TrackHilite conditional the outer conditional:

if :TrackHlite(unit) then
begi n
/1 construct pick list and DoPoplp

end;

* Inefficient variable initiaization. It’sinefficient to use aloop for initializing currentPicklten
defaultPickltems, because currentPickltems has only minor differences. It’s better to use C
for initialization. Thisway you get a new array whose elements are references back to the a
itemsin defaultPickitems. All you need to do is replace the individua referencesin
currentPickltems with their new or modified values. It' s the difference between an O(n) opt
(traversing al the array itemsin defaultPickltems) and an O(1) operation (accessing only th
changed item). In other words, expect about an order of magnitude difference.

* Unnecessary dot. In this case you don’t need to have a currentPickltems slot since its val ue
recreated each time the viewClickScript is executed. Y ou' re better off using alocal variable

The modified code is shown below. To illustrate the savings, | ran a brief test using a
defaultPickltems array of 10 elements. Each function is called 100 times (note that TrackHilitey
always true) and found the following code to be over 6 times faster than the original code.

viewd ickSeript. func(unit)
begi n
if :TrackH lite(unit) then
begi n
local picklitens := A one(defaul t P ckltens);
local selecteditem:= currentSel ectedltem
local | :=:Local Box();
if selectedltemthen
pi ckltens[sel ectediten} :=
{item pickltens|sel ectedlten,
nmark: kCheckMar kChar};
DoPoplp(picklitens, |.right+3, |.top, self);
end;
end

I’ ve written my own ISASCII Alpha, ISASCIINumeric, etc. functions. They seemto bereally s
Why isthat? Here' s my ISASCI I Alpha:

Draft 2.3 2/5/95 Page 3

returns true if s is an al pha string
/]l i.e., if sis betweena..z or A.Z
/1l s - string to check

I sSASA | Al pha. f unc(s)

begi n
local c := Udcase(d one(s));
local i;
for i :=0to SrlLen(c) - 1 do

if (SXrCnpare(SubSr(c, i, 1), "A') <0) or
(SrConpare(wbSr(c, i, 1), "Z') >0) then
return nil;
true;
end;

A First comment. Newton is a Unicode based device. ASCI| is a subset of Unicode (from 0x000!
0x007F), but Unicode characters up to FFFD are documented. Make sure you realize that your
routing is just checking some of the characters on page O (i.e., characters of the form 0x00nn),
it must deal with al characters.

The main source of the Slownessisthat you are using string string functions when character
functions would be faster. The distinction is subtle but important. In the code above, you loop
through each length 1 substring of the target string to determine whether it's an apha character.
this takestime. The Upcase call is O(n), as are the SubStr and StrCompare. Of course, the
StrCompareisn't really that slow, but it’s still slower than you need.

The SubStr call isreturning asingle character at atime, but in the form of a string. That means
thereisamemory allocation for at |east two characters (the content and the null terminator) for ¢
call to SubStr. A better way isto compare each character of the string. In certain circumstances
can access a character at atime with the array accessor (that is, []). An example of afunction th:
doesthisis ISASCIIAlpha3 (see the code on thisissue' s CD). In general, when you need either
single character from a string or character-by-character access, the array-like syntax is faster.

Note that the final fix to the code isthat it doesn’t do any preprocessing of the string; instead it

alookup in an pregenerated array of valid aphabetic ASCII characters. That givesit asignificar
speed advantage. Since timing in the Inspector is auseful technique, the code to do the timings
print resultsisincluded on the CD. Also note that thisfunction is specifically for ASCII charac
so characterslike é and 3 would fail.

Q I'mtrying to usethe trace global to get information on what methods are called. Unfortunately
lots of output that doesn’t start or end where | want. What can | do?

A Therearereally two questions here: how to use tr ace effectively, and how to use the output.
Usuall

develop Newton Q&A Draft 2.3 2/5/95 Page 4 youw

develop Newton Q&A

turn tracing on inside amethod, then turn it off later on in the code. Unfortunately, you need to
more than just set the value of tr ace; you aso have to force the interpreter to notice that trace f
changed. (The PIE Developer Technical Support NewtonScript Q& A on debugging tells you he
to do this)

/! to turn tracing on for functions
trace :="'functions;
/l force interpreter to notice change in state of trace variabl e

Apply(func () nil, [1);

/! to turn tracing of f
trace :=nil;

Apply(func () nil, []);

Once you have the trace output, you should cut and paste it into atext processor. There are thre
main bits of information you can get from atrace:

* Youcanlook at how many messages are generated from an apparently simple call. Y ou car
trace in conjunction with function call timings made using Ticks to see why a particular cal
so long. Using the find feature of your text processor, you can jump to the function cal yol
looking at.

* You canlook at the values passed in and returned by function calls.

» Perhaps most useful of all, you can use the text processor to strip away all the extraneous
information (things like the lines specifying return values — that is, lines that contain the st
"=>" asthe first non-whitespace entry) so that you' re left with the messages sent. Then yot
sort the messages and get a histogram of the results. Thisprocessis easier if you have atex
processor that supportsgr ep-like text substitution (regular expressions) and sorts.

I’musing the Newton Toolkit layout editor to organize my data object classesin my application
have 20 classes with one layout per object type. To access the objects, | declare each class layol
the main application. This gives me the benefits of parent inheritance. Unfortunately, even my t
applications are memory hogs. | would expect a time penalty, but why is there such a large spas

penalty?

The space penalty is much larger than it needsto be. Y ou're using alayout editor to edit your
classes so that you can graphically edit the classes’ dots. But this has the disadvantage that you
have to specify each class as some sort of view class or prototype, perhaps asimple clView. It
the cause of your space problem, because you also carry all the memory and runtime allocation
goes with aview. Since your layouts are declared to your base application view, and since the
default for aclView isvisible, each of your classesisaso afull runtime view. That can take al.
amount of space on the NewtonScript heap. For a clView, the penalty is roughly 40 bytes, so tl
an extl

800 by
Draft 2.3 2/5/95 Page 5 of

NewtonScript heap that you can free.

A better solution isto avoid using the NewtonScript heap for your class (after all, that’ s one of
advantages of prototype inheritance). Y ou can do thisin one of two ways:

« If you still want to use alayout editor to edit your class, you can use a user prototype instee
layout. At run time, you'll have access to the data class using the PT_<filename> syntax
documented in the Newton Toolkit User’s Guide (page 4-25). Remember that the user prot
will be read-only.

* Theother option isto textually define the class. Y ou can do thisin your Project Datafile, o
the Load command to read in adifferent text file. See the PIE Developer Technical Support
NewtonScript Q& A document for more information.

The llama is

the unofficial mascot of the Developer Technical Support group in
Apple’s Personal Interactive Electronics (PIE) division. Send your
Newton-related questions to NewtonMail DRLLAMA or AppleLink
DR.LLAMA. The first time we use a question from you, we’ll send
you a T-shirt.

Thanks

to our PIE Partners for the questions used in this column, and to
jXopher, Bob Ebert, Mike Engber, Kent Sandvik, Jim Schram, and
Maurice Sharp for the answers.

Have more questions?

Need more answers? Take a look at PIE Developer Info on
AppleLink.

develop Newton Q&A Draft 2.3 2/5/95 Page 6

This code will go on the CD:

/* Sone code to generate the table used in IsASQ | A phad
call func() begin
s 1= Aray(127, nil); /[l AA1 is 7 bit, so only need 127
for i :=0to 255 do begin
local ¢ :=chr(i);
if (c>%aandc <=%z) or (c >%Aand c <= $2) then
s[i] := TRE
end;
s
end with ();
*/

I sASA | Al phal : = func(s)

begi n
local c := Upcase(d one(s)) ;
local i ;
for i :=0to SrlLen(c) - 1 do
if (SXrConpare(UbSr(c, i, 1), "A") <0 R
(SXrCnpare(ubsr(c, i, 1), "Z') >0) then
return nil
true ;
end;

I sASA | Al pha2 : = func(s)

begi n
local i
local c ;
for i :=0to SrlLen(s) - 1 do
begi n
/1 the assignnent of the current character to the local c
// isinlined inthe first conpare, this is faster.
if not(((c:=s[i]) >>3$AADC <=$) R
(c >=%a ANDc <= $z)) then
return nil ;
end;
true ;
end;

develop Newton Q&A Draft 2.3 2/5/95 Page 7

A1 A pha3 : = func(s)
begi n
local i ;
local c := Ucase(d one(s)) ;

for i :=0to SrlLen(c) - 1 do
if (c[i] <$A R(c[i] >$2 then
return nil
true ;
end;

/1 this table was generated using the code above, sinple cut

/! and paste :-)

constant kAlphaTable :="'[NL, NL NL NL NL NL NL NL NL NL
NL NL NL NL NL NL NL NL NL NL NL NL NL NL NL
NL NL NL NL NL NL NL NL NL NL NL NL NL NL NL
NL NL NL NL NL NL NL NL NL NL NL NL NL NL NL
NL NL NL NL NL NL NL NL NL NL TRE TRE TRE TRE

TRE TRE TRE TRE TRE TRE TRE TRE TRE TRE TRE TRE TRE
TRE TRE TRE TRE TRE TRE TRE TRE TRE NL, NL NL NL NL
NL TRE TRE TRE TRE TRE TRE TRE TRE TRE TRE TRE TRE

TRE TRE TRE TRE TRE TRE TRE TRE TRE TRE TRE TRE

I sASA | A phad : = func(s) begin

for i :=0to SrlLen(s)-1 do
if not kAl phaTabl e[ord(s[i])] then
return NL;
TRE

/1 this code only handl es first 127 characters, if the string
/1 contains a unicode character, the index wll be
/1 out of the bounds of the array. Instead of checking
/1 the bounds in each | oop iteration, use an exception
/1 handler. This ads no tine to the loop, but a bit of setup
/1 time for the exception
nException |evt.ex.fr;type.ref.frame| do

if ord(s[i]) > 127 then

nil;
el se

develop Newton Q&A Draft 2.3 2/5/95 Page 8

rethrow();

end;

cal | func()

begi n
local | ongPass : = "abcdef ghi j ki nmopar st uvwkyzABCTEFGH JKLMCPGRSTUAMKYZ
local longFail :=longPass & " ";

local tineFunc := func(target Func, sl1, s2)

begi n
local t :=Ticks() ;
for i :=1to 100 do
begi n

call targetFunc with (sl) ;
call targetFunc wth (s2) ;

end;
Ticks() - t ;
end;
Print("Long Srings --------------- ")

print("IsAQ1Aphal: " &call tineFunc wth (I1sASQOIA phal, |ongPass,

longFail)) ;

print("IsAQ1Apha2: " &call tineFunc wth (I1sASQ I A pha2, |ongPass,
longFail)) ;

print("IsAQ1Apha3: " &call tineFunc wth (I1sASA I A pha3, |ongPass,
longFail)) ;

print("IsAQ1Aphad: " &call tineFunc wth (I1sASQ I A phad, |ongPass,
longFail)) ;

Print("\nShort Srings -------------- ")

print("IsASdIAphal: " &

call tinmeFunc wth (IsASQIA phal, "a", "a ")) ;
print("IsASdIApha2: " &

call tinmeFunc wth (IsASQIA pha2, "a", "a ")) ;
print("IsASdIApha3: " &

call tinmeFunc wth (IsASQIA pha3, "a", "a ")) ;
print("IsASAIA phad: " &

call tinmeFunc wth (IsASQI A pha4, "a", "a ")) ;

end wth () ;

develop Newton Q&A Draft 2.3 2/5/95 Page 9

ng Srings ---------------
"IsAa | Al phal:
"I sASd | Al pha2:
"IsAd | Al pha3:
"I sASA | Al pha4:

Short Srings --------------
"IsAd | A phal:
"I sASA | Al pha2:
"IsAd | Al pha3:
"I sASA | Al pha4:

#2 N L

develop Newton Q&A Draft 2.3

2389"

1176"

2/5/95

Page 10

