

ð

ð

N e w t o n A p p l i c a t i o n
D e v e l o p m e n t

Newton C++ Tools User’s Guide

Release 1.0

May 16, 1996 Jonathan Simonoff
© Apple Computer, Inc. 1996

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

Apple Computer, Inc.
© May 16, 1996, Apple Computer,
Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying,
recording, or otherwise, without
prior written permission of Apple
Computer, Inc., except in the
normal use of the software or to
make a backup copy of the
software. The same proprietary
and copyright notices must be
affixed to any permitted copies as
were affixed to the original. This
exception does not allow copies to
be made for others, whether or not
sold, but all of the material
purchased (with all backup copies)
may be sold, given, or loaned to
another person. Under the law,
copying includes translating into
another language or format. You
may use the software on any
computer owned by you, but extra
copies cannot be made for this
purpose.
Printed in the United States of
America.
The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop

applications only for Apple
Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, LaserWriter,
Macintosh, MPW, and Newton are
trademarks of Apple Computer,
Inc., registered in the United States
and other countries.
Adobe Illustrator and PostScript
are trademarks of Adobe Systems
Incorporated, which may be
registered in certain jurisdictions.
FrameMaker is a registered
trademark of Frame Technology
Corporation.
Helvetica and Palatino are
registered trademarks of Linotype
Company.
ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.
Varityper is a registered trademark
of Varityper, Inc.
Windows is a trademark of
Microsoft, Inc.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, APDA
will replace the media or manual at no
charge to you provided you return the
item to be replaced with proof of
purchase to APDA.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE

ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
“AS IS,” AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

iii

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

Preface

About This Book

v

Conventions Used in This Book v
Special Fonts v

Chapter 1

Introduction

1-1

Porting C++ Code to the Newton 1-2
Files and Directories 1-2

File and Folder Naming Conventions 1-2
Directories 1-3
The Contents of the Project Directories 1-3

Chapter 2

Installing the Newton C++ Tools

2-1

Installing MPW 2-1
Installing the Newton C++ Tools 2-1
Installing Newtsbug 2-2

Chapter 3

How to Use the Newton C++ Tools

3-1

Starting the C++ Tools for the First Time 3-1
Creating a Project 3-2

Creating an _NCT Folder and a Project Folder 3-3
Making a Project the Current Project 3-4
Setting Up the FilesInBuild File 3-5
Keeping Code in Sub-Folders 3-5

Defining a Function 3-6
Defining the NewtonScript Interface to a Function 3-7
Creating a Makefile 3-7
Building the C++ Source 3-8
Importing a C++ Code Module Into an NTK Project 3-8
Trying Out Project Demos 3-10
Debugging 3-10
Customizing the Newton C++ Tools 3-11

Contents

iv

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

Chapter 4

The Newton C++ Tools MPW Environment

4-1

The Newton C++ Tools Menu 4-1
Build Current Project 4-2
Build with Debug 4-2
Build with NoDebug 4-3
Build Project Makefile 4-3
Open Project Makefile 4-3
Launch Newtsbug Using... 4-3
Select NCT Root Directory 4-3
Reinitialize NCT System 4-3
Update NCT System From... 4-3
Create “_NCT” Folder... 4-3
Create New Project... 4-4

Additional Commands in the Find Menu 4-4
Search Current Directory For... 4-5
Search Current Directory § 4-5
Search {Active} Folder For... 4-5
Search {Active} Folder For § 4-5
Search Current Project For... 4-5
Search Current Project § 4-5
Search Includes For... 4-6
Search Includes For § 4-6
Search All NCT Projects For... 4-6
Search All NCT Projects For § 4-6
Search All NCT Folders For... 4-6
Search All NCT Folders For § 4-6

Chapter 5

MPW Tools

5-1

AIFtoNTK 5-1
DumpAIF 5-3

P R E F A C E

v

Confidential. Preliminary Draft. © 1995 Apple Computer, Inc. 5/16/96

About This Book

This book,

Newton C++ Tools User’s Guide

, describes programmer
software used to prepare C++ code for inclusion in NewtonScript
programs. It has the following chapters:

■

Chapter 1, “Introduction,” gives background information.

■

Chapter 2, “Installing the Newton C++ Tools,” tells you how to
install the Newton C++ Tools.

■

Chapter 3, “How to Use the Newton C++ Tools,” steps you
through using the C++ Tools, and includes a tutorial example.

■

Chapter 4, “The Newton C++ Tools MPW Environment,”
describes the menu commands that the Newton C++ Tools
adds to MPW.

■

Chapter 5, “MPW Tools,” discusses the MPW tools included
with the C++ Tools.

Conventions Used in This Book

This book uses the following conventions to present various kinds
of information.

Special Fonts

This book uses the following special fonts:

■

Boldface

. Key terms and concepts appear in boldface on first
use.

■

Courier typeface

. Code listings, code snippets, and special
identifiers in the text such as slot names, function names,
method names, symbols, and constants are shown in the

P R E F A C E

vi

Confidential. Preliminary Draft. © 1995 Apple Computer, Inc. 5/16/96

Courier typeface to distinguish them from regular body text. If
you are programming, items that appear in Courier should be
typed exactly as shown.

■

Italic typeface

. Italic typeface is used in code to indicate replace-
able items, such as the names of function parameters, which
you must replace with your own names. The names of other
books are also shown in italic type, and

rarely

, this style is used
for emphasis.

1-1

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/13/96

Introduction 1

The Newton C++ Tools package allows you to write C++ code that can be called from a
NewtonScript program. You need to understand how Newton devices are programmed
before you can use this product.

In order to use the C++ Tools, you need:

■

Newton Toolkit (NTK)

■

Apple Macintosh or other Mac OS-based personal computer with a 68030 or later
processor, 33Mhz or faster. Any PowerPC Mac OS-based computer will work.

■

Mac OS version 7.1 or later.

■

At least 12 megabytes of RAM. If you have a PowerPC computer, 20 megabytes are
recommended. You need 20 megabytes to use MPW, NTK, and Newtsbug
simultaneously.

■

A CD-ROM drive

■

A hard disk with at least 25MB of available space

■

A Newton device running the Newton operating system version 2.0 or later

■

Newton Connection Kit for Macintosh v2.0 - Serial cable or Macintosh System
Peripheral 8-Cable (M0197LL/B)

You develop C++ code using MPW. You then add the code into an NTK project. The C++
functions can then be called from NewtonScript.

The C++ Tools package is designed so that you do not need to know much about MPW.
If you want to know more, MPW documentation is included on the C++ Tools CD. If you
want to use all of the capabilities of MPW, you should order a full version of MPW,
including documentation, from APDA® (Apple’s source for developer tools). You can
order MPW, NTK, or any other APDA product through these telephone numbers and
addresses:

From the USA 1-800-282-2732

From Canada 1-800-637-0029

From other Countries (716)871-6555

Figure 1-0
Table 1-0

Introduction

1-2

Porting C++ Code to the Newton

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/13/96

Porting C++ Code to the Newton 1

You can use the C++ Tools to help port programs to the Newton. However, only
computational code can generally be ported to the Newton in the form of C++ code.
Newton devices have a user interface that is quite different from desktop computers, so
you generally cannot port user interface code. Similarly, Newton devices do not have a
file system in the same sense desktop computers do, and memory management issues
are somewhat different. In order to take advantage of the Newton’s built-in software for
the user interface, data storage, and memory management, you generally need to write
the code for those portions of your application in NewtonScript.

There are also limitations in how C++ code can be written. See the manual

Newton C++
Tool

s for more information on those limitations.

Files and Directories 1

The C++ Tools and MPW require certain file and directory names and a certain directory
structure in order to operate properly. You may want to come back to this section after
installing the Newton C++ Tools and going through the tutorial in Chapter 3, “How to
Use the Newton C++ Tools.”

File and Folder Naming Conventions 1

The MPW scripts require that files containing C code end in .c, while files containing
C++ code end in .cp.

MPW can be confused by certain characters. In general you should limit your folder and
file names to letters, digits, spaces, underscores, minus signs, asterisks (*), • (option-8),
and

π

 (option-p). Some other characters are also allowable, but certain ones such as ", ',
and

∂

 definitely are not. See the MPW documentation for information if you want to use
unusual characters.

Fax (716)871-6511

AppleLink APDA

Internet APDA@applelink.apple.com

CompuServe 76666,2405

America Online APDAorder

Regular Mail APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319
USA

Introduction

Files and Directories

1-3

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/13/96

Directories 1

The C++ Tools files and directory go into your MPW directory in the places indicated by
Chapter 2, “Installing the Newton C++ Tools.”

You can place the Newtsbug directory anywhere you want. We recommend, though, that
you do not put it in the MPW directory. However, Newtsbug has to be in the MPW
command path. The easiest way to make sure it is is to put an alias to Newtsbug in the
MPW:NCT_Folder:Tools folder, as specified in the installation instructions. The name of
this alias must be Newtsbug.

Your code goes into another directory structure that is contained within a root directory.
The root directory that is included with the C++ Tools is the NCT_Projects directory. You
normally do your code development in the directory hierarchy contained in the
NCT_Projects directory.

The C++ Tools build system allows you to build a two-level structure inside a root
directory. The first level consists of

_NCT directories

which have names like
Calculator_NCT and Maps_NCT. Each _NCT directory contains one or more

projects

.
The contents of project directories are described in the next section.

You do not have to organize your NTK projects this way, but the Newton C++ Tools is
set up to have your C++ projects set up in this way.

The Contents of the Project Directories 1

The project directories contain:

■

C++ code files

■

NTK files that specify Newton applications (layout files and project files)

IMPORTANT

Development of the NTK part of a project needs to take place in the
same directory as you use for C++ development, so that the debugger
can find the files it needs.

▲

■

Items that the Newton C++ Tools uses to build the package. Those items are:

n

FilesInBuild. This file lists the files that are in the build. It is used by the Build
Project Makefile command to create a makefile for the project. If you create your
own makefile, you do not need this file.

n

Project

.exp. (The first part of the name is the same as the name of the project
directory.) You put in information in this file that identifies the functions you want
to call from NewtonScript.

n

Objects. This directory is used for the object files created and used in your build.

n

Makefile. This is the makefile for the project.

When you use the Create New Project command from the Newton C++ Tools menu in
MPW, the Newton C++ Tools creates prototypes for FilesInBuild and

project

.exp and also
creates the Objects directory. The Build Project Makefile creates the makefile.

Introduction

1-4

Files and Directories

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/13/96

Note

The Newton C++ Tools menu in MPW lists all the C++ Tools projects in
the current projects directory. It finds those by looking for directories in
the current projects directory that end in _NCT and then looking in each
sub-directory for a FilesInBuild file or a Makefile. It lists only those
directories that contain one or both of those files.

◆

Installing MPW

2-1

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/13/96

Installing the Newton C++ Tools 2

How you install the Newton C++ Tools depends on whether or not you already have
MPW installed. We recommend MPW version 3.4 or later.

Insert the Newton C++ Tools CD into your CD drive.

IMPORTANT

The Newton C++ Tools is an add-on product to NTK. You must have
NTK installed in order to use it.

▲

Installing MPW 2

To install MPW:

1. Open the Latest MPW folder.
It contains two folders: MPW and System Additions.

2. Drag the folder MPW to your hard disk.

If you do not have a PowerPC computer you are done with installing MPW. If you have
a PowerPC computer, you need to install an extension to use MPW:

1. Open the folder System Additions.

2. Open the folder Required for MPW.

3. Drag the extension in that folder, StdCLibInit, to your system folder.

4. Restart your computer.

Installing the Newton C++ Tools 2

1. Drag the NCT_Projects directory to your hard disk.

Figure 2-0
Table 2-0

Installing the Newton C++ Tools

2-2

Installing Newtsbug

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/13/96

2. Open the MPW Additions folder.

3. Drag the top three items, NCTBuild

•

UserPrefs, UserStartup

•

NewtonC++Tools, and
NCT_Folder into your MPW folder.

4. Drag the Includes and Libraries folders into the NCT_Projects folder on your hard
disk.

Installing Newtsbug 2

You use Newtsbug to debug C++ programs on the Newton. To install Newtsbug:

1. Drag the Newtsbug folder to your hard disk.

2. On your hard disk, make an alias to the Newtsbug program that is in that folder.

3. Open the NCT_Folder on your hard disk.

4. Drag the alias to Newtsbug into the Tools folder that you find in the NCT_Folder.
Change the name of the alias from

Newtsbug alias

to

Newtsbug

The Newton C++ Tools build system is now installed.

Starting the C++ Tools for the First Time

3-1

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

How to Use the Newton C++

Tools 3

This chapter steps you through using the C++ Tools, MPW, and NTK to:

■

Create a small C++ function

■

Combine it with a Newton application that calls the function

Starting the C++ Tools for the First Time 3

The C++ Tools MPW start-up files need to know where on your disk you’ll be working.
It uses that information to build it’s menus.

1. Find the MPW folder and open it.

2. Double-click on the MPW icon.
The start-up script begins executing. After a few moments, you see a dialog box that
tells you you need to select a root folder. The C++ Tools needs a root directory. It looks
in that directory for your projects.

3. Click OK to dismiss the dialog box.

4. Pull down the NCTSetup menu. It is shown in Figure 3-1.

Figure 3-1

NCTSetup Menu

5. Choose the Select Root Directory command.

Figure 3-0
Table 3-0

How to Use the Newton C++ Tools

3-2

Creating a Project

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

MPW displays a standard file dialog box.

6. Find the NCT_Projects directory and choose it.
The C++ Tools start-up files continue processing. They build the Newton C++ Tools
menu. When processing is done, the menu should look like the one shown in
Figure 3-2.

Figure 3-2

Newton C++ Tools Menu

Creating a Project 3

The basic unit of Newton application development is a

project

. A project contains
various files used and produced by NTK as well as the files used and produced by the
C++ Tools. You do all C++ and NewtonScript development for an application within a
single project.

Before you create a project, you need to create a place to put the project. The C++ Tools
allows for a three-level hierarchy, which is intended to help you keep multiple projects
neatly organized:

■

The top level of the hierarchy is the root directory, which was the directory you chose
in the preceding section; if you want to create an additional root directory, do it from
the Mac OS Finder. You normally just use the NCT_Projects directory, because it
contains the includes and Library files that you need.

■

The second level of the hierarchy is made up of folders with names that end in _NCT.
These folders have special meaning to the C++ Tools, as you will soon see. You use a
menu command described in this section to create these folders.

■

The lowest level of the hierarchy is made up of project folders. You use a menu
command described in this section to create those folders, also.

How to Use the Newton C++ Tools

Creating a Project

3-3

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

Look again at the menu in Figure 3-2. The last item in the menu is Sunny_NCT. This is
an NCT folder that contains the Sunny application, which is a sample Newton
application you can build and use. If you look at the submenu contained in the
Sunny_NCT item, you will see that it contains one project, Sunny.

Creating an _NCT Folder and a Project Folder 3

You now need to create a new _NCT folder to hold the new example application, and
then create a project for the application.

1. Choose the Create “_NCT” Folder command from the Newton C++ Tools menu.
A dialog box displays.

2. In the dialog box, type:

Example

Notice that you do not type the _NCT ending—the C++ Tools adds that for you.
You can have any number of _NCT folders.

3. Click in the OK button.

4. Choose the Create New Project command from the Newton C++ Tools menu.
A dialog box displays.

5. In the dialog box, type:

Example

This name doesn’t have to be the same as the _NCT folder name.

6. Click in the OK button.

7. A dialog box asks you where to put the new project. Choose Example_NCT.
You’ve created a new project. Each _NCT folder can contain any number of projects.
The C++ Tools informs you that you’ve created a new project by showing the dialog
in Figure 3-3. The dialog tells you what the C++ Tools has done and gives general
directions for what you need to do to continue.

Figure 3-3 New Project Dialog

How to Use the Newton C++ Tools

3-4 Creating a Project

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

Every C++ Tools project needs a .exp file. That file lists your module name and
function names, and defines the interface used to call your functions from
NewtonScript. The FilesInBuild file lists the files that make up the C++ part of your
project. You need to have this file in order to use the C++ Tools command that creates
the build instructions (makefile) for your project. When you create a new project, the
C++ Tools creates prototypes for these files. They contain instructions that tell you
how to place your information in the files.

8. Click OK to dismiss the dialog.

Making a Project the Current Project 3

C++ Tools commands apply to the current project. To make the new project the current
project:

1. Pull down the Newton C++ Tools menu.
You will see an Example_NCT item at the bottom of the menu.

2. Pull down until you select Example_NCT.
You’ll see a menu item that says Example, as shown in Figure 3-4.

Figure 3-4 Menu Showing New _NCT Folder

3. Choose Example.
If you pull down the menu again, you’ll see that Example_NCT and Example are now
underlined, which indicates that Example is the current project. In addition to making
this project the C++ Tools current project, choosing a project in this way sets the MPW
current directory to be the project directory.

How to Use the Newton C++ Tools

Creating a Project 3-5
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

Setting Up the FilesInBuild File 3
As mentioned before, the FilesInBuild file lists the files that make up the C++ part of
your project. You need to have this file in order to use the C++ Tools command that
creates the build instructions for your project. To set up FilesInBuild for the example
application:

1. Use the File menu’s Open command to open FilesInBuild.
What you see should look like Figure 3-5. Comment lines begin with a pound sign (#).
Notice that the file has comments that tell you where to put your information.

2. Type Example.cp in the place where the comments indicate source file names should
go, which is indicated by the arrow in Figure 3-5.

Figure 3-5 Default FilesInBuild File

3. Close and save the file.

Keeping Code in Sub-Folders 3
You can have code in sub-folders in your project folder. In that case, you need to give the
folder names in the FilesInBuild file. Notice the line in Figure 3-5 that looks like this:

Add
file
names
here

How to Use the Newton C++ Tools

3-6 Defining a Function

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

-srcdirs ':'

You need to list your subfolders in this line. Suppose you have a single subfolder called
MyCode. Modify the line so that it looks like this:

-srcdirs ': :MyCode:'

Notice that the list of folders is surrounded by single quote marks. Suppose you have
two subfolders. You separate their names with a space:

-srcdirs ': :MyCode1: :MyCode2:'

If a folder name contains spaces, you need to surround the name with double-quote
marks like this:

-srcdirs ': :MyCode1: :MyCode2: ":MyCode Additions:"'

Defining a Function 3

To define the function for this example:

1. Use the New command in the File menu to create a new file.

2. Type this code in the new file’s window:

#include "objects.h"

extern "C"

Ref SillyString(RefArg)

{

Ref Unistrg = MakeInt(49);

return Unistrg;

}

Note

You should generally define your functions as extern "C". If you do
not do this, the compiler issues a mangled name for the function. You
then need to specify the mangled name in the Sample.exp file, which is
discussed in the next section. You would also have to use the C++
mangled names when calling the functions from NewtonScript. (C++
uses mangled names to accommodate methods and overloaded
functions. A mangled name includes the function name plus its class
name and arguments.) You may use mangled names if you wish, but
since the mangled names are compiler-dependent and
function-signature dependent, you will have to discover and maintain
the mangled names yourself; the DumpAOF tool is useful for displaying
such names. ◆

3. Save the file as Example.cp.

How to Use the Newton C++ Tools

Defining the NewtonScript Interface to a Function 3-7
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

4. Close the file.

Defining the NewtonScript Interface to a Function 3

You need to tell the build system how the function will be called from NewtonScript.
You do that using the .exp file.

1. Use the File menu’s Open command to open the Example.exp file. It looks like the file
shown in Figure 3-6.

Figure 3-6 Sample.exp File

The first line gives the module name. The C++ Tools build system assumes the
module name is the same as the project name. You can change this line if you want to
use a different module name. Each .exp file, and therefore each project, can only
contain one module.
In .exp files, comment lines begin with a semicolon (;). Notice that the comments tell
you were to add the names of your NewtonScript interface functions.

2. In the place indicated in the file for interface functions, type:

SillyString

Press Return. You must always have a return character at the end of every line in this
file. If you omit this trailing carriage return, you will get a link error for the last
symbol in your module minus its last character.

3. Close and save the file.

Creating a Makefile 3

The MPW make tool uses makefiles to govern building programs.

1. Select the Newton C++ Tools menu item Build Project Makefile .
A window named BuildResults opens and the scripts to create an MPW makefile
begin executing.

How to Use the Newton C++ Tools

3-8 Building the C++ Source

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

2. Close the BuildResults window.

Note

The file shown in the BuildResults window is marked as “Never save on
close.” You can save it using the Save command, however, which may be
useful if you want to save the position and size of the window. If you
do, and there are contents in the window, anything new will be
appended to the window’s contents. Therefore, in order to save the
position of the window, delete the contents of the window before using
the Save command. ◆

Building the C++ Source 3

This step uses the makefile to build the project:

1. From the Newton C++ Tools menu select the menu item Build Current Project .

The Build Results window appears again; messages begin as the Newton C++ Tools
build system caches your prior results in the folder YourOldBuildResults: and then a
Makeout window opens as the source is compiled and linked .

You now have the file Sample_NCT:Example:Objects:Example.ntkc which has been
rebuilt with a new value for the C function called from the NTK application.

IMPORTANT

Development of the NTK part of a project needs to take place in the
same directory as you use for C++ development, so that the debugger
can find the files it needs. ▲

Importing a C++ Code Module Into an NTK Project 3

You need to have NTK installed on your hard disk. See NTK documentation of
information on using NTK and on developing NewtonScript applications.

1. Select the Finder.

2. Open the NCT_Projects folder.

3. Select the Example.t and Example.π files and drag them into the Example folder.
These are files that define the NewtonScript part of a small application that you are
going to use to call SillyString.

4. Double click Example.π.
NTK starts and opens the Example project. The project shows only one file.

5. Select the Add file ... menu item from the Project menu.

6. Choose the file Example.t, and click on Add.

How to Use the Newton C++ Tools

Importing a C++ Code Module Into an NTK Project 3-9
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

This command adds the layout file to the project. (See the NTK documentation for
information on layout files.)

7. Select the Add file ... menu item from the Project menu again.

8. Navigate to the Objects folder and select the file Example.ntkc. Click on Add.
This adds the C++ code module file to the NTK project.

9. Choose the Process Earlier command from the Project menu.
This command makes sure that the C++ module is processed before the NewtonScript
module.

10. Choose the Open command.

11. Select Example.t, and click on Open.
This is the layout file for this project. An Example.t Browser window opens.

12. In the browser window, choose clView: Top.
The right side of the window shows the slots of clView.

13. Select viewSetupFormScript.
In the lower part of the browser, you can see the code for viewSetupFormScript.

14. Notice where the number 42 appears. If you built the package now and downloaded it
to a Newton, the application would print the number 42.

15. Replace the number 42 with:

call Example.SillyString with ()

This is the way you call a C++ function from NewtonScript:

moduleName.functionName with (arguments)

16. Close and save the file.

17. From the Project menu, select the Build Package item.
This command builds the project including the .ntkc module. If you have your NTK
preferences set to automatically download after building and you connected a
Newton device to the Mac OS-based computer, NTK attempts to download the Test
package to your Newton device. Alternatively, if you have loaded the Toolkit App
into the Newton device, you can select it from the Extras drawer and download your
Test package.

18. Once you have downloaded the package you can run the package. It displays a
simple message that contains the number 49.

When you are building interface functions to be called from NewtonScript with the C++
compiler, you should define those functions as extern "C" ”. If you do not, the C++
compiler will mangle the function names and you must enter the mangled names in the
project.exp file and must use the C++ mangled names when calling the functions from
NewtonScript. (C++ uses mangled names to accommodate methods and overloaded
functions. A mangled name includes the function name plus its class name and
arguments.) In addition, when you do not used mangled function names, the Newton
C++ Tools build process determines the number of RefArg arguments that each
interface function requires automatically and passes this information to NTK. If you use

How to Use the Newton C++ Tools

3-10 Trying Out Project Demos

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

mangled function names, the function name will change if the number of arguments
changes.

You may use mangled names if you wish, but since the mangled names are
compiler-dependent and function-signature dependent, you will have to discover and
maintain the mangled names yourself; the DumpAOF tool is useful for displaying such
names.

Trying Out Project Demos 3

Demos is a more complex sample program that is included in NCT_Projects. It already
has all the code it needs and has a make file. To try it out, you just need to:

■ Make it the current project as shown in “Making a Project the Current Project” on
page 3-4

■ Create a makefile as shown in “Creating a Makefile” on page 3-7

■ Build it as shown in “Building the C++ Source” on page 3-8

■ Start NTK, add the .ntkc file to the NTK project, build the NTK project, and download
the resulting package, as shown in “Importing a C++ Code Module Into an NTK
Project” on page 3-8

Debugging 3

You use the NTK Inspector to debug the NewtonScript portions of your program, but
you cannot use it for the C++ portions. Instead, you use Newtsbug, which allows you to
debug code at the ARM assembler level. Newtsbug is included with the C++ Tools.
Newtsbug and the Inspector are two independent debugging systems, and they do not
interconnect.

In order to set up to use Newtsbug, create an alias of the package file that is produced by
NTK and place the alias in the Newtsbug directory. The package file ends with the
extension .pkg.

See the Newtsbug User’s Guide for more information.

How to Use the Newton C++ Tools

Customizing the Newton C++ Tools 3-11
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

Note

You need to read this note only if you write your own makefiles or move
the package file that NTK produces. Newtsbug needs to have symbol
information in order to debug a package. Symbol information is
generated by the compiler whether you compile with debugging on or
off, and is contained in the .sym file. The package file contains
information that defines where the .sym file is located, using a path
relative to the .pkg file. The makefiles created by the Newton C++ Tools
place .sym files in the Objects folder that is in the project directory.
Therefore, although you can move the .pkg file and the .sym file after
you build your package, you must keep the relative path from the .pkg
file to the .sym file the same if you want to use Newtsbug. In other
words, the directory that contains the .pkg file should contain an Objects
folder, and the .sym file should be in that folder. ▲

Customizing the Newton C++ Tools 3

In the MPW folder, there is an MPW shell file called NCTBuild•UserPrefs that contains
various things that an expert MPW user might want to change. You can look at that file
for information. In general, before making any changes, you should make a copy of the
original so you can restore it if necessary.

One thing in the file is information on the SendAE tool, which you can use to send Apple
events from MPW to other applications, such as NTK. This allows you to have MPW tell
NTK to automatically re-build the NTK project when you re-build the MPW project.

How to Use the Newton C++ Tools

3-12 Customizing the Newton C++ Tools

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

The Newton C++ Tools Menu 4-1
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

The Newton C++ Tools MPW
Environment 4

You develop and process code for the C++ Tools using MPW. MPW is a programming
environment that is similar in many ways to UNIX, in that it uses a command-line shell
and has a fairly complex shell programming language. The C++ Tools build system
includes scripts written in this shell language that simplify the process of building
projects. These scripts are executed using commands in the Newton C++ Tools menu.

When you start up MPW with the Newton C++ Tools start-up files included in the MPW
folder, the start-up files add the Newton C++ Tools menu and also add some commands
to the Find menu. These menu commands are described in this chapter.

See the MPW documentation for more information. The MPW documents are included
on the Newton C++ Tools release CD.

The Newton C++ Tools Menu 4

The Newton C++ Tools MPW start-up files add a menu to MPW. Figure 4-1 shows the
menu.

Figure 4-0
Table 4-0

The Newton C++ Tools MPW Environment

4-2 The Newton C++ Tools Menu

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

Figure 4-1 The Newton C++ Tools Menu

The menu items in the last division of the menu vary; that division shows all of the
_NCT folders in the root directory. The _NCT folder that contains the current project is
underlined in the submenu. You change the current project by selecting a new one from
the submenu.

The rest of this section describes the menu commands. You may want to see Chapter 3,
“How to Use the Newton C++ Tools,” for information on using these commands.

Build Current Project 4

When you choose this command, MPW uses the makefile to build the project. (You must
already have a makefile, of course. You can create one using the Build Project Makefile
command.)

Build with Debug 4

This menu item sets the makefile so that when you build the project again it is built with
the compiler’s debug switch on. This switch is used by the compiler’s preprocessor. You
can have sections of your code that begin with:

#ifdef forDebug

These sections should end with:

#endif

When you build with debug, these sections are included in the compilation.

This is the initial mode.

Note

Whenever you use DebugPrint and printf, those functions should be enclosed
within #ifdef forDebug and #endif. If you do not do that, compilation will fail
when you build with NoDebug. ◆

The Newton C++ Tools MPW Environment

The Newton C++ Tools Menu 4-3
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

Build with NoDebug 4

This menu item sets the makefile so that when you build the project it is built with the
compilers debug switch off, which excludes the parts marked with #ifdef forDebug
and #endif.

Symbol information that is used by the debugger, Newtsbug, is still included in the
object file.

The object file is placed in the folder ObjectsNoDebug, instead of the Objects folder.
(ObjectsNoDebug is created, if necessary.) After you build with NoDebug, you need to
use the NTK Add File command to add the NoDebug version of the .ntkc file to the
project.

Build Project Makefile 4

This menu item creates a makefile for the current project. In general, you do not need to
modify the resulting makefile.

Open Project Makefile 4

This menu item opens a window showing the current project’s makefile.

Launch Newtsbug Using... 4

This menu item has a submenu that lets you choose the ROM image to use and then runs
Newtsbug, the debugger that you use with the Newton C++ Tools. See the Newtsbug
User’s Guide for information on using Newtsbug.

Select NCT Root Directory 4

This menu item sets the root directory. MPW rebuilds the last menu items to reflect the
projects that are in that directory.

Reinitialize NCT System 4

This menu item reruns the MPW start-up file that sets up the Newton C++ Tools system.

Update NCT System From... 4

This menu item lets you update your C++ Tools build system from an update CD. It
displays a standard file dialog box. You navigate to the Newton C++ Tools CD and locate
the folder named “MPW Additions.” When you click on Open, the installed version of
C++ Tools is updated.

Create “_NCT” Folder... 4

You can create a new “_NCT” folder with this menu item. This is what is called a
“projects directory.” Enter the name of the projects directory you wish to create (without
the suffix _NCT) and a folder of that name is added to your NCT_Projects directory.

The Newton C++ Tools MPW Environment

4-4 Additional Commands in the Find Menu

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

_NCT folders are intended to be used to organize your projects. You put groups of
related projects in a single _NCT folder.

Create New Project... 4

Use this to create a new project folder within the current projects directory.

The project name must not contain any spaces, because the name will be used as a C++
module name.

The Newton C++ Tools build system creates the folder, unless one already exists with
that name. Within that folder, it creates prototypes for the files and folders that you need.
Specifically, this command creates a prototype FilesInBuild file, an Objects folder, and a
prototype .exp file. See “The Contents of the Project Directories” on page 1-3 for
information on these items.

Additional Commands in the Find Menu 4

Figure 4-2 shows the Find menu. The commands in the top two divisions are standard
MPW commands; see the MPW documentation for information on those commands.

Figure 4-2 The Find Menu

The Newton C++ Tools MPW Environment

Additional Commands in the Find Menu 4-5
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

The additional commands are not specific to the C++ Tools, but are powerful and helpful
search commands.

▲ W A R N I N G

You should not enter search strings that contain MPW escape characters
such as ∂ (option-d). This character can cause problems with searching;
for example, ∂n causes the search commands to go into an infinite
loop. ▲

Search Current Directory For... 4
This menu command puts up a dialog box that asks for text to search for. The search is
limited to the current directory. It does not search sub-directories.

Search Current Directory § 4
The symbol § refers to the current selection. This menu command searches the current
directory for other occurrences of the current selection. It does not search sub-directories.

Search {Active} Folder For... 4
This menu command puts up a dialog box that asks for text to search for. The search is
limited to the currently active folder, which is the folder containing the file that is shown
in the active window. (Technically, this is the folder whose name is contained in the
MPW variable {Active}. See the MPW documentation for more information on MPW
variables.) This command does not search sub-directories.

Search {Active} Folder For § 4
This menu command searches the active directory for other occurrences of the current
selection. It does not search sub-directories.

Search Current Project For... 4
This menu command puts up a dialog box that asks for text to search for. It searches the
current project’s directory, including sub-directories.

Search Current Project § 4
This menu command searches for other occurrences of the current selection in the
current project’s directory, including sub-directories.

The Newton C++ Tools MPW Environment

4-6 Additional Commands in the Find Menu

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

Search Includes For... 4
This menu command puts up a dialog box that asks for text to search for. It searches the
Include directory, including sub-directories.

Search Includes For § 4
This menu command searches for other occurrences of the current selection in the
Include directory, including sub-directories.

Search All NCT Projects For... 4
This menu command puts up a dialog box that asks for text to search for. It searches all
project directories in the current _NCT directory, including sub-directories.

Search All NCT Projects For § 4
This menu command searches for other occurrences of the current selection in all project
directories in the current _NCT directory, including sub-directories.

Search All NCT Folders For... 4
This menu command puts up a dialog box that asks for text to search for. It searches all
directories in the current root directory, including sub-directories.

Search All NCT Folders For § 4
This menu command searches for other occurrences of the current selection in all project
directories in the current root, including sub-directories.

AIFtoNTK 5-1
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

MPW Tools 5

The Newton C++ Tools contains a number of MPW tools. You generally do not have to
know that much about these tools; the Newton C++ Tools menu commands build a
make file that calls these tools for you. See the Tools folder for the complete set of tools.
The most important are:

■ AIFtoNTK, which converts the link file into a form that can be incorporated in a
Newton program. See “AIFtoNTK” below for information.

■ ARM6asm assembler. See the ARM documentation for information.

■ ARM6c C compiler. See the ARM documentation for information.

■ ARMCpp C++ compiler. See the ARM documentation for information.

■ ARMLink linker. . See the ARM documentation for information.

■ DumpAOF, which t emits code in ARM Object Format. Sophisticated programmers
may find this useful for debugging code. See the ARM documentation for information.

■ DumpAIF, which dumps the output format from the linker, and is analogous to the
MPW tool DumpCode. See “DumpAIF” on page 5-3 for information.

If you want to see the available options (and short descriptions) for most of the tools,
you can execute:

toolname -help

on the MPW worksheet. For some tools, you can also simply give an invalid option to
see the help information.

AIFtoNTK 5

This tool is invoked for you by the Newton C++ Tools scripts, and you should not need
to understand its options yourself. This section is informational only.

Figure 5-0
Table 5-0

MPW Tools

5-2 AIFtoNTK

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

AIFtoNTK [-p] -via exportsFile -o outputFile inputFile

This tool converts an ARM Image Format (AIF) file into an NTK “streamed frame” file.

-p This is an optional parameter that requests the display of progress
messages to Dev:Stderr.

-via exportsFile Specifies the path of an “exports” list file. When you use the C++
Tools menu commands, they build a prototype exports file; you fill
in the file with the information you need. The exports file is a
normal text file that contains lines of text. The first line must contain
the module name. Subsequent lines each contain a single function
name. These are the names of functions that you want to be able to
call from NewtonScript. Each function name must be the first
non-blank text on the line and there must be one function name per
line. You can also have comment lines that begin with a semicolon
(;); those lines are ignored.

You use the module name in NewtonScript call statements when
invoking a function in the module. For example:

call modulename.function1 with (....)

-o outputFile Specifies the path of the output file to be created. If the file already
exists, its contents will be destroyed. The normal convention is to
use the same name as the input file with the suffix “.ntkc” added .

inputFile Specifies the path of the input file to be converted into a .ntkc file
for use by Newton Toolkit. You can only give one input file. You
must give an input file; AIFtoNTK ignores standard input.

None of the parameter pathnames can contain aliases; the tool will not resolve the aliases.

The AIFtoNTK tool converts the data fork of the AIF file created by the ARMLink tool
into a streamed frame format file which is accepted as input by the Newton ToolKit
(NTK). The binary image of the read-only code and the table of relocations or “fix ups”
are converted into binary objects within the streamed frame.

The tool checks for signatures in the file data fork to verify that the input file is an ARM
 Image Format file.

AIFtoNTK can return the following status codes.

0 no errors; output file created.

1 usage, syntax or missing or invalid parameter error.

2 execution error; usually invalid data encountered in input file

3 internal or fetal error; usually system or memory overflow

MPW Tools

DumpAIF 5-3
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc. 5/16/96

Here is an example of the use of this tool:

AIFtoNTK -via mymodule.exp -o mymodule.ntkc mymodule

DumpAIF 5

This is a tool for advanced users who want to see the linker output code.

DumpAIF [-s] filename

The command displays the contents of the AIF file filename. The -s option adds a symbol
table.

	Contents
	About This Book
	Conventions Used in This Book
	Special Fonts

	Introduction
	Porting C++ Code to the Newton
	Files and Directories
	File and Folder Naming Conventions
	Directories
	The Contents of the Project Directories

	Installing the Newton C++ Tools
	Installing MPW
	Installing the Newton C++ Tools
	Installing Newtsbug

	How to Use the Newton C++ Tools
	Starting the C++ Tools for the First Time
	Figure�3-1 NCTSetup Menu
	Figure�3-2 Newton C++ Tools Menu

	Creating a Project
	Creating an _NCT Folder and a Project Folder
	Figure�3-3 New Project Dialog

	Making a Project the Current Project
	Figure�3-4 Menu Showing New _NCT Folder

	Setting Up the FilesInBuild File
	Figure�3-5 Default FilesInBuild File

	Keeping Code in Sub-Folders

	Defining a Function
	Defining the NewtonScript Interface to a Function
	Figure�3-6 Sample.exp File

	Creating a Makefile
	Building the C++ Source
	Importing a C++ Code Module Into an NTK Project
	Trying Out Project Demos
	Debugging
	Customizing the Newton C++ Tools

	The Newton C++ Tools MPW Environment
	The Newton C++ Tools Menu
	Figure�4-1 The Newton C++ Tools Menu
	Build Current Project
	Build with Debug
	Build with NoDebug
	Build Project Makefile
	Open Project Makefile
	Launch Newtsbug Using...
	Select NCT Root Directory
	Reinitialize NCT System
	Update NCT System From...
	Create “_NCT” Folder...
	Create New Project...

	Additional Commands in the Find Menu
	Figure�4-2 The Find Menu
	Search Current Directory For...
	Search Current Directory §
	Search {Active} Folder For...
	Search {Active} Folder For §
	Search Current Project For...
	Search Current Project §
	Search Includes For...
	Search Includes For §
	Search All NCT Projects For...
	Search All NCT Projects For §
	Search All NCT Folders For...
	Search All NCT Folders For §

	MPW Tools
	AIFtoNTK
	DumpAIF

