Messaging Enabler

version 1.2

" Apple Computer, Inc.

© 1997 Apple Computer, Inc.
All rights reserved.

No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying,
recording, or otherwise, without
prior written permission of Apple
Computer, Inc., except in the
normal use of the software or to
make a backup copy of the
software and any documentation
provided on CD-ROM. Printed in
the United States of America.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for licensed
Newton platforms.

Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for printing or clerical
errors.

Apple Computer, Inc.

1 Infinite Loop

Cupertino, CA 95014

408-996-1010

Apple, the Apple logo, AppleTalk,
eMate, Espy, LaserWriter, the light
bulb logo, Macintosh, MessagePad,

Newton, Newton Connection Kit,
and New York are trademarks of
Apple Computer, Inc,, registered in
the United States and other
countries.

Geneva, NewtonScript, Newton
Toolkit, and QuickDraw are

trademarks of Apple Computer, Inc.

Acrobat, Adobe Illustrator, and
PostScript are trademarks of Adobe
Systems Incorporated, which may
be registered in certain
jurisdictions.

CompuServe is a registered service
mark of CompuServe, Inc.

FrameMaker is a registered
trademark of Frame Technology
Corporation.

Helvetica and Palatino are
registered trademarks of
Linotype-Hell AG and/or its
subsidiaries.

ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.

Microsoft is a registered trademark
of Microsoft Corporation.
Windows is a trademark of
Microsoft Corporation.

QuickView™ is licensed from
Altura Software, Inc.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,

EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
“AS IS,” AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Chapter 1

Table of Contents

Figures and Tables v
Related Books vii
Sample Code viii

Conventions Used in This Book ix
Special Fonts ix
Tap Versus Click ix
Frame Code X
Developer Products and Support xi
Undocumented System Software Objects

Messaging Enabler Interface

xii

1-1

About the Messaging Enabler 1-2

The Messaging Enabler and msgModules

The Messaging Enabler and Applications
Functionality of a msgModule 1-4
Preference Slips 1-5
Replies 1-6
Multipart Messages 1-6
Compatibility 1-7

Using the Messaging Enabler ~ 1-7
Creating a msgModule 1-8

1-2
1-3

Implementing msgModule Methods 1-9

Using Callback Functions 1-10

Result Codes 1-11

Sending Events 1-12

msgModules and Endpoints 1-12
Receiving Messages 1-13

Sample Message Receiving Method

Receiving Multipart Messages 1-16

1-14

iii

Chapter 2

Text and Frame Messages 1-16
Sending Messages 1-17
Using Name References with the Messaging Enabler 1-18
Creating the fromRef Slot of an Incoming Message 1-18
Obtaining Information from the toRef Slot of an Outgoing
Message 1-20
The Reply Soup ~ 1-21
Providing Preferences 1-22
Providing Hardware Preferences 1-23
Providing a Custom Preference Slip 1-24
Message Module Methods for Storing Data ~ 1-25
Customizing the About Slip ~ 1-25
Installing and Removing a msgModule 1-26
Application Program Interface to a msgModule 1-28
Using the ChangeConfig Method ~ 1-28
Using the SendDirectCommand Method ~ 1-29

Messaging Enabler Interface Reference 21

iv

Constants 2-1
Built-in Result Codes 2-1
Data Structures 2-4

Item Frame 2-4
Reply Frames 2-7
Proto 2-8

protoMsgModule 2-9

Functions and Methods ~ 2-38
Global Functions 2-39
Messaging Enabler Methods 2-41

Figures and Tables

Figure 1-1
Figure 1-2

Figure 1-3
Table 1-1
Table 1-2
Table 1-3

Figure 1-4
Figure 1-5
Table 2-1

Messaging Enabler hierarchy 1-3

Messaging Enabler and a msgModule hardware
preference slips 1-5

The replies slip 1-6
Messaging Enabler events 1-12
Slots to include in name references 1-19

msgModule slots controlling hardware
preference 1-23

msgModule hardware preference slip 1-24
msgModule About slip 1-26
Built-in error codes 2-2

PRETFAUCE

About This Document

Related Books

This document describes how to use the Newton Messaging
Enabler version 1.2, and how to write message modules. Message
modules are plug-in modules which represent a particular
messaging device to the Messaging Enabler.

This book is one in a set of books available for Newton
programmers. You'll also need to refer to these other books
in the set:

» Newton Programmer’s Guide. This book is the definitive guide to
Newton programming, providing conceptual information and
instructions for using the Newton application programming
interfaces.

» Newton Programmer’s Reference. This online book is the
comprehensive reference to the Newton programming
interface. It documents all routines, prototypes, data structures,
constants, and error codes defined by the Newton system for
use by NewtonScript developers.

= Newton Toolkit User’s Guide. This book comes with the Newton
Toolkit development environment. It introduces the Newton
development environment and shows how to develop
applications using Newton Toolkit. You should read this book
first if you are a new Newton application developer.

» The NewtonScript Programming Language. This book comes with
the Newton Toolkit development environment. It describes the
NewtonScript programming language.

vii

Sample Code

PRETFAUCE

» Newton Book Maker User’s Guide. This book comes with the
Newton Toolkit development environment. It describes how to
use Newton Book Maker and Newton Toolkit to make Newton
digital books and to add online help to Newton applications.

» Newton 2.0 User Interface Guidelines. This book contains
guidelines to help you design Newton applications that
optimize the interaction between people and Newton devices.

viii

There is sample code that deals specifically with the Messaging
Enabler.

The Newton Toolkit development environment, from Apple
Computer, includes many sample code projects. You can examine
these samples, learn from them, and experiment with them. These
sample code projects illustrate most of the topics covered in this
book. They are an invaluable resource for understanding the
topics discussed in this book and for making your journey into the
world of Newton programming an easier one.

The Newton Developer Technical Support team continually
revises the existing samples and creates new sample code. The
latest sample code is included each quarter on the Newton
Developer CD, which is distributed to all Newton Developer
Program members and to subscribers of the Newton monthly
mailing. Sample code is updated on the Newton Development
side on the World Wide Web (ht t p: / / devwor | d. appl e. cont
dev/ newt ondev. sht nl) shortly after it is released on the
Newton Developer CD. For information about how to contact
Apple Computer regarding the Newton Developer Program, see
the section “Developer Products and Support,” on page xi.

The code samples in this book show methods of using various
routines and illustrate techniques for accomplishing particular

PRETFAUCE

tasks. All code samples have been compiled and, in most cases,
tested. However, Apple Computer does not intend that you use
these code samples in your application.

To make the code samples in this book more readable, only
limited error handling is shown. You need to develop your own
techniques for detecting and handling errors.

Conventions Used in This Book

This book uses the following conventions to present various kinds
of information.

Special Fonts

This book uses the following special fonts:

= Boldface. Key terms and concepts appear in boldface on first
use.

= Courier typeface. Code listings, code snippets, and special
identifiers in the text such as predefined system frame names,
slot names, function names, method names, symbols, and
constants are shown in the Courier typeface to distinguish
them from regular body text. If you are programming, items
that appear in Courier should be typed exactly as shown.

= Italic typeface. Italic typeface is used in code to indicate replace-
able items, such as the names of function parameters, which
you must replace with your own names. The names of other
books are also shown in italic type, and rarely, this style is used
for emphasis.

Tap Versus Click

Throughout the Newton software system and in this book, the
word “click” sometimes appears as part of the name of a method
or variable, asin Vi ewd i ckScri pt or Buttond i ckScri pt.

ix

PRETFAUCE

This may lead you to believe that the text refers to mouse clicks. It
does not. Wherever you see the word “click” used this way, it
refers to a tap of the pen on the Newton screen (which is some-
what similar to the click of a mouse on a desktop computer).

Frame Code

If you are using the Newton Toolkit (NTK) development environ-
ment in conjunction with this book, you may notice that this book
displays the code for a frame (such as a view) differently than
NTK does.

In NTK, you can see the code for only a single frame slot at a time.
In this book, the code for a frame is presented all at once, so you
can see all of the slots in the frame, like this:

{ viewd ass: clView,
vi ewBounds: Rel Bounds(20, 50, 94, 142),
vi ewFl ags: vNoFl ags,
vi ewFormat : vf Fi || White+vfFraneBl ack+vfPen(1),
vi ewdustify: vjCenterH,

Vi ewSet upDoneScri pt: func()
: Updat eDi spl ay(),

Updat eDi spl ay: func()
Set Val ue(di spl ay, 'text, value);

}s

If while working in NTK, you want to create a frame that you see
in the book, follow these steps:

1. On the NTK template palette, find the view class or proto
shown in the book. Draw out a view using that template. If the
frame shown in the book contains a _pr ot o slot, use the
corresponding proto from the NTK template palette. If the
frame shown in the book contains a vi ewCl ass slot instead of

PRETFAUCE

a_pr ot o slot, use the corresponding view class from the NTK

template palette.

2. Edit the vi ewBounds slot to match the values shown in
the book.

3. Add each of the other slots you see listed in the frame, setting
their values to the values shown in the book. Slots that have
values are attribute slots, and those that contain functions are
method slots.

Developer Products and Support

The Apple Developer Catalog (ADC) is Apple Computer’s
worldwide source for hundreds of development tools, technical
resources, training products, and information for anyone
interested in developing applications on Apple computer

platforms. Customers receive the Apple Developer Catalog featuring

all current versions of Apple development tools and the most
popular third-party development tools. ADC offers convenient
payment and shipping options, including site licensing.

To order product or to request a complimentary copy of the Apple

Developer Catalog contact

Apple Developer Catalog
Apple Computer, Inc.
P.O. Box 319

Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511
AppleLink ORDER.ADC
Internet order.adc@applelink.apple.com

World Wide Web http:/ / www.devcatalog.apple.com

xi

PRETFAUCE

If you provide commercial products and services, call
408-974-4897 for information on the developer support programs
available from Apple.

For Newton-specific information, see the Newton developer
World Wide Web page at:

http://devworl d. appl e. conf dev/ newt ondev. sht m

Undocumented System Software Objects

xii

When browsing in the NTK Inspector window, you may see
functions, methods, and data objects that are not documented in
this book. Undocumented functions, methods, and data objects
are not supported, nor are they guaranteed to work in future
Newton devices. Using them may produce undesirable effects on
current and future Newton devices.

CHAPTER 1

Messaging Enabler Interface

This chapter describes the Messaging Enabler verion 1.2 interface. The
Messaging Enabler, along with one or more message modules, provides
transport-level communication between an application and a messaging
device. This makes sending a page as easy as printing or faxing.

This chapter describes how to

= Create a message module to interface between the Messaging Enabler and
a particular messaging device.

= Customize the user interface to your message module.
= Install and remove a message module.
= Interact with the Messaging Enabler from an installed application.

This text assumes a basic familiarity with programming for the Newton. In
particular, you should be familiar with the NewtonScript programming
language, building and downloading projects with the Newton Toolkit, and
Chapter 22, “Transport Interface,” of Newton Programmer’s Guide. It is also
recommended that you understand the information in Chapter 3, “Views,”
Chapter 21, “Routing Interface,” and Chapter 23, “Endpoint Interface,” of
Newton Programmer’s Guide.

1-1

CHAPTER 1

Messaging Enabler Interface

About the Messaging Enabler

1-2

The Messaging Enabler is intended to provide high-level support for a wide
variety of messaging devices. Messaging devices are both one-way and
two-way pagers, or more generally, any device that can receive (and maybe
send) short, usually less than 5 KB, wireless messages. The Messaging
Enabler provides much of the functionality of a transport that would be
necessary to support these devices. The particular routines needed to
support a messaging device are implemented in a plug-in message module
(msgModule) created from pr ot oMsgMbdul e. The msgModule comes
between the Messaging Enabler and the message channel. The message
channel is considered to be everything from the Messaging Enabler to the
outside world. That is, the message channel starts at the msgModule,
continues through the messaging device, and to the outside world from there.

The Messaging Enabler provides the user interface, and handles the
interactions with installed applications, by way of the In/Out Box. The
msgModule creator can thus concentrate on writing communications code.
Another advantage of this setup is that the user sees a consistent interface
with any type of messaging device.

The Messaging Enabler and msgModules

A msgModule’s only contact with the system is through the Messaging
Enabler. In turn, the Messaging Enabler’s only contact with the system is
through the In/Out Box; this is true of all transports in the Newton operating
system. From the other end, the user’s interactions with the message channel
are similarly limited to the In/Out Box. The user creates a message in some
application that supports routing, and the message is routed to the In/Out
Box. The Messaging Enabler takes over from here. This arrangement is
schematized in Figure 1-1.

About the Messaging Enabler

CHAPTER 1

Messaging Enabler Interface

Figure 1-1 Messaging Enabler hierarchy
Built-in Installed
Applications Applications T

ll

i

In/Out Box Transport Notify

j

Messaging Enabler (2.0 transport)

Il |

Message Message
Module Module
Hardware Har_dware
(receive only)

The Messaging Enabler and Applications

Applications may interact with the Messaging Enabler by using the global
function Tr anspor t Not i f y. An application may use this function to
change a configuration setting, and optionally to disable user preferences.
This is intended for vertical applications to properly configure the Messaging
Enabler to known parameters.

An application may also perform msgModule commands, if the msgModule
supports this. This functionality is up to the msgModule designer to provide.

About the Messaging Enabler 1-3

CHAPTER 1

Messaging Enabler Interface

The Messaging Enabler simply passes messages from the application to the
msgModule. This can be useful if an application is being distributed with the
msgModule.

Functionality of a msgModule

The Messaging Enabler is intended to work with a wide variety of messaging
devices. These devices have different capabilities, and the Messaging Enabler
has been designed to take advantage of the capabilities of particular
messaging devices, while still supporting messaging devices that provide
only a minimal functionality.

All msgModules must implement the following minimal functionality to
work with the Messaging Enabler:

» Describe its functionality to the Messaging Enabler; this is done by setting
certain Boolean slots.

» Initiate and terminate a connection with the message channel.

= Receive and delete messages from the message channel.

A msgModule may also provide the following functionality:

= Send messages.

» Retrieve a directory of incoming messages.

» Detect the presence of either the messaging device or a new message.
» Provide parameters to the built-in configuration options.

= Provide custom preferences.

= Provide a custom routing slip.

s Customize the About slip.

= Accept commands from an application

About the Messaging Enabler

CHAPTER 1

Messaging Enabler Interface

Preference Slips

The Messaging Enabler provides a preference slip with choices which are not
specific to a particular msgModule, such as when to poll for messages,
whether to display status slips, and other such preferences. The Messaging
Enabler’s preference slip, shown to the left in Figure 1-2, is accessed through
the information (“i”) button of the In/Out Box. The Messaging Enabler also
provides a slip with common hardware configuration options for a particular
msgModule and messaging device. The hardware preference slip, shown to
the right in Figure 1-2, is accessed through the Device button in the
Messaging Enabler’s preference slip. The Device button provides a picker for
all installed msgModules.

Figure 1-2 Messaging Enabler and a msgModule hardware preference slips

essaging Preferences Messaging Preferences

¥ Show status slips Shiow status slips

Send plain text only TestEnabler Prefs
#Get messages Meyer

When receiving Brovse
*Motify With system alarm # Transmitter Jh

*Power Jn

When Sending Specify when *+sound OFf
After sending # Connect using External
Delete #Clock Set Mewton from page

#File read items in

“unfiled Items™

E] [an:] [0 Device] [4 Options] E] [ant] [0Devi1:e] [0 Oprions] @

You may also create a preference slip of options which are specific to your
msgModule. This slip is accessed through the Options button in the
Messaging Enabler’s preference slip. If no installed msgModules have a
custom slip, the Options button is not included.

About the Messaging Enabler 1-5

CHAPTER 1

Messaging Enabler Interface

Replies

The Messaging Enabler allows the user both to reply to received messages,
and to attach possible replies to outgoing messages, if the msgModule
supports this. The user replies to an incoming message by choosing “Reply”
from the Tag button in the In/Out Box. Replies to outgoing messages are
created from the Replies button of the routing slip. Tapping this button
brings up the replies slip shown in Figure 1-3. These replies are stored in a
soup, which your msgModule may manipulate.

Figure 1-3 The replies slip

1-6

Replies
jcdjerlah) ij [kl Innjop] ar} stjuviwav2
i} Acknowledgement Ack
NO
mple Msqg 1 Built-in
imple Vsgq 2 Built-in
¥ want 1o discuss

W YES

Koo

771 Selected Only @

Multipart Messages

Some messaging devices allow multipart messages in order to overcome
message length restrictions. The Messaging Enabler provides the ability to
combine these message segments. The msgModule can simply retrieve the
individual message parts. The message is integrated by the Messaging
Enabler, and the user sees a single message in the In Box. If only part of the
multipart message is available at any time, individual message segments are

About the Messaging Enabler

CHAPTER 1

Messaging Enabler Interface

displayed prefixed with [a: b] , where a is the segment number, and b is the
total number of segments.

Compatibility

The Messaging Enabler is a Newton 2.x transport. It is incompatible with

Newton system software 1.x versions. Messaging Enabler 1.0 does not send a

Pr ocessConbi nedMessage method, this functionality is introduced in

version 1.2.

Using the Messaging Enabler

This section describes how to

create a msgModule

implement the msgModule methods
receive messages

send messages

use name references

control the Reply soup

provide preferences

customize the About slip

install and remove a msgModule

alter both the Messaging Enabler and a msgModule’s configuration
settings and send a msgModule a command from an application

Using the Messaging Enabler

1-7

1-8

CHAPTER 1

Messaging Enabler Interface

Creating a msgModule

A msgModule object is a frame based on the pr ot oMsghWbdul e proto. To
create a msgModule, create a layout in NTK containing a single
pr ot oText Butt on and create an Af t er Scri pt with the following line:

thi sView _proto : = protoMghdul e

Note

The pr ot oMsgModul e frame is defined in the file
“pMsgMod.stream” file. O

The msgModule must set a number of slots to inform the Messaging Enabler
of its functionality. The msgModule slots of interest can be grouped as
follows:

s Convenience and miscellaneous slots:

deviceTitle The user-visible name of the messaging device.

title The user-visible name of the msgModule.

version The version number.

decl areSel f A reference to your msgModule.

pf Var s A convenience frame for your data.

icon An icon identifying the msgModule.

about What to display in the About slip; see “Customizing the

About Slip” (page 1-25).
= Slots related to user preferences; these are described in “Providing
Preferences” (page 1-22):
prefsTenpl ate A view template for a custom preference slip.
ti meStrings The choices available for the “Clock” picker.

transmtterStrings
The choices available for the “Transmitter” picker.

soundStri ngs The choices available for the “Sound” picker.
port Strings The choices available for the “Connect Using” picker.
power Strings The choices available for the “Power” picker.

Using the Messaging Enabler

CHAPTER 1

Messaging Enabler Interface

= Boolean slots which inform the Messaging Enabler of the message
channel’s functionality:

di r Support Does the message channel support returning a directory
of available messages? If so, you must supply a Get Di r
method (page 2-30).

cannedSupport Does the messaging channel support returning canned
replies?

per si st Connecti on
Should the message channel be left open after receiving
messages?

= Slot which describes the messaging channel’s sending ability:

sendOpti ons The addressing options that the message channel
supports; see “Sending Messages” (page 1-17).

= Slots which determine if and when the Messaging Enabler should poll the

message channel:

pol | Message How often to send either a Get Di r (page 2-30) or a
Cet Next Message (page 2-32) message, depending on
the value of di r Support.

pol | Har dwar e How often to send an Open message (page 2-33).
pol I Al'ive How often to send an Al i ve message (page 2-16).

For a full description of these slots see “protoMsgModule” beginning on
page 2-9.

Implementing msgModule Methods

Since the msgModule methods are called asynchronously, they must be
structured in a slightly idiosyncratic manner. The Messaging Enabler cannot
use the return values of the msgModule methods, therefore these methods
must report their outcome with a function call. The function they must call is
the proto-supplied msgModule method DoCal | Back (page 2-21).

Furthermore, if the msgModule needs to communicate with the Messaging
Enabler, it must do so by sending it events. This is done by calling the
proto-supplied msgModule method DoEvent (page 2-22).

Using the Messaging Enabler 1-9

1-10

CHAPTER 1

Messaging Enabler Interface

Note that the Messaging Enabler wraps all calls to msgModule methods in a
try..onexcepti on block. If a msgModule method throws an exception the
Messaging Enabler will catch the exception and close the msgModule.

Using Callback Functions

All the msgModule methods that are called asynchronously must call the
proto-supplied msgModule method DoCal | Back (page 2-21) after they have
completed their operation. These methods are passed a callBack parameter,
which must be passed on to the DoCal | Back method. You should not alter
the value of this parameter, nor can you rely on its value.

In addition to callBack, the DoCal | Back function accepts two other
parameters: complCode, which indicates the success of the function; and
complFrame, which is used to return data. Result codes to use for the
complCode parameter are discussed in “Result Codes” beginning on

page 1-11. The values for the complFrame parameter depend on the particular
method. These values are described under the particular method in

Chapter 2, “Messaging Enabler Interface Reference.”

The following sample code demonstrates how these methods should be
structured:

nsghodul e. Met hodNane : = func (callBack , ...)

begi n
/1 In this sanple, the DoTheWrk nethod perforns
/1 whatever is required of MethodName, and returns an
/1 integer result code. Normally this work woul d be
/1 performed in the body of MethodNane.

| ocal theResult := :DoTheWirk();

: DoCal | Back(cal | Back, theResult, nil);
end;

Using the Messaging Enabler

CHAPTER 1

Messaging Enabler Interface

Result Codes

Most msgModule methods must return an integer result code indicating the
success of the operation. This result code is returned through the complCode
parameter to the DoCal | Back method. It is used both to indicate whether
the operation was successful and to map to error strings if necessary.

A number of result codes are built in to the Messaging Enabler. These are
listed in Table 2-1 “Built-in error codes” on page 2-2. Table 2-1 also lists the
string used in alerts corresponding to each error. However, before displaying
one of these strings, the Messaging Enabler calls your msgModule’s

Tr ansl at eEr r or method (page 2-38), if it has one. You may return a string
from this method to use in the alert, instead of the Messaging Enabler
supplied string.

You may also define your own error codes. The built-in error codes are all
negative integers. You may define both negative and positive result codes.
The negative codes are treated just like the built-in error codes; these should
be integers below the constant KRES_MVBASE. Positive result codes indicate
to the Messaging Enabler a noncritical event. In this case, the Messaging
Enabler displays an alert, with the string your Tr ansl at eEr r or method
returned, and continues.

Some of the method descriptions in Chapter 2, “Messaging Enabler Interface
Reference,” explicitly mention specific result codes. You should use these
codes if they apply, as the Messaging Enabler treats this code in a particular
manner. For example, the result code KRES_PART! AL, when returned from
the Get Di r method (page 2-30) indicates that there are more messages, and
Get Di r needs to be called again.

Otherwise, if no result code is mentioned explicitly in the method
description, you should return the code that best describes the state of the
operation. The method description list a number of suggested error codes for
each particular method. These are only suggestions, you should return the
code that best describes the status of the operation. When returning error
codes, you should consider them from the point of view of what string the
user sees.

Using the Messaging Enabler 1-11

1-12

CHAPTER 1

Messaging Enabler Interface

Sending Events

Aside from the call to DoCal | Back within a msgModule method, the only
way for a msgModule to communicate with the Messaging Enabler is by
sending events. For example, if the msgModule detects that there is a new
message on the message channel, it should notify the Messaging Enabler
rather than wait to be polled.

The events your msgModule can send are summarized in Table 1-1.

Table 1-1 Messaging Enabler events

Constant for

event name Event description

KEV_BATTERY The battery level of the messaging device has
changed.

KEV_CLGCSED The messaging channel is no longer available.

kEV_DETECTED The messaging channel is available.

kEV_MEMORY The messaging device is either out of memory, or
no longer out of memory.

KEV_MESSAGE There is a change in the messages available.

KEV_PROGRESS There has been progress on a current operation.
This allows progress slips to be updated.

KEV_SERVI CE The message channel is temporarily unavailable,
or no longer so.

Events are sent to the Messaging Enabler by calling the proto-supplied
msgModule DoEvent method (page 2-22). For further information about
these events and how the Messaging Enabler reacts to each of them, see the
description of the DoEvent method.

msgModules and Endpoints

In most cases, the connection to the messaging device is created with an
endpoint. For instance you could instantiate an endpoint in your

Using the Messaging Enabler

CHAPTER 1

Messaging Enabler Interface

msgModule’s Open method (page 2-33), and close, unbind, and dispose of it
in your Cl ose method (page 2-18). However, it is not necessary that your
msgModule use endpoints.

For information on endpoints, see Chapter 23, “Endpoint Interface,” in
Newton Programmer’s Guide.

Receiving Messages

There are three ways messages can be received through the message channel.
If the msgModule pol | Message slot is non-ni | , the Messaging Enabler
periodically sends the msgModule either a Get Di r (page 2-30) or a

CGet Next Message (page 2-32) message, depending on the value of the
msgModule di r Support slot.

If the message channel is open and the msgModule detects the arrival of a
message, it can send a KEV_MESSAGE event; see “Sending Events”

(page 1-12). This causes the Messaging Enabler to send eithera Get Di r ora
Get Next Message message.

The user may also poll for messages at any time via the Receive button in the
In Box.

Messages are represented as In/Out Box item frames. The section “Item
Frame” beginning on page 2-4 describes the slots in an item frame that are
used particularly by the Messaging Enabler and your msgModule. For
information about the standard set of slots used by all In/Out Box item
frames, see Chapter 18, “Routing Interface Reference,” in Newton
Programmer’s Reference.

For information on how an application may retrieve items from the In Box,
see Chapter 22, “Transport Interface,” in Newton Programmer’s Guide. In
particular, you should read about the Regl nBoxApps, RegAppd asses,
Put Away, and Aut oPut Away functions. Applications receiving Message
Enabler items from the In Box should check whether the item has a segnment
slot, as this indicates that it is not a complete message.

Using the Messaging Enabler 1-13

/1
neg
beg

1-14

CHAPTER 1

Messaging Enabler Interface

Sample Message Receiving Method

The following sample code shows how a number of item frame slots should
be set:

This method is only necessary if we do not have directory support

Modul e. Get Next Message : = func(call Back)
in
| ocal nmessage :=nil; //NOTE: if we DON T return a nil nessage,

/[/this function will be called again

/I For the sake of this exanple, we assune that the nmsghodul e
/1 has a Get MessageFr onPager function returns the nessage.

/1

/I Note that GetMessageFronPager MUST renpve the nessage
//fromthe nessage channel.

| ocal rawMessage := nil;
try
rawMessage : = : Get MessageFronPager () ;
onexception |evt.ex.outOf Men do
begi n
: DoCal | Back (cal | Back, kRES MEMORY, ni |) ;
return;
end;
onexception |evt.ex| do
begi n
: DoCal | Back (cal | Back, kRES _FAI LED, ni |);
return;
end;

Using the Messaging Enabler

CHAPTER 1

Messaging Enabler Interface

i f rawmvessage then

begi n
message : = {
conpl ete: true,
body : {
class: 'text,
text: rawvessage.text
3
title : rawwessage.title
b
Il create a fronRef frame with the appropriate infornmation
| ocal theEmail String := Cone (rawMessage.enail);
SetClass (theEmail String, '|string.email.internet]);

| ocal fronRefTenplate := {
nane: {
first: rawMessage. firstNane,
| ast: rawMessage. | ast Nane
H
emai |l : theEmail String,
country : nil,
b
| ocal addressType := GetDataDefs('|nanmeRef.email]|);
message. fronRef : = addressType: MakeNaneRef (fronRef Tenpl at e,
"| naneRef . enmi | |

);
//Set the ID. Here, nmsgNumis slot in base view W set

[ImsgNumto O when the nsgMbdule is installed.
message. | D : = nsgNum : = nsgNum +1;

Using the Messaging Enabler 1-15

end

1-16

CHAPTER 1

Messaging Enabler Interface

/11f this nmessage is intended for a specific application, we
/I may want to set sonme extra slots for that application
nmessage. appSynbol : = 'theAppsSynbol ;

nmessage. appSpecificSlot := nil

i f rawlMessage

: DoCal | Back (cal | Back, kRES SUCCESS, nessage);

Receiving Multipart Messages

The Messaging Enabler provides the ability to combine multi-part messages.
The msgModule needs only set the segnent , t ot al Segrment s, and

gr oupl Dslots to the appropriate numbers in the item frame. If all parts are
present, the Messaging Enabler will combine these and the user will see a
single message in the In Box. If all message segments are not present, the
individual segments are prefixed with [segment+1: totalSegments] .

If using Message Enabler version 1.2 or later, it conditionally sends your
msgModule a Pr ocessConbi nedMessage (page 2-38) message when all
parts are in, but before posting the message to the In box. You can do any
porcessing you wish on the combined message here.

Text and Frame Messages

The actual message data is stored in the body slot of the item frame. When a
text message is received, the body slot should be set to a frame with a cl ass
slotof ' t ext and at ext slot which contains the message string. Otherwise,
the format of this frame depends on what the application which is managing
this data expects.

If the message contains a frame that has been flattened, you should unflatten
it using the Tr ansl at e global function, described in Chapter 23, “Endpoint
Interface,”in Newton Programmer’s Reference. However, if the message
contains only part of the flattened frame, you can treat it as a multipart

Using the Messaging Enabler

CHAPTER 1

Messaging Enabler Interface

message. The Messaging Enabler will collect the individual parts, call

Tr ansl at e, and set the body slot to the resulting frame. If returning part of
a flattened frame the body slot should be a frame with a ¢l ass slot set to
"|file.frameSegment| and a dat a slot containing the binary data.

Sending Messages

The user originates a message, just like any other transport-related operation,
by tapping the Action button (the envelope button). This routes the message
to the Out Box. The Messaging Enabler then passes this message on by
calling your msgModule’s SendMessage method (page 2-35). The
SendMessage method is passed a message parameter which consists of an
In/Out Box item frame.

To support sending messages, the msgModule must have a non-ni |
sendOpt i ons slot and must implement the SendMessage method. For a
description of the slots in an item frame, see “Item Frame” (page 2-4).

The sendQpt i ons slot contains an array of send options frames. A send
option frame specifies the following:

= The routing slip to use; either a custom template, or a name reference
describing the type of addressing to use in the Messaging
Enabler-supplied routing slip.

= The routing group this msgModule belongs to; predefined groups are
"print," mail,' fax,and' page. You may also define your own routing
group, but these must be registered with Newton Developer Technical
Support.

= The title and icon shown in the Action button; these should correspond to
the routing group.

= The type of data that can be sent; sending text and frame data is currently
supported.

= The types of reply frames that can be attached to a message; see “Reply
Frames” (page 2-7).

For a full description of send option frames, see the description of the
sendOpt i ons slot in “protoMsgModule” beginning on page 2-9.

Using the Messaging Enabler 1-17

1-18

CHAPTER 1

Messaging Enabler Interface

It is up to your msgModule’s SendMessage (page 2-35) method to detect if
the size of an outgoing message is larger than the messaging channel can
handle. If so, it must partition the message and send the individual
segments. This is true regardless of whether the message contains text or a
frame.

Using Name References with the Messaging Enabler

A name reference is a reference to a Names soup entry, or a frame created on
the fly that has some of the slots of a Names soup entry. Name references are
used by the Messaging Enabler to specify the originator and receiver of a
message (these are stored in the message’s t oRef and f r onRef slots) and
the type of routing slip to display for outgoing messages.

You need to create a name reference only when setting the f r onRef slot of
an incoming messages. Outgoing messages will have the t oRef and

f ronRef slots set by the Messaging Enabler, and incoming messages do not
need at oRef slot. If your msgModule supports sending messages, you will
also need to extract information from the t oRef slot to use in your
SendMessage method (page 2-35).

Creating the fromRef Slot of an Incoming Message

To create a name reference, call the MakeNaneRef method of the data
definition. The call to MakeNaneRef requires either a Names soup entry, an
alias to one, or a frame with some of the slots of a Names soup entry. The
Names soup format is described in Chapter 16, “Built-in Applications and
System Data Reference,” in Newton Programmer’s Reference.

You should call MakeNanmeRef with a frame created on the fly containing
only a subset of a Names soup entry’s slots. The slots to include depend on
the type of name reference, as summarized in Table 1-2. If the value of any of
these slots is unavailable to you, you may either not include this slot or set it
tonil.

Using the Messaging Enabler

CHAPTER 1

Messaging Enabler Interface

Table 1-2 Slots to include in name references

Name reference Slots to include

" | naneRef . peopl e| nane

" | nameRef . phone| nane, phone, country

"| nameRef . f ax| name, phone, country

"| naneRef . emai | | nane, emai | ,country

' | nameRef . peopl e. pager | nane, pagers

The following sample code sets the f r onRef slot of an incoming message:

nsg
beg

end

Using the Messaging Enabler

Modul e. Get Next Message : = func (cal | Back)
in

local item:= {};
| ocal nyData := {};

nmyDat a. nanme : = {
first :sendersFirstNane,
| ast :senderslLast Nane
}
myDat a. emai | : = Set d ass(
sender sEmai | Adr ess,
"|string.emuil.internet|

)

itemfronmRef := GetDataDefs('|nameRef.email]|)
: MakeNaneRef (nyData, ' | naneRef.enmil|);

: DoCal | Back(cal | Back, kRES SUCCESS, itenj;

1-19

1-20

CHAPTER 1

Messaging Enabler Interface

To set the class of a pager, use either one of the predefined class symbols, or
define your own class symbol using the global function RegPager Type. The
following are the predefined class symbols:

"| string. pager |

"| string. pager.skytel|

"| string. pager. nobi | ecomm
"| string. pager. enbarc|

For information about the RegPager Type function, and its companion
UnRegPager Type, see Chapter 26, “Utility Functions,” in Newton
Programmer’s Reference.

Obtaining Information from the toRef Slot of an Outgoing
Message

When sending a message, you are passed an item frame which contains a

t oRef slot. This slot holds an array of name references for the recipient(s) of
the message. To obtain information from these name references to use when
sending the message out the message channel, call the name reference’s

Cet Rout i ngl nf o method. Get Rout i ngl nf o returns an array of routing
information frames. Routing information frames contain a nane slot and
certain slots with routing information, depending on which name reference’s
Get Rout i ngl nf o method is called.

The following code retrieves the pager slot of an array of name references:

nsghModul e. SendMessage : = func (cal | Back, nessage)
begi n

dat aDef := GetDataDefs ('|naneRef. people. pager]|);
pager sArray := dat aDef: Get Routi ngl nf o(nessage. t oRef) ;

end;

Using the Messaging Enabler

CHAPTER 1

Messaging Enabler Interface

The variable pager sAr r ay will contain an array of frames with the
following format:

{
pager Num pagerNumberString,

pager Pi n: pagerPINString
}

Note that the string pagerNumberString will have the same class as the pager,
thatis, ' | string. pager| orasubclass of it. Pager classes are discussed in
“Creating the fromRef Slot of an Incoming Message” (page 1-18).

To retrieve the emai | slot use code such as:

msghbdul e. SendMessage : = func (cal |l Back, nessage)
begin

dat aDef := GetDataDefs ('|nameRef.emil]|);
emai | sArray : = dat aDef: Get Routi ngl nf o(nessage. t oRef);

end;

The Reply Soup

Replies are stored in the Reply soup. A list of stored replies is shown to the
user when she taps the Replies button in the Routing slip. Entries in this
soup are reply frames; the format of these frames is described in “Reply
Frames” (page 2-7). The soup’s name is kMsgEnabl er Repl ySoupNane.

A msgModule may add or delete entries in this soup. It is important that any
changes are made with functions that transmit the change (these functions
end in “Xmit”). The msgModule | nst al | Scri pt method (page 2-33) is a
handy place to make these changes. For more information on manipulating
soups, see Chapter 11, “Data Storage and Retrieval,” in Newton Programmer’s
Guide.

Using the Messaging Enabler 1-21

1-22

CHAPTER 1

Messaging Enabler Interface

This soup contains canned replies provided by the msgModule, user-created
replies, and the acknowledgment reply.

The list of canned messages is retrieved by the Messaging Enabler by
sending the msgModule a Get Di r message (page 2-30). This is usually done
once, when the msgModule is installed. The Messaging Enabler retrieves the
list of canned messages whenever a msgModule is opened with a new serial
number; if it has no serial number the version string is used. The serial
number is obtained by sending the msgModule a Get Conf i g message
(page 2-26); the version string is in the msgModule ver si on slot. The
msgModule may also request that the Messaging Enabler update the list of
canned messages by sending a KEV_MESSAGE event; see “Sending Events”
beginning on page 1-12.

The list of user replies is maintained by the user, through the New and
Delete buttons of the Reply slip.

Note

If the user attempts to add a reply to a message and the
Reply soup is empty, the Message Enabler populates the
soup with the acknowledgment reply and user replies. These
user reply frames have the following strings in their t ext
slot:

"Yes/ OK","No","WII| call later”,"Call ne",

"On ny way","Running | ate","Need nore info",
"Send # to call","Call hone","Where are you",
"WIIl arrive 15m',"WII| arrive 30m,"Traffic

del ay","Pi ck me up","Busy",and"Fi ni shed". O

Providing Preferences

The Messaging Enabler supplies a preference slip, accessed through the
information (“i”) button in the In/Out Box. This slip provides a Device
picker which brings up the hardware preference slip. You may also supply a
custom preference slip. If any installed msgModules supply a custom
preference slip, the Messaging Enabler’s preference slip will include an
Options button to allow access to these slips.

Using the Messaging Enabler

CHAPTER 1

Messaging Enabler Interface

Providing Hardware Preferences

The hardware preference slip consists of up to five pickers for the typical
hardware configuration options that may be set in a messaging device. The
labels of these pickers are set by the Messaging Enabler, but it is up to the
msgModule to provide the menu choices (I abel Commands) for each picker.
Table 1-3 lists the msgModule slots that specify the menu choices for these
pickers.

Table 1-3 msgModule slots controlling hardware preference
msgModule slot Picker label

timeStrings “Clock”

transm tterStrings “Transmitter”

soundStri ngs “Sound”

port Strings “Connect Using”

power Stri ngs “Power”

Each one of these msgModule slots should contain either an array of strings
or ni | . If the slots holds the value ni |, or is not present, then the
corresponding picker is not included in the preference slip. For example, the
following msgModule creates the preference slip shown in Figure 1-4

(page 1-24):

nyMsghbdul e : = {
_proto : protoMsghodul e,

timeStrings := ["Set Newton from pager",

"Set pager from Newton"],
["Of", "Quiet", "Loud"],
[on", "aff],

soundStrings :
power Strings :

Using the Messaging Enabler 1-23

CHAPTER 1

Messaging Enabler Interface

Figure 1-4 msgModule hardware preference slip

1-24

estEnapier Frefs
———

#Power Jn
®5Sound OFff
#Clock Set Hewton from pager

IMPORTANT
The first element in each of these arrays is the default for the
picker. Pick the first element with forethought. a

The Messaging Enabler calls your msgModule’s Set Conf i g method

(page 2-36) when one of these settings is changed if the msgModule is open.
Otherwise, this new value is simply used next time the msgModule is
opened.

Providing a Custom Preference Slip

You may supply a template for a custom preference slip by including a

pr ef sTenpl at e slot in your msgModule. If this slot exists, the Messaging
Enabler’s preference slip includes an Options button. This button provides
access to the slip in the pr ef sTenpl at e slot.

You must ensure that this slip is rotatable, for consistency with the
Messaging Enabler preference slips. To accomplish this, you must supply a
Reor i ent ToScr een method in your view template. You may set the

Reor i ent ToScr een slot to the ROM constant ROM _Def Rot at eFunc. For
more information on this, see the description of the Reor i ent ToScr een
method in Chapter 2, “Views Reference,” of Newton Programmer’s Reference.

The proto-supplied msgModule methods SavePr ef er ence (page 2-35)
and Get Pr ef er ence (page 2-33) can be useful when writing the methods of
this template. These methods are described in “Message Module Methods
for Storing Data” (page 1-25).

Using the Messaging Enabler

CHAPTER 1

Messaging Enabler Interface

Message Module Methods for Storing Data

The proto-supplied msgModule methods Get Pr ef er ence (page 2-33) and
SavePr ef er ence (page 2-35) are designed to save you the effort of writing
soup manipulation code. You may store any information by calling the
SavePr ef er ence method. This method takes two parameters, a symbol for
the variable name and the actual data. This data is stored in a soup. The
following sample code stores an array associated with the symbol
"encrypti onSchene:

/I Note, 'msgMbdule is the value in the declareSelf slot
nmsghModul e: SavePr ef er ence(

"encrypti onSchene,

[' orange, ' red]

)

The Get Pr ef er ence method is used to retrieve data stored with
SavePr ef er ence, as in the following code sample:

encryption : = nsgh©bdul e: Get Pref erence(' encrypti onSchene) ;

The SavePr ef er ence method should also be used to alter the value of any
symbol previously stored with SavePr ef er ence.

The msgModule slot pf Var s is also provided to aid in data storage. Any
compile time data stored in this slot is kept in the package, and values which
have been changed at run time are stored in the heap. See the description of
this slot in “protoMsgModule” (page 2-9).

Customizing the About Slip

The msgModule about slot is used to provide information for the About
slip, shown in Figure 1-5. The About slip is accessed through the information
(“1”) button in the Messaging Enabler’s preference slip. This slip contains
both static and dynamic information.

Using the Messaging Enabler 1-25

CHAPTER 1

Messaging Enabler Interface

Figure 1-5 msgModule About slip

1-26

out lestenabler

TestEnabler v1.0
Static text

D'ynamic text
2 message(s) on the device.

The about slot can contain a string, a view template, or the value ni | . If a
view template is provided, this view replaces the Messaging
Enabler-supplied About slip. This view should look like the built-in About
slips, and should be rotatable. To make the view rotatable, you must supply
a Reor i ent ToScr een method in your view template. You may set the
Reor i ent ToScr een slot to the ROM constant ROM Def Rot at eFunc. For
more information on this, see the description of the Reor i ent ToScr een
method in Chapter 2, “Views Reference,” of Newton Programmer’s Reference.

If this slot contains a string or the value ni | , the About slip will contain the
following objects:

» The strings in the msgModule slots t i t | e and ver si on.

» The string in the about slot, if provided (in Figure 1-5 this is the string
"Static text"). If the about slotholds the value ni | , the other
information is still displayed.

» A string returned by the msgModule Get Conf i g method (page 2-26), if
defined (in Figure 1-5 this is the string " Dynami ¢ text").

» An integer message count returned by Get Conf i g, if defined (in
Figure 1-5 this is the number 2).

Installing and Removing a msgModule

A msgModule is installed using the RegMsgModul e function (page 2-39). It
should be called from your part’s | nst al | Scri pt; for information on auto
part’s|I nstal | Scri pt, see Chapter 2, “Getting Started,” in Newton

Using the Messaging Enabler

CHAPTER 1

Messaging Enabler Interface

Programmer’s Guide. The RegMsgModul e function takes two parameters, a
msgModule and a symbol which is considered your msgModule’s
appSymbol. The following code registers a msgModule in a file named
“myMessageModule”:

Set Part FraneS| ot (' nsghbdul eTenpl at e,
Get Layout (" myMessageMdul e")
)

Install Script := func(partFrame, renoveFrane)
begin
cal |l kRegMsgMbdul eFunc
with (kAppSynmbol, partFrane. meghodul eTenpl ate);
end;

Note

The cal | KkFunctionNameFunc with (args) syntaxis
used because this function is defined in the stream file
“pMsgMod.stream.” The Del et eMsgMbdul e and
UnRegMsgModul e functions discussed below must also be
called using this syntax. O

To remove your msgModule you need to supply both a Del et i onScri pt
and a RemoveScr i pt . For information on the Del et i onScri pt and the
RenpveScri pt, see Chapter 2, “Getting Started,” in Newton Programmer’s
Guide. The Del eti onScri pt function should call the Del et eMsgh€bdul e
function (page 2-39), as in the following code sample:

Set Part FraneSl ot (' Del etionScript, func()
begi n
call kDel et eMsgModul eFunc with (kAppSynbol);
end

)

Using the Messaging Enabler 1-27

CHAPTER 1

Messaging Enabler Interface

The RenoveScri pt function should call UnRegMsgMdul e function
(page 2-40), as in the following code sample:

RenoveScript := func(renoveFrane)
begi n

call kUnRegMsgMbdul eFunc with (kAppSynbol);
end;

Application Program Interface to a msgModule

There are two ways an installed NewtonScript application can interact with
the Messaging Enabler. It may change configuration options and send a
msgModule a command (if the msgModule supports this). The Messaging
Enabler provides the two methods ChangeConf i g (page 2-41) and

SendDi r ect Conmand (page 2-45) to accomplish this. To call these methods
you must use the global function Tr anspor t Not i f y. The

Transport Not i fy function is described in Chapter 18, “Routing Interface
Reference,” in Newton Programmer’s Reference.

Using the ChangeConfig Method

The ChangeConf i g method (page 2-41) can be used to change both the
Messaging Enabler’s and a msgModule’s preferences. The Messaging
Enabler preferences that may be set are those available to the user in its
preference slip, shown in Figure 1-2 on page 1-5, as well as a few preferences
that the user can’t set. The msgModule preferences that may be set with
ChangeConf i g are exactly those that the user may set in the msgModule’s
hardware preference slip, also shown in Figure 1-2 on page 1-5.

The following sample code demonstrates a call to ChangeConf i g:

TransportNotify (
' megEnabl er, /1 The Messagi ng Enabler’s transport sym
' ChangeConfi g,

[
cal | BackFn, //fn. to call when ChangeConfig is done

1-28 Using the Messaging Enabler

CHAPTER 1

Messaging Enabler Interface

{ [/l Messagi ng Enabl er preferences

di sabl e: true, /[ldon’t let user set prefs
aut oStatus: nil, /ldon’t show status slips
pol | Peri od: ' syCheck5,//get nsgs every 5 mns
nowCr Lat er: ' now, //send nsgs i medi ately

{ [/ nmsghbdul e preferences
devi ceSym ' | nsghModul eSym Si g|, //which nmsghbdul e
portlndex:0, //1st elem in portStrings array
/I Note that the 1st el em al ways
//holds the default string

)

Using the SendDirectCommand Method

The SendDi r ect Command method (page 2-45) calls a msgModule’s

Di r ect Command method (page 2-20). The Di r ect Command method is
intended for a msgModule to implement an application program interface
(API). The command parameter to the Di r ect Command method may be any
NewtonScript object. It is through this parameter that the application
informs the Di r ect Command method of both the action to perform and the
data to use.

If you as the creator of the msgModule want a third party application to take
advantage of the functionality provided by your Di r ect Command method,
it is up to you to document the possible values the command parameter can
take.

Using the Messaging Enabler 1-29

CHAPTER 1

Messaging Enabler Interface

Summary

1-30

Constants

Built-in Result Codes

kRES_SUCCESS
KRES | NUSE
kRES_MEMORY
kRES_FAI LED
kRES_NOTCONNECTED
kRES_UNSUPPORTED
kRES_COMVB
kRES_TI MEOUT
kKRES_SYNCHRONI ZE
KRES | NVPORT
kRES_| NVDEVI CE
kRES_READY
kRES_NOCANCEL
kRES_NOTREADY
kRES_UNCHANGED
kRES_NOTFOUND
kRES_BATTERY
kRES NOACCESS
kRES_MSGS| ZE
kRES_| NVADDRESS
KRES | NVMESSAGE
kRES_MSGDATA
kRES_MBGEMPTY
kRES_NOSERVI CE

Using the Messaging Enabler

CHAPTER 1

Messaging Enabler Interface

kRES_PREFSCHANGED
KRES_BATTERYWARN
kRES_CFG NVALI D
kRES_PARTI AL
kRES_NOSEND
kRES_NORECEI VE
kRES_STORE
kRES_NOVESSAGE

Data Structures

ltem Frame

anltenfrane : = {
deviceSym : symbol, //synbol identifying msghdul e
reply : frame, [/ A reply frame
I D . integer, [//unique nessage |D
conmpl ete . Boolean, //is this the whol e nessage?
title . string, [/ message title
body . frame, [/ message data
fr onRef . nameRef, | | sender
t oRef > array, [/larray of recipients
appSynbol : symbol, [/application to receive this nsg
replies : array, [lacceptable replies to this nsg
replylndex : integer, //index to sendOptions array
segnent . integer, [/ message part nunber

t ot al Segnents: integer, //total nunmber of segments

groupl D . integer,
error . integer,

Using the Messaging Enabler

/1id of group of segments
/linteger result code

1-31

1-32

CHAPTER 1

Messaging Enabler Interface

Reply Frame

aRepl yFrane : = {

type symbol, [/reply type
devi ceSym symbol, [/symbol for msghdul e
t ext string, [/the reply
replyl D integer, [/integer 1D
conpl ete Boolean, //is this the whole reply?
}
Proto
protoMsgModule
aMsghbdul e : = {
_proto pr ot oMsghodul e, // prot o nsghbdul e obj ect
about stringViewTemplateOrNil, / [i nfo in About slip

cannedSupport :
decl ar eSel f
deviceTitle :
di r Support

i con :
per si st Connect
pf Var s

pol I Al'i ve
pol | Har dwar e:
pol | Message :

portStrings :
power Stri ngs:
pref sTenpl at e:
sendOpti ons :
soundSt ri ngs:

Boolean, | | support canned replies?
symbol, [/ msghbdul e base view
string, [/ messagi ng devi ce namne
Boolean, |/ support directory of nessages?
bitmap, |/ msghbdul e icon
i on: Boolean, | | keep connecti on open

. frame, [/for your data

integer, //when to poll for aliveness
integer, [/when to poll for openess
integer, [/when to poll for nessages
array, //strings in port picker
array, //strings in power picker
viewTemplate, | | cust om prefs. slip
array, //ways to send data

array, //strings in sound picker

Using the Messaging Enabler

CHAPTER 1

Messaging Enabler Interface

timeStrings : array, //strings in tinme picker

title : string, [//type of messaging
transmitterStrings:array,//strs in transmtter picker
version : string, [//verison string

Alive : function, /'/is nmsg. channel avial abl e?
Cancel . function, [/ cancel present operation

d ose . function, I/ cl ose nmsg channel

Del et eMessageFronDi r: function, / / del ete msg. fromdir.
Di rect Conmand: function, / / per f orm conmand from app.

DoCal | Back : function, /[execute cal | Back function
DoEvent . function, /| process event

Get Confi g . function, // get configuration info

GetDir . function, //get dir of msgs/canned replies

Get MessageFronDir: function, / / get next msg. fromdir.
Get Next Message: function, / / get next message

Cet Preference: function,//returns pref. val ue

Install Script: function,//called when installed

Open . function, // open the msg. channel
RemoveScri pt: function, //cal | ed when renpved

SavePr ef erence: function,// saves a preference val ue
SendMessage : function, // send a nessage

Set Confi g . function, //set configuration info
Transl ateError: function,// map result code to string
ProcessConbi nedMessage: function, //process conbi ned nsg

Using the Messaging Enabler 1-33

1-34

CHAPTER 1

Messaging Enabler Interface

Functions and Methods

Global Functions

Del et eMsgModul e(symbol) //del etes a msghMdul e
RegMsgModul e(symbol, msgModule) //registers a msghdul e
UnRegMsgModul e(symbol) // unregisters a msghdul e

Messaging Enabler Methods

messagingEnabler: ChangeConf i g(callBack, cfgMsgEnabler, cfgMsgModule)
/I change either Enabl er or nsgMdul e configuration
messagingEnabler: SendDi r ect Command(callBack, options, command)
//call a msgModul e’ s Direct Conmand net hod

Using the Messaging Enabler

CHAPTER 2

Messaging Enabler Interface
Reference

This chapter lists all constants, data structures, protos, functions, and
methods used by the Messaging Enabler.

Constants

This section described the constants used by the Messaging Enabler.

Built-in Result Codes

Table 2-1 describes the built-in error codes. You may customize the error
messages used by your msgModule by defining a Tr ansl at eErr or

Constants

2-2

CHAPTER 2

Messaging Enabler Interface Reference

method (page 2-38). For information about result codes see “Result Codes”

(page 1-11).

Table 2-1 Built-in error codes

Result code Error string

kRES SUCCESS Success.

KRES_| NUSE The required communication port for the
deviceTitle is currently in use.\n Try resetting your
Newton PDA. Refer to the handbook for
information on resetting

kRES_MEMORY There is not enough memory to complete the
operation.\n Try resetting your Newton PDA.
Refer to the handbook for information on
resetting.

kRES_FAI LED An error has occurred. The last operation

kRES_NOTCONNECTED

kRES_UNSUPPORTED

kRES_COWS
kRES_TI MEQUT

kRES_SYNCHRONI ZE

kRES_| NVPORT

kRES_| NVDEVI CE

kRES_READY

Constants

failed.\n You may retry the operation.

An error has occurred. The deviceTitle has not
been opened. Try resetting your Newton PDA.
Refer to the handbook for information on
resetting.

An error has occurred. The function requested is
not supported by the installed message module.

Communication with the deviceTitle has ended.

The deviceTitle is not responding to requests.\n
Please check the connection to the deviceTitle.

The deviceTitle is not communicating correctly.
(Data Error)

The deviceTitle could not be found at the required
location.

The connected device does not appear to be a
deviceTitle.

There is no operation to cancel.

CHAPTER 2

Messaging Enabler Interface Reference

Table 2-1 Built-in error codes

Result code
kRES NOCANCEL

kRES_NOTREADY

kRES_UNCHANGED

kRES_NOTFOUND

kRES_BATTERY

kRES_NOACCESS

kRES_MSGS| ZE

KRES_| NVADDRESS
KRES_| NVMESSAGE

kRES_MSGDATA
kRES_MSGEMPTY
kRES_NOSERVI CE

kRES_PREFSCHANGED

kRES_BATTERYWARN

kRES_CFQ NVALI D

Constants

Error string

The current operation can't be stopped right
now.\n You may try again later.

The deviceTitle is busy and can't do anything else
right now.\n Wait until the current operation
completes and try again.

No new messages were found.

The message requested was not found.\n You
may have previously deleted the message.

The deviceTitle battery is too low to continue.\n
You need to replace or recharge the cell and try
again.

The deviceTitle is not in range to send.\n Move to
a better location and try again.

The deviceTitle can't send messages of this size.\n
Try creating several smaller messages.

The destination address is invalid.

The message content can't be sent by the
deviceTitle.

Message content contains errors.
Message contains no content.

Your deviceTitle has not been activated with your
service provider.

The Messaging Enabler preferences have been
modified by an installed application.

The deviceTitle battery is low. You should change
or recharge the cell as soon as possible.

The configuration item to set contains an invalid
value.

2-3

CHAPTER 2

Messaging Enabler Interface Reference

Table 2-1 Built-in error codes

Result code Error string

KRES_PARTI AL There is not enough memory to retrieve all
messages from the deviceTitle. Please delete some
of the messages to retrieve more.

kRES_NGCSEND The deviceTitle is unable to send the message at

kRES_NORECEI VE

KRES_STORE

kRES_NOVESSAGE

Data Structures

the moment.

The deviceTitle us unable to receive messages at
the moment.

The Newton PDA does not have enough store
memory to complete the operation.\n Try
deleting inbox items or storing new items on a
card.

There are no messages pending.

This section describes the data structures used by the Messaging Enabler.

Item Frame

The Messaging Enabler extends the standard In/Out Box item frame to
include several new slots. The msgModule may also extend an item frame to
contain any other specific slots that are needed.

The standard set of slots in item frames are described in Chapter 18,
“Routing Interface Reference,” in Newton Programmer’s Reference. Only those
extra slots used by the Messaging Enabler are listed here.

Data Structures

CHAPTER 2

Messaging Enabler Interface Reference

Slot descriptions
devi ceSym

reply

I D
compl ete

title

body

f r omRef

Data Structures

This slot is added by the Messaging Enabler. A symbol
indicating the msgModule that owns this item frame.
This is the appSymbol that the msgModule registered
with. It is for use by applications that need to register to
automatically receive Messaging Enabler items from the
In Box. Do not modify this slot.

This slot is added by the Messaging Enabler. A reply
frame; see “Reply Frames” (page 2-7). This is set by the
Messaging Enabler to specify the reply to be sent to this
item frame. The msgModule should check this slot
when sending a message to determine if the message is
areply or a new message. See the description of the
msgModule SendMessage method (page 2-35). Do not
modify this slot.

Required. An integer uniquely identifying this message.

Optional. A Boolean indicating whether this data is the
complete message or if there is more data to be retrieved.

Required. A string. Set this to a description of the
message body.

Optional. A frame. Set this to the message data. For text
messages use the defined ' t ext data definition, which
is a frame with the following slots:

cl ass The symbol ' t ext .
t ext A string that is the message contents.

If the message contains a segment of a flattened frame,
use a frame with the following slots:

cl ass The symbol ' | fil e. fragnent]|.

dat a The binary data for this part of the
flattened frame.

If the message is a frame, simply set this body slot to
that frame.

See “Text and Frame Messages” beginning on page 1-16.

Optional. A name reference or other information that
identifies the sender. If this slot is present and the

2-5

2-6

CHAPTER 2

Messaging Enabler Interface Reference

t oRef

appSynbol

replies

Data Structures

msgModule slot sendQpt i ons is non-ni | , the user can
create a new message to reply to this message. The new
message will be sent to the address in this slot. See
“Using Name References with the Messaging Enabler”
(page 1-18).

Optional. An array containing one or more name
references used to identify the recipient(s) of the item.
See “Using Name References with the Messaging
Enabler” (page 1-18).

Optional. Set this slot to an application symbol if your
msgModule is intended to receive messages destined
for only one application.

Optional. An array containing reply type symbols
and/or reply frames describing the possible replies to
this message.

A reply frame contains a t ype slot, which can have one
of four values: ' ack, ' user,' canned, and ' choi ce.
For replies of type ' ack, ' user, or' canned, this
symbol is all that needs to be included in this r epl i es
array. For replies of type ' choi ce, the whole reply
frame must be included in thisr epl i es array.

For information on reply frames, see “Reply Frames”
(page 2-7).

The following array is a possible value for this slot:

ack,

'user,

' canned,

{ type:'choice,
text:"Reply choice 1",
replylD: 0

{ type:'choice
text:"Reply choice 2",
replylD: 1

CHAPTER 2

Messaging Enabler Interface Reference

repl yl ndex

segnent

t ot al Segnent s

groupl D

error

Reply Frames

If the msgModule sets this slot, it must supply a
SendMessage method (page 2-35), even if the
msgModule slot sendOpt i onsisni | .

Optional. An integer. Valid only if the msgModule slot
sendOpt i ons is an array with more than one item.
This determines the sendQpt i ons item to display to
originate the new reply.

Optional. An integer. Required if this is a message
segment. This is the current block number for the
segmented message. Segments are counted beginning
at 0.

Optional. An integer. Required if this is a message
segment. The total number of blocks this message
consists of.

Required if this is a message segment. An integer. A
unique identifier for the group of segmented messages.
Optional. Set this to an integer result code if an error
occurs. See “Result Codes” (page 1-11).

Reply frames contain the following slots:

Slot descriptions
type

Data Structures

Required. A symbol specifying the class of the reply.
Currently supported types of replies are:

ack An acknowledgment.

' choi ce A reply option extracted from a received
message. A reply frame of this type is
valid only in the r epl i es array of an

2-7

CHAPTER 2

Messaging Enabler Interface Reference

devi ceSym

t ext
replyl D

conpl ete

Proto

item frame; see “Item Frame” beginning
on page 2-4.

"user A reply option from the internal list of
user-created replies. These replies are
stored in the Reply soup; see “The Reply
Soup” (page 1-21).

' canned A reply option supplied by the messaging
device. The current list used by the
Messaging Enabler is stored in the Reply
soup; see “The Reply Soup” (page 1-21).

Optional. Required if the t ype slot is set to ' canned.

The symbol stored in the devi ceSymslot of the

msgModule, this is the symbol the msgModule used in

the call to RegMsgMbdul e (page 2-39).

Required unless the t ype slotis set to ' ack. A string
that is the actual reply message.

Required if the t ype slot is set to ' canned. A unique
integer identifying this canned reply.

Required for replies of class ' canned. A Boolean. Set
this to ni | if the t ext slot does not contain the entire
canned message; that is, it is an abbreviation for the
canned message. Currently the Messaging Enabler
requires this to be t r ue.

This section describes the single Messaging Enabler proto,
pr ot oMsghbdul e, its data slots, and methods.

2-8 Proto

CHAPTER 2

Messaging Enabler Interface Reference

protoMsgModule

This object is provided as a basis for all msgModules (). A msgModule serves
as an interface between a particular messaging device and the Messaging

Enabler.

Slot descriptions
_proto
about

cannedSupport

decl areSel f

deviceTitle

Proto

Required. Set this slot to pr ot oMsghbdul e.

Optional. A string, a view template, or ni | . The default
isnil.

If this slot is nil, an About slip is still available to the
user from the " About title" choice of the information
(“i”) menu. The ti t | e slot is described on (page 2-15).

If this slot contains a string, it is used to display static
information about the msgModule; for example, " Test
Pager Driver\n® 1996 Apple Conputer." The
following information is also displayed in this view: the
titleandversion slots, and the st at usText and
messageCount slots returned by the Get Confi g
method (page 2-26), if defined. Use the st at usText
and messageCount slots to provide dynamic
information.

If this slot holds a view template, that view is created
and displayed as the About slip.

Optional. A Boolean. The default is ni | . Does the
msgModule support canned replies?

If t r ue, the following msgModule method is required:
CGet Di r (page 2-30)

Optional. A symbol. The defaultis' msghVbdul e. This

symbol can be used to reference the base frame of the
msgModule.

Optional. A string. The default is the value of the
msgModule ti t | e slot. The user-visible name of the
messaging device.

2-9

2-10

CHAPTER 2

Messaging Enabler Interface Reference

di r Support

i con

Optional. A Boolean. The default is ni | . Does the
msgModule support retrieving a directory of available
messages?

If t r ue, the following msgModule methods are
required:

CGet Di r (page 2-30)
Cet MessageFr onDi r (page 2-31)
Del et eMessageFronDi r (page 2-19)

If this slot is set to t r ue, the msgModule slot
per si st Connect i on must also be settot r ue.

If ni |, the following msgModule method is required:
Cet Next Message (page 2-32)

Optional. An icon. If present this icon is used to identify
this msgModule and is displayed with In/Out Box

items and the routing slip picker. The default is the
Messaging Enabler icon.

per si st Connecti on

pf Var s

Proto

Optional. A Boolean. The defaultist r ue. Should the
message channel be left open after retrieving messages?

If t r ue then the Messaging Enabler leaves the
msgModule open until it receives a KEV_CLOSED event,
or the msgModule returns a failure to a request from the
Messaging Enabler. See “Sending Events” (page 1-12)
and “Result Codes” (page 1-11).

Set this slot to ni | if the messaging device consumes a
large amount of power while the msgModule is open.
The msgModule could save power by opening and
closing the message channel for each request if it has
some other means of detecting that the messaging
device is not available.

This slot must be set to t r ue if the msgModule slot
di r Support istrue.

Optional. A frame. This frame can be used to store
msgModule-specific variables.

CHAPTER 2

Messaging Enabler Interface Reference

pol I Alive

pol | Har dwar e

Proto

Before the msgModule’s | nst al | Scri pt is called, this
slot is assigned to a frame containing only a _pr ot o
slot. This _pr ot o slot points to your original pf Var s
frame. This technique minimizes system heap usage,
while allowing this frame to be modifiable.

Note

You may ignore the discussion above. The inheritance
mechanism makes these changes transparent to the
application developer. O

For information on an alternate way of storing writeable
data, see “Message Module Methods for Storing Data”
(page 1-25).

Optional. An integer. The Messaging Enabler sends
your msgModule an Al i ve message (page 2-16) every
pol | Al i ve seconds. Since this method uses system
resources, it is recommended not to set this slot below
30 seconds.

The Messaging Enabler does not display a status slip,
even if the “Show status slips” preference is selected, for
the periodic Al i ve message-sends.

This preference allows the Newton device to return an
unused system resource to the system if the messaging
device is no longer available.

If there is another way to detect that the hardware is
gone, such as an endpoint event handler, you should
use that, since the calls to Al i ve take up system
resources.

Optional. A Boolean. The defaultis ni | . If t r ue the
Messaging Enabler periodically sends your msgModule
the Open message (page 2-33) while the msgModule is
closed. The rate at which these messages are sent is set
by the user in the “Get messages” preference; see
“Providing Preferences” (page 1-22).

If both the pol | Message and pol | Har dwar e slots are
ni |, the “Get messages” picker is not displayed. If your

2-11

2-12

CHAPTER 2

Messaging Enabler Interface Reference

pol | Message

port Strings

power Stri ngs

Proto

msgModule never sends the KEV_DETECTED event, you
should consider setting this slot to t r ue; see “Sending
Events” (page 1-12).

The Messaging Enabler does not display a status slip,
even if the “Show status slips” preference is selected, for
these periodic OQpen message-sends.

Optional. A Boolean. The defaultis ni | . If t r ue then
the Messaging Enabler periodically sends your
msgModule either the Get Next Message (page 2-32) or
Cet Di r (page 2-30) message, depending on the value of
the msgModule di r Suppor t slot. If both

pol | Message and pol | Har dwar e are ni |, the “Get
messages” preference is not displayed; see “Providing
Preferences” (page 1-22).

If your msgModule never sends the KEV_MESSAGE
event, you should consider setting this slot to t r ue; see
“Sending Events” (page 1-12).

The Messaging Enabler does not display a status slip,
even if the “Show status slips” preference is selected, for
these periodic Get Di r or Get Next Message
message-sends.

Optional. An array of strings or ni | . These strings make
up the options for the “Connect Using” picker in the
hardware preference slip. If this slot is ni | or not
present, the “Connect Using” picker is not displayed.
See “Providing Hardware Preferences” (page 1-23).

Optional. An array of strings or ni | . These strings make
up the options for the “Power” picker in the hardware
preference slip. If this slot is ni | or not present, the
“Power” picker is not displayed.

Presence of this slot requires that the following
msgModule methods be provided:

Cet Confi g (page 2-26)
Set Conf i g (page 2-36)
See “Providing Hardware Preferences” (page 1-23).

CHAPTER 2

Messaging Enabler Interface Reference

prefsTenpl ate

sendOpt i ons

Proto

Optional. A view template or ni | . The defaultisni | .
The view template is instantiated when the user taps the
Options button in the preference slip.

The following slots are added by the Messaging Enabler
to the view before it is instantiated:

msgMbdul e A reference to the your msgModule
instance.

pt Tr anspor t
This slot is used internally; do not
override it.

See “Providing a Custom Preference Slip” (page 1-24).

Optional. A send option frame, an array of send option
frames, or ni | . The defaultis ni | .

A send options frame contains the necessary slots to
support a particular addressing type for sending
messages. If this slot is not present the user cannot
originate an outgoing message, since the string in the
msgModule devi ceTi t| e slot is not listed in any
routing pickers. The user may still be able to reply to
received messages if a received item frame contains the
required slots. For information on the format of a
received message see “Item Frame” (page 2-4).

Send options frames contain the following slots:

rout eSlipType
Required. Either a view template or an
installed nameRef data definition symbol.
The following nameRefs are predefined:

" | naneRef . peopl e|

"| naneRef . f ax|

' | naneRef . phone|

"| naneRef . emai | |

' | naneRef . peopl e. pager |

The view template should be a routing

slip template; for information on how to
create a routing slip template see

2-13

CHAPTER 2

Messaging Enabler Interface Reference

group

Chapter 22, “Transport Interface,” in
Newton Programmer’s Guide.

Required. A symbol defining the routing
group for this send slip. Currently defined
groupsare' print,' fax,' mail and

' page. You may define your own, but
should register your group symbol with
Newton Developer Technical Support.

groupTi t | e Required. A string for the name of the

groupl con

group for sending messages. For the
predefined groups, use the strings
"Print","Fax","Mail", and " Page".
Optional. An icon. This is the icon for the
group of this message module. If this slot
is not present, the msgModule i con slot
is used. For the predefined groups you
should use the corresponding group icon:

ROM Rout ePrintl con
ROM _Rout eFaxl con
ROM _Rout eMai | | con
ROM_Rout ePagel con

r epl yTypes Optional. An array of reply type symbols.

dat aTypes

soundSt ri ngs

The following reply type symbols are
allowed: " ack, ' user and ' canned.
This defines the types of r epl y frames
that can be attached to the message to be
sent; see “Reply Frames” (page 2-7).
Optional. An array of symbols that
specify the types of data that this send
frame supports. Possible values are
"frane and' t ext. The defaultis
["text].

Optional. An array of strings or ni | . These strings make

up the options for the “Sound” picker in the hardware
preference slip. If this slot is ni | or not present, the
“Sound” picker is not displayed.

2-14 Proto

CHAPTER 2

Messaging Enabler Interface Reference

timeStrings

title

Presence of this slot requires that the following
msgModule methods be provided:

Cet Confi g (page 2-26)

Set Confi g (page 2-36)

See “Providing Hardware Preferences” (page 1-23).
Optional. An array of strings or ni | . These strings make
up the options for the “Clock” menu in the hardware
preference slip. If this slot is ni | or not present, the
“Clock” picker is not displayed.

It is recommended that the following array be used for
synchronizing the time to and from the Newton:
["Set Newton from deviceTitle",

"Set deviceTitle from Newt on"]

Presence of this slot requires that the following
msgModule methods be provided:

Cet Confi g (page 2-26)

Set Confi g (page 2-36)

See “Providing Hardware Preferences” (page 1-23).
Optional. A string. The default is " Message" . This
string is used to identify the particular type of
messaging. This string is displayed in the picker for
receiving messages, and the titles for the preferences.

transmtterStrings

ver sion

Proto

Optional. An array of strings or ni | . These strings make
up the options for the “Transmitter” picker in the
hardware preference slip. If this slot is ni | or not
present, the “Transmitter” picker is not displayed.

Presence of this slot requires that the following
msgModule methods be provided:

Cet Confi g (page 2-26)
Set Confi g (page 2-36)
See “Providing Hardware Preferences” (page 1-23).

Optional. A string with the user-visible version number
of this particular msgModule. This string is displayed in

2-15

2-16

CHAPTER 2

Messaging Enabler Interface Reference

the About slip. This is also used to ensure the Reply
soup is up to date if the msgModule does not support
retrieving the serial number with the Get Confi g
method (page 2-26); see “The Reply Soup” beginning on
page 1-21.

IMPORTANT
The cl ass, new di spose, pcEvent, boQpen,

i nAl ar mKey, i nAl i veKey, st Seri al ,syActi ve,

ar Abl eToSend, ar Transport Regi stry,

fnTryDi spat chEvent, pt Noti f yActi on, devi ceSym
and doEvent slots are reserved internally by

prot oMsgModul e. a

The methods of interest in pr ot oMsgMbdul e are described in the following
subsections, in alphabetical order.

Alive

msgModule: Al i ve(callBack)
Called to check that the message channel is still available.
Required if the msgModule slot pol | Al i ve isnon-ni | .

callBack A frame to pass to DoCal | Back (page 2-21) when this
method completes. DoCal | Back takes two additional
parameters, complCode and complFrame. Pass the
following values for these parameters:

7

complCode ~ An integer error code; see “Result Codes’
(page 1-11). The following values are
suggested as reasonable for this method:

kRES_SUCCESS
kKRES_FAI LED
kRES_MEMORY
kKRES_TI MEQUT
kRES_COWS
complFrame Pass the value ni | .

Proto

CHAPTER 2

Messaging Enabler Interface Reference

If the message channel is no longer available, you should call DoCal | Back
with complCode set to a result code indicating why the message channel is
unavailable. The Messaging Enabler does not send a O ose message

(page 2-18) to the msgModule and assumes that all resources have been
released back to the system. There is no need to send a KEV_CLOSED event as
well.

The return value of this method is ignored.

Cancel
msgModule: Cancel (callBack)

Called to cancel any outstanding asynchronous calls from the Messaging
Enabler.

This method is optional. If it is not defined the Messaging Enabler assumes
that asynchronous methods may not be cancelled. In this case, the Messaging
Enabler will stop once the current operation is complete. For example,
consider the case where the user taps the Stop button while the Messaging
Enabler is polling the msgModule for messages, by calling

CGet Next Message (page 2-32). If the Cancel method is not defined, the
Messaging Enabler will wait for the current Get Next Message to return, but
will not call Get Next Message again.

callBack A frame to pass to DoCal | Back (page 2-21) when this
method completes. DoCal | Back takes two additional
parameters, complCode and complFrame. Pass the
following values for these parameters:

complCode An integer error code; see “Result Codes”
(page 1-11). The following values are
suggested as reasonable for this method:

kRES_SUCCESS
kRES_FAI LED
kRES_MEMORY
kRES_TI MEOUT
kRES_NOCANCEL
kRES_NOTCONNECTED

Proto 2-17

CHAPTER 2

Messaging Enabler Interface Reference

kRES_READY
complFrame Pass the valueni | .

You should not close the communications channel because of to a cancel
request, unless the cancel occurs while the msgModule is processing an Qpen
message (page 2-33). The channel should be properly closed so that any
subsequent calls to Qpen succeed. That is, the net effect of canceling an Open
call should be a closed message channel.

The Messaging Enabler does not expect the operation being cancelled to call
DoCal | Back. For example, if the Messaging Enabler first calls

Get Next Message and later calls Cancel , Cancel is expected to call
DoCal | Back, but Get Next Message isn't.

The return value of this method is ignored.

Close

msgModule: Cl ose(callBack)

Called to close the message channel and free all used resources back to the
system.

This method is required.

callBack A frame to pass to DoCal | Back (page 2-21) when this
method completes. DoCal | Back takes two additional
parameters, complCode and complFrame. Pass the
following values for these parameters:

complCode An integer error code; see “Result Codes”
(page 1-11). The following values are
suggested as reasonable for this method:

kRES_SUCCESS
kRES_FAI LED
kRES_NMEMORY
kRES_TI MEQUT
kRES_NOTCONNECTED
kRES_READY
complFrame Pass the valueni | .

2-18 Proto

CHAPTER 2

Messaging Enabler Interface Reference

The msgModule instance is not removed at this point. The Messaging
Enabler may send the Qpen message (page 2-33) again after this method, so
the msgModule should reset any instance variables needed at this point.

IMPORTANT

The Cl 0ose message can be sent at any time, even if another
operation is in progress. This means the msgModule must
abort and close if it receives this message, even if data is lost
by doing so.

The Messaging Enabler waits for a safe time to send the

C ose message. The user can, however, request that the
message channel be closed while the Messaging Enabler is
waiting. At this point, the Message Enabler informs the user
that data may be lost. Therefore, if you are sent a O ose
message, either no data will be lost, or the user has OK’d the
risk. a

A WARNING

You must catch all exceptions from your Cl ose method, as
it must guarantee return. If your Cl ose method does not
return, the system may halt. a

DeleteMessageFromDir
msgModule: Del et eMessageFr onDi r (callBack, arMsgID)

Called to remove the messages specified by the arMsgID array from the
message channel.

Required if the msgModule slot di r Support istrue.

callBack A frame to pass to DoCal | Back (page 2-21) when this
method completes. DoCal | Back takes two additional
parameters, complCode and complFrame. Pass the
following values for these parameters:
complCode An integer error code; see “Result Codes”
(page 1-11). The following values are
suggested as reasonable for this method:

Proto 2-19

2-20

CHAPTER 2

Messaging Enabler Interface Reference

kRES_SUCCESS
kRES_FAI LED
kRES_MEMORY
kRES_TI MEQUT
kRES_NOTFOUND
kRES_NOTCONNECTED
kRES_NOTREADY
complFrame Pass the valueni | .
arMsgID An array of message identifiers. This is a unique integer
previously returned from the Get Di r method
(page 2-30). The Get Di r method passed this value as

one of the slots in the complFrame parameter in its call to
DoCal | Back.

The return value of this method is ignored.

DirectCommand

msgModule: Di r ect Conmand(callBack, options, command)

Called by the Messaging Enabler when it receives a SendDi r ect Command
message (page 2-45). You may implement this method to allow an
application to send commands directly to the message channel.

This method is optional.

callBack A frame to pass to DoCal | Back (page 2-21) when this
method completes. DoCal | Back takes two additional
parameters, complCode and complFrame. Pass the
following values for these parameters:

complCode ~ The Messaging Enabler does not process
the return code from this method. This
return code is passed directly to the
application which called
SendDi r ect Command.

Proto

CHAPTER 2

Messaging Enabler Interface Reference

options

command

complFrame

Any valid NewtonScript object. If you
need to return data to
SendDi r ect Conmand, use this value.

A frame containing the following slots:

open

port

Required. A Boolean. If this slotis t r ue
and the message channel is not currently
open, the MsgModule should attempt to
open the message channel before
executing the command. The MsgModule
should then send a kEV_DETECTED event
after the command completes if the
message channel is left open; see
“Sending Events” beginning on page 1-12.
Optional . If the msgModule slot

port Strings isnon-ni |, an integer
array index to the msgModule slot

port Strings.

Any valid NewtonScript object (usually a frame). Use
this parameter to allow the SendDi r ect Cormand
method both to describe which action the msgModule
should take, and to supply the msgModule with any

needed data.

If you wish to allow applications other than yours to
send commands to the message channel, you must
document the values this parameter can take.

The return value of this method is ignored.

DoCallBack

msgModule: DoCal | Back(callBack, complCode, complFrame)

Executes the function encapsulated in the callBack argument. Most of the
msgModule methods need to call this function when they complete. See
“Using Callback Functions” beginning on page 1-10.

You should not need to override this method, but if you do, you must call the

inherited method.

Proto

2-21

2-22

CHAPTER 2

Messaging Enabler Interface Reference

callBack

compCode

complFrame

The callBack parameter is passed to the msgModule
method which is calling DoCal | Back.

An integer result code returned by the msgModule
method calling DoCal | Back. The built-in result codes
are listed in Table 2-1 (page 2-2).

Any valid NewtonScript object. Allowable values for
this parameter depend on which msgModule method is
calling DoCal | Back.

The return value of this method is ignored.

DoEvent

msgModule: DoEvent (evID, evData)

Sends an event synchronously to the Messaging Enabler. See “Sending
Events” beginning on page 1-12.

You should not need to replace this method, but if you do you must call the

inherited method.
evlD

Proto

An integer event code. The following codes are
supported by the Messaging Enabler.

kEV_BATTERY
The battery level of the messaging device
has changed.

kEV_CLOSED
The message channel is no longer
available. The communication link has
probably been broken. The Messaging
Enabler will either poll the message
channel (if pol | Har dwar e ist r ue) or
await a KEV_DETECTED event.

kEV_DETECTED
The message channel is available.

KEV_NMEMORY
The message channel either has no

CHAPTER 2

Messaging Enabler Interface Reference

evData

Proto

memory available, or it now does after
reporting a shortage.

KEV_MESSAGE

The message channel has detected that
messages are available. This causes the
Messaging Enabler to resynchronize to
the message channel.

kEV_PROGRESS

There is progress to report. This event
allows a msgModule to modify the
progress indicator provided by the
Messaging Enabler. The Messaging
Enabler displays a progress indicator for
each message sent to the msgModule.

This is the only event that is sent
synchronously to the Messaging Enabler.

kEV_SERVI CE

The message channel is not in range to
send or receive messages, or the
messaging device is temporarily
unavailable. While the message channel is
not in service the user cannot send any
messages; the About slip displays an alert
stating that the message channel is out of
service.

A frame. The slots that should be in this frame depend
on the value of the evID parameter.

If evID is KEV_BATTERY, this frame should contain a

single slot:

state

One of the following symbols: ' Dead,
"Alive,' Vrni ng.

A state of ' Dead indicates that the
message channel is no longer able to send
messages. The message enabler awaits
another KEV_BATTERY event with a state
of ' Al i ve before allowing messages to be

2-23

2-24

CHAPTER 2

Messaging Enabler Interface Reference

Proto

sent again. A state of ' VWr ni ng issues a
message to the user with the string for the
kRES BATTERYWARN result code; see
“Result Codes” beginning on page 1-11.

If evID is KEV_CLOSED, this frame should contain a
single slot:

reason An integer result code; the built-in result
codes are listed in Table 2-1 (page 2-2).
Aslip is displayed containing the string
this error code represents, unless this slot
contains the integer KRES_SUCCESS. The
string KRES_COMVES has been designed to
be noninvasive in this context.

If evID is KEV_DETECTED, this frame can contain any
number of optional slots. If you have no slots you
would like to include in this frame, you may pass the
value ni | for this parameter instead of a frame. Any
slots included in this frame, will be passed as the options
parameter to the Open (page 2-33) message. The
following two slots have special significance to the
Messaging Enabler:
port An integer corresponding to the port the
message channel is available on. This is
the array index of the array in the
msgModule slot port St ri ngs.

open A Boolean. If t r ue, the Messaging
Enabler will not send the Open message.

You should include this slot if the
message channel is open.
If evID is KEV_MEMORY, this frame should contain a
single slot:
state One of the following symbols: * Ful | or
" OK
The Messaging Enabler does not allow
sending messages after it has received this

CHAPTER 2

Messaging Enabler Interface Reference

event with a st at e slotsetto' Ful |,
until it receives another one of these
events with a st at e slot set to ' OK.

If evID is KEV_MESSAGE, this frame should contain a
single slot:

state One of the following symbols: ' New or
' Canned.

The value ' Newshould be used for new
messages. The Messaging Enabler will
then sends your msgModule the Get Di r
(page 2-30) or Get Next Message

(page 2-32) message (depending on the
value of the msgModule di r Suppor t
slot).

The value ' Canned should be used for a
new list of canned messages; some
messaging service providers send these
lists. The Messaging Enabler then sends
your msgModule the Get Di r message
(page 2-30).

If evID is KEV_PROGRESS, this frame should contain the
following slots:

type Required. One of the following symbols:
"vGauge, ' vBar ber, or' vSt at us.

The value ' vGauge specifies that a gauge
indicator should be used. Gauge
indicators display the percentage of the
operation which has completed.

The value ' vBar ber specifies that a
barber indicator should be used. Barber
indicators do not display how much of
the operation has completed.

The value ' vSt at us specifies that a slip
with a text string should be used.

Proto 2-25

CHAPTER 2

Messaging Enabler Interface Reference

val ue Required if the t ype slot is set to
' vGauge. An integer from 0 to 100
indicating what percentage of the gauge
should be filled.

st at usText Optional. A string with the status
message to display.

If evID is KEV_SERVI CE, this frame should contain a
single slot:

state One of the following symbols:
" NoServi ce,' Busy,' Qut Servi ce, or
"I nService.

If the st at e slotis ' NoSer vi ce, a user
alert is displayed immediately to inform
the user that the message channel is not
registered. The string mapped to the
kRES_NGSERVI CE result code is
displayed in the alert; see “Result Codes”
beginning on page 1-11.

If the st at e slotis' Busy or

' Qut Ser vi ce a user alert is displayed
when the user attempts to retrieve or send
messages. The strings kKRES_NOTREADY
and KRES_NCACCESS, respectively, are
displayed.

Sending this event with a st at e slot set
to' I nSer vi ce cancels a previous event
of any of the other three types.

GetConfig

msgModule: Get Conf i g(callBack, cfgFrame)

Called by the Messaging Enabler to retrieve current configuration
information. The cfgFrame parameter contains a frame with the slots required
by the Messaging Enabler. You should set these slots, and return this frame
in the complFrame parameter to the DoCal | Back method.

2-26 Proto

CHAPTER 2

Messaging Enabler Interface Reference

Required if any of the following msgModule slots are non-ni | :
soundStrings, power Strings,transmtterStrings,or
timeStrings.

The Messaging Enabler uses this method at start-up to ensure that the
message channel’s configuration is correct. If any slots are returned with the
value ni |, or with a value that does not agree with the user setting, the
Messaging Enabler calls the Set Conf i g method (page 2-36) to set these
slots. Setting as many of the cfgFrame slots as possible, speeds up the start-up
process.

callBack A frame to pass to DoCal | Back (page 2-21) when this
method completes. DoCal | Back takes two additional
parameters, complCode and complFrame. Pass the
following values for these parameters:

complCode An integer error code; see “Result Codes”
(page 1-11). The following values are
suggested as reasonable for this method:

KRES_SUCCESS
kRES_FAI LED
kRES_NMENDRY
kRES_TI MEQUT
kRES_NOTCONNECTED
kRES_NOTREADY
kRES_UNSUPPORTED
complFrame Set this slot to the altered cfgFrame.
cfgFrame A frame with the slots required by the Messaging
Enabler. This frame has one or more of the slots
described below. Set these slots to an appropriate value,

and pass this frame as the complFrame parameter to the
DoCal | Back method.

soundl ndex
Required only if the msgModule slot
soundSt ri ngs is non-ni | . Set this slot
to an integer for the current device setting

Proto 2-27

CHAPTER 2

Messaging Enabler Interface Reference

of the sound corresponding to the array
index of the soundSt ri ngs array. Leave
this set to ni | if the msgModule is unable
to retrieve the current setting.

power | ndex
Required only if the msgModule slot
power St ri ngs is non-ni | . Set this slot
to an integer for the current device setting
of the power corresponding to the array
index of the power St ri ngs array. Leave
this set to ni | if the msgModule is unable
to retrieve the current setting.

transmiterlndex
Required only if the msgModule slot
transmtterStringsisnon-nil . Set
this slot to an integer for the current
device setting of the transmitter
corresponding to the array index of the
transm tterStrings array. Leave this
set to ni | if the msgModule is unable to
retrieve the current setting.

tinme Required only if the msgModule slot
timeStrings is non-ni | . Set this slot to
the device time, an integer for the number
of minutes elapsed since midnight,
January 1, 1904. If the Messaging Enabler
detects that this time is outside a tolerance
value of the Newton device time then it
sets the time using the current
timeStrings setting.

st at usText
Optional. A string to return dynamic
device information. This is displayed as
the lower part of the About slip. This is to
return dynamic information about the
messaging device. An example might be,
“Ready to send. X bytes of free memory.”
This string may contain a newline

2-28 Proto

CHAPTER 2

Messaging Enabler Interface Reference

character (/ n), the Messaging Enabler

resizes the About slip accordingly. Leave

this set to ni | if you do not support
dynamic device information.

seri al Nunmber

Optional. A string for the messaging

device serial number. This slot is used to
ensure the Reply soup is synchronized;

see “The Reply Soup” beginning on

page 1-21. If this slot is not present, the
Messaging Enabler uses the version string
of the msgModule. Leave this set to ni | if

you do not support retrieving the
messaging device serial number.

messageCount

Optional. Set this to an integer if you can
retrieve the number of messages currently
in the messaging device. This information
is displayed in the About slip. If you are
unable to retrieve the number of messages

in the device then leave this ni | .

The following sample code illustrates the logical structure this method

should take:

msghbodul e. Get Config : = func (call Back,

begin

if HasSlot(cfgFrame, 'slotl) then

cfgFrane.slotl : = val uel

if HasSlot(cfgFrame, 'slot2) then

cfgFrane. sl ot2 : = val ue2;

end;

The return value of this method is ignored.

Proto

cf gFrane)

2-29

2-30

CHAPTER 2

Messaging Enabler Interface Reference

GetDir

msgModule: Get Di r (callBack, dir)

Called to either retrieve the current directory of messages or the current set
of canned replies from the message channel.

Required if either of the msgModule slots di r Support or cannedSuppor t

istrue.

callBack

dir

Proto

A frame to pass to DoCal | Back (page 2-21) when this
method completes. DoCal | Back takes two additional
parameters, complCode and complFrame. Pass the
following values for these parameters:

complCode

complFrame

An integer error code; see “Result Codes”
(page 1-11). The following values are
suggested as reasonable for this method:

kRES_SUCCESS
kRES_FAI LED
kRES_MEMORY
kRES_TI MEQUT
kRES_NOTCONNECTED
kRES_NOTREADY
kRES_PARTI AL

An array of directory entries. If dir. t ype
is' user Messages, these frames should
be item frames without a body slot; see
“Ttem Frame” (page 2-4). If dir. t ype is

' cannedMessages, these frames should
be reply frames; see “Reply Frames”
(page 2-7).

A frame describing the type of messages to be retrieved.
It contains the following slot:

type

A symbol specifying the directory type to
retrieve. Either ' user Messages or
' cannedMessages.

CHAPTER 2

Messaging Enabler Interface Reference

In some cases of low memory the user will not be able to view or receive all
messages at once. When returning an array of messages, the system heap
may be exhausted if the message list is large. The msgModule should try to
catch this | evt . ex. out Of Menj exception, and return the partial list of
messages retrieved to the Messaging Enabler, setting complCode to
kRES_PARTI AL. To avoid this the item frames returned should set the
conpl et e slot to ni | and return only the title of the message. The system
heap may also be exhausted if the list of canned messages is large.

The return value of this method is ignored.

GetMessageFromDir
msgModule: Get MessageFr onDi r (callBack, msg)

Called to completely receive a specific message from the message channel
previously retrieved with the Get Di r method (page 2-30). The item frame
for the particular message, returned by the Get Di r method, is passed in
through the msg parameter. This method should fill the relevant slots, and
pass this frame to the DoCal | Back method (page 2-21) in the complFrame
parameter.

Required if the msgModule slot di r Support istrue.

callBack A frame to pass to DoCal | Back (page 2-21) when this
method completes. DoCal | Back takes two additional
parameters, complCode and complFrame. Pass the
following values for these parameters:

complCode An integer error code; see “Result Codes”
(page 1-11). The following values are
suggested as reasonable for this method:

kRES_SUCCESS
KRES_FAI LED
kRES_MEMORY
kRES_TI MEOUT
kRES_NOTCONNECTED
kRES_NOTREADY

Proto 2-31

CHAPTER 2

Messaging Enabler Interface Reference

kRES_NOTFOUND

complFrame An item frame with a body slot and the
conpl et e slotsettot rue; see “Item
Frame” (page 2-4).

msg The requested item frame returned from a previous call
to the Get Di r method (page 2-30).

The return value of this method is ignored.

GetNextMessage

msgModule: Get Next Message(callBack)

Called to retrieve the next message from the message channel. The
msgModule must remove this message from the message channel before
returning the message.

Required if the msgModule slot di r Support isnil .

callBack A frame to pass to DoCal | Back (page 2-21) when this
method completes. DoCal | Back takes two additional
parameters, complCode and complFrame. Pass the
following values for these parameters:

complCode ~ An integer error code; see “Result Codes”
(page 1-11). The following values are
suggested as reasonable for this method:

kRES_SUCCESS
kRES_FAI LED
kRES_MEMORY
kRES_TI MEQUT
kRES_NOTCONNECTED
kRES_NOTREADY

complFrame An item frame for the retrieved message,
orni | if there are no messages; see “Item
Frame” (page 2-4).
If ni | is not returned in this argument,
the Messaging Enabler sends your

2-32 Proto

CHAPTER 2

Messaging Enabler Interface Reference

msgModule another Get Next Message
message.

The return value of this method is ignored.

GetPreference

msgModule: Get Pr ef er ence(configSym)

Retrieves the value of a configuration item added with SavePr ef er ence
(page 2-35). See “Message Module Methods for Storing Data” (page 1-25).

Do not override this method.
configSym A symbol. The variable whose value is needed.

This method returns the value of configSym.

InstallScript
msgModule: 1 nst al | Scri pt ()

This method allows the msgModule to execute installation code. For
example, the msgModule may need to install a new data definition or view
definition into the system, or add replies to the Reply Soup.

This method is optional.

Note
Do not confuse this method with the I nst al | Scri pt for
the package. O

The Messaging Enabler must be installed for this method to be executed.

The return value of this method is ignored.

Open

msgModule: Open(callBack, options)

Called by the Messaging Enabler before sending or receiving any messages.
The Messaging Enabler calls this method repeatedly at a period specified by
the user setting for “Get messages” if the msgModule slot pol | Har dwar e is
t r ue, until Qpen eventually calls DoCal | Back with kRES_SUCCESS.

Proto 2-33

2-34

CHAPTER 2

Messaging Enabler Interface Reference

This method is required.

callBack

options

RemoveScript

A frame to pass to DoCal | Back (page 2-21) when this
method completes. DoCal | Back takes two additional
parameters, complCode and complFrame. Pass the
following values for these parameters:

complCode

complFrame

An integer error code; see “Result Codes”
(page 1-11). The following values are
suggested as reasonable for this method:

kRES SUCCESS
kRES_FAI LED
kRES_MEMORY
KRES_TI MNEOUT
KRES_| NUSE
KRES_ | NVDEVI CE
kRES_| NVPORT

Pass in the value ni | .

A frame with the following slot:

por t

An integer or ni | . An integer is passed in
if the msgModule sent a KEV_DETECTED
event with the port slot set or if the
msgModule slot por t St ri ngs is

non-ni | ; otherwise ni | is passed. The
integer is an array index to the
msgModule slot por t St ri ngs.

msgModule: RempveScri pt ()

This method allows the msgModule to execute removal code. The
msgModule is still completely in memory before this method is called. This
message is sent only if you call the global function Del et eMsgModul e. The
UnRegMsgModul e function does not cause this method to be called.

This method is optional.

Proto

CHAPTER 2

Messaging Enabler Interface Reference

The return value of this method is ignored.

SavePreference

msgModule: SavePr ef er ence(configSym, configValue)

Changes the value of a configuration symbol, or assigns a value to a new
symbol. This data is stored in a soup maintained by the Messaging Enabler.
See “Message Module Methods for Storing Data” (page 1-25).

Do not override this method.

configSym A symbol. The variable whose value is needed.
configValue Any valid NewtonScript object. The value to assign to
configSym.

The return the value of this method is unspecified.

SendMessage

msgModule: SendMessage(callBack, message)
Called to send a message.

Required if the msgModule slot sendOpt i ons is non-ni |, or an item frame
is received that has the r epl i es slot set.

callBack A frame to pass to DoCal | Back (page 2-21) when this
method completes. DoCal | Back takes two additional
parameters, complCode and complFrame. Pass the
following values for these parameters:

complCode An integer error code; see “Result Codes”
(page 1-11). The following values are
suggested as reasonable for this method:

kRES_SUCCESS
kRES_FAI LED
kRES_MEMORY
kRES_TI MEOUT
kRES_NOTCONNECTED
kRES_NOTREADY

Proto 2-35

2-36

CHAPTER 2

Messaging Enabler Interface Reference

kRES_UNSUPPORTED
kRES_NOSERVI CE
kRES_| NVADDRESS
kRES_| NVMESSACE

complFrame Pass in the value ni | .

message An item frame for the message to send; see “Item
Frame” (page 2-4). If the item frame has a non-ni |
r epl y slot, the message to be sent is a reply to this item
frame; that is, the message text is in
message. r epl y. t ext, unless the reply is of type ' ack
in which case the message argument won’t have ar epl y
slot. If the r epl y slotis ni | then this is a new message
to be sent; that is, the message content is in the
message. body frame.

Note

The value in this parameter may be larger than the
message channel can handle. It is up to you to test for
this case, and split up the message if necessary. O

The return value of this method is ignored.

SetConfig

msgModule: Set Conf i g(callBack, cfgFrame)

Called by the Messaging Enabler to set the configuration items of the
message channel. The Messaging Enabler uses this method at start-up and
when the user changes their preferences.

Required if any of the following msgModule slots is non-ni | :
soundSt ri ngs, power Strings,transmtterStrings, or
ti meStrings.

callBack A frame to pass to DoCal | Back (page 2-21) when this
method completes. DoCal | Back takes two additional

Proto

CHAPTER 2

Messaging Enabler Interface Reference

cfgFrame

parameters, complCode and complFrame. Pass the
following values for these parameters:

complCode An integer error code; see “Result Codes”
(page 1-11). The following values are
suggested as reasonable for this method:
kRES_SUCCESS
kRES_FAI LED
kRES_MEMORY
kRES_TI MEQUT
kRES_NOTCONNECTED
kRES_NOTREADY
kRES_UNSUPPORTED

complFrame Pass in the value ni | .

A frame containing the following slots specifying the
configuration items to set:

soundl ndex This slot is present only if the msgModule
slot soundSt ri ngs isnon-ni | . An
integer index to the soundSt r i ngs array.

power | ndex This slot is present only if the msgModule
slot power St ri ngs isnon-ni | . An
integer index to the power St ri ngs array.

port | ndex This slotis present only if the msgModule
slot port St ri ngs is non-ni | . An integer
index to the por t St ri ngs array.

transmtterlndex
This slot is present only if the msgModule
slottransm tterStringsisnon-nil.
An integer index to the
transmi tterStrings array.

ti mel ndex This slot is present only if the msgModule

slotti meStrings is non-ni | . An integer
index to the t i meSt ri ngs array.

The return value of this method is ignored.

Proto

2-37

CHAPTER 2

Messaging Enabler Interface Reference

TranslateError

msgModule: Tr ansl at eEr r or (resultCode)

Called to translate a result code to an error string and return this error string
to the Messaging Enabler. This allows your msgModule to customize its
error messages, both by mapping built-in integer error codes to different
strings, and by allowing you to use your own error codes. The Messaging
Enabler calls this method before using one of the default strings specified in
Table 2-1 (page 2-2). For more information on result codes, see “Result
Codes” beginning on page 1-11.

This method is optional.
resultCode An integer result code.

This method should return the string to display to the user. Return ni | to
use the predefined error string. Return an empty string to avoid displaying a
message for this error.

ProcessCombinedMessage

msgModule: Pr ocessConbi nedMessage(itemFrame)

Called after a multi-part message has been combined, but before it is
submitted to the Inbox. This allows your msgModule to perform operations
on the item frame before it is submitted to the Inbox.

This method is optional.
itemFrame An item frame, as described in “Item Frame” (page 2-4).

The return value of this method is ignored.

Functions and Methods

This section list functions and methods used by the Messaging Enabler.

2-38 Functions and Methods

CHAPTER 2

Messaging Enabler Interface Reference

Global Functions

This section lists the global functions provided by the Messaging Enabler.

DeleteMsgModule
Del et eMsgModul e(symbol)

Removes information stored in the system that is specific to a msgModule
and closes the msgModule if open. Usually you call this function from the
Del eti onScri pt of your msgModule part. This function sends a Cl ose
message (page 2-18) to the msgModule if it is open, and sends it a
RenpveScri pt message (page 2-34) if it has one defined. For more
information and sample code, see “Installing and Removing a msgModule”
(page 1-26).

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK stream file “pMsgMod.stream”. Call it
using this syntax:

cal | kDel et eMsghodul eFunc wi th (symbol) ;
A

symbol The msgModule appSymbol. This is the symbol used in
the call to RegMsgMbdul e (page 2-39).

The return value of this function is undefined.

RegMsgModule
RegMsgModul e(symbol, msgModule)

Registers a new msgModule with the system. Call this function from the
Instal | Script of your msgModule part. This function creates a new
msgModule instance and sends it the | nst al | Scri pt message (page 2-33),
if this message is defined. For more information and sample code, see
“Installing and Removing a msgModule” (page 1-26).

Functions and Methods 2-39

2-40

CHAPTER 2

Messaging Enabler Interface Reference

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK stream file “pMsgMod.stream”. Call it
using this syntax:

cal | kRegMsgModul eFunc with (symbol, msgModule) ;
A

symbol The msgModule appSymbol.

msgModule The msgModule template. This template must be based
on pr ot oMsgModul e (page 2-9).

The return value of this function is undefined.

UnRegMsgModule

UnRegMsgModul e(symbol)

Unregister a msgModule from the system. Usually you call this function
from the RemoveScri pt of your msgModule part. If this function is called
while the msgModule is open, the Messaging Enabler becomes unstable and
a system alert is displayed. This can happen if the msgModule is on a storage
card, which is made unavailable while the msgModule is open. The
Messaging Enabler protects against this by marking the msgModule package
busy when it is open. For more information and sample code, see “Installing
and Removing a msgModule” (page 1-26).

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK stream file “pMsgMod.stream”. Call it
using this syntax:

cal | kUnRegMsgModul eFunc with (symbol);
A

symbol The msgModule appSymbol. This is the symbol used in
the call to RegMsgModule (page 2-39).

The return value of this function is undefined.

Functions and Methods

CHAPTER 2

Messaging Enabler Interface Reference

Messaging Enabler Methods

The following two methods allow an application to interact with the
Messaging Enabler. See “Implementing msgModule Methods” beginning on
page 1-9.

ChangeConfig

messagingEnabler: ChangeConf i g(callBack, cfgMsgEnabler, cfgMsgModule)

Sets the Messaging Enabler’s and / or a msgModule’s preferences, and,
optionally, blocks the user from altering these preferences. The Messaging
Enabler preferences are specified in the cfgMsgEnabler parameter;
msgModule preferences are specified in the cfgMsgModule parameter. See
also “Using the ChangeConfig Method” (page 1-28).

IMPORTANT

This method should be called with Tr ansport Not i fy
function. The Tr anspor t Not i f y method is documented in
Chapter 19, “Transport Interface Reference,” in Newton
Programmer’s Reference.

Call it using this syntax:

Transport Noti fy(

' MsgEnabl er,
' ChangeConfi g,
[callBack, cfgMsgEnabler, cfgMsgModule]
)
A
callBack Optional. A frame or ni | . If you pass ni | , you do not

receive notification when this method completes. The
frame defines a callback function to be executed once
this method has completed. This frame must contain the
following two slots:

recei ver A frame. The receiver to which to send
message.

Functions and Methods 2-41

2-42

CHAPTER 2

Messaging Enabler Interface Reference

message

complFrame

complCode

cfgMsgEnabler A frame or ni

A symbol naming the message to be sent.
This method must accept two parameters
complFrame and complCode.

A symbol or ni | . If an error occurs trying
to set on of the configuration items, this
symbol will be the slot that is incorrect.

An integer result code; see “Result
Codes” beginning on page 1-11. The
following result codes are the possible
values for this parameter:

kRES_SUCCESS
kRES_NOTSUPPCORTED
kRES_CFGQ NVALI D

| . Set to ni | if you do not want to

configure any Messaging Enabler preferences. The
frame contains the Messaging Enabler preferences to be
set. The following slots are configurable:

di sabl e

hi del t ens

ABoolean. The value t r ue means that
you want to disable the user access to the
Messaging Enabler preferences. The
default is ni | .

A Boolean. The value t r ue means that
items are not displayed in the In/Out Box.
The defaultis ni | .

covertltens

pol | Peri od

Functions and Methods

A Boolean. The value t r ue means items
are not logged or saved. The default is
nil.

A symbol. This sets the “Get messages”
preference. The allowed values are

' syCheckl, ' syCheck5, ' syCheck10,
' syCheck30, and ' syCheckNever.
These constants correspond to the number

CHAPTER 2

Messaging Enabler Interface Reference

of minutes between updates. The default
is' syCheckNever.

power OnCheck

A Boolean. The value t r ue means the
Messaging Enabler checks the message
channel when the MessagePad is powered
on. The user sets this in the “Get
messages” preference. The defaultist r ue.

whenRecei vi ng

al arm

aut oSt at us

A symbol. This sets the “When receiving”
preference. Set this to either ' br owse or
" downl oad. The defaultis' br owse

A symbol. This sets the “Notify”
preference. Set this to either ' | nt er nal
or' None. The defaultis' | nt er nal .

A Boolean. The value t r ue means that
you want to display the status dialogs.
The value ni | means that only the
notifylcon is shown. This slot corresponds
to the “Show status dialogs” preferences
check box. The defaultist r ue.

out boxLoggi ng

Only used if the msgModule slot
sendOpt i ons is non-ni | . One of the
values' save, ' | og, or ni | . This value
determines what’s done with an entry
after the send completes successfully. The
value' save means the item is saved in
the Out Box; ' | 0g means the item is
deleted from the Out Box and a log entry
is made; and ni | means the item is
deleted from the Out Box. The user sets
this in the “After sending” preference.
The defaultisni | .

i nboxFiling

Functions and Methods

A symbol indicating the In Box folder in
which to file an item when it is received.

2-43

CHAPTER 2

Messaging Enabler Interface Reference

Specify a symbol representing a folder
name, or Ni | to file incoming items in the
Untitled folder. The symbol must
represent an existing folder. Note that
filing doesn’t occur until after the In/Out
Box is closed. The user sets this in the
“File read items in” preference. The
defaultis ni | .

out boxFi |'i ng

nowQr Lat er

A symbol indicating the Out Box folder in
which to file an item after it is sent.
Specify a symbol representing a folder
name, or Ni | to file sent items in the
Untitled folder. The symbol must
represent an existing folder Note that
filing doesn’t occur until after the In/Out
Box is closed. The default is ni | .

A symbol indicating what action the Send
button in the routing slip should take
when the user taps it. Specify the symbol
' nowto force the button always to send
items immediately (corresponds to the
“Send now” preferences choice). Specify
the symbol ' | at er to force the button
always to send items later (corresponds to
the “Send later” preferences choice).
Specify ni | to force the button to display
a picker allowing the user to choose now
or later each time (corresponds to the
“Specify when” preferences choice). The
user sets this in the “When Sending”
preference. The defaultis ni | .

cfgMsgModule Aframeorni | . Passinni | if you do not want to
configure a specific msgModule. The frame contains the
msgModule preferences to be set. The required

2-44 Functions and Methods

CHAPTER 2

Messaging Enabler Interface Reference

msgModule must be installed in the system. The
following slots are configurable:

devi ceSym Required. This must be the appSymbol of
the msgModule that the msgModule
registered with.

power | ndex An integer. An index to the array in the
msgModule slot power St ri ngs. If this
index is out of range the default will be
used. The default is 0.

transmtterlndex
An integer. An index to the array in the
msgModule slottransmi tter Strings.
If this index is out of range the default is
used. The default is 0.

soundl ndex An integer. An index to the array in the
msgModule slot soundSt r i ngs. If this
index is out of range the default is used.
The default is 0.

portlndex Aninteger. Anindex to the array in the
msgModule slot por t St ri ngs. If this
index is out of range the default is used.
The default is 0.

ti mel ndex An integer. An index to the array in the
msgModule slot t i meSt ri ngs. If this
index is out of range the default is used.
The default is 0.

If the preferences view is open when this message is received, the Messaging
Enabler closes the preferences view and displays an alert to the user. The
alert displays the string mapped to the KRES_PREFSCHANGED result code,
see “Result Codes” beginning on page 1-11.

SendDirectCommand

messagingEnabler: SendDi r ect Conmand(callBack, options, command)

Calls a msgModule’s Di r ect Command method (page 2-20). See “Using the
SendDirectCommand Method” (page 1-29).

Functions and Methods 2-45

2-46

CHAPTER 2

Messaging Enabler Interface Reference

IMPORTANT

This method should be called with Tr ansport Noti fy
function. The Tr ansport Not i f y method is documented in
Chapter 19, “Transport Interface Reference,” in Newton
Programmer’s Reference.

Call it using this syntax:

Transport Noti fy(
' MsgEnabl er,
' SendDi r ect Command,
[callBack, options, command)

)
A
callBack A frame that is the callback to be executed once this
method has completed. This contains two slots:
recei ver The receiver to which to send the message.
nmessage A symbol naming the message to be sent.
This method accepts two parameters
complFrame and complCode.
complFrame Specific to the command being sent and
may be any type of NewtonScript object.
This should be documented by the
particular msgModule for each command
supported.
complCode An integer result code. See “Result
Codes” (page 1-11).
options A frame containing the following slots:

open A Boolean. If t r ue the msgModule
attempts to open the message channel if it
is not currently open.

devi ceSym The appSymbol the msgModule
registered with.

Functions and Methods

CHAPTER 2

Messaging Enabler Interface Reference

command Specific to the particular msgModule. It is up to the
msgModule developer to document the format this
parameter should take.

The Messaging Enabler sets the complCode to the integer result code
KRES_UNSUPPORTED, if the msgModule installed does not support the

Di r ect Command method. The complFrame is set to ni | and the complCode to
KRES_FAI LEDif the msgModule generates an error.

Functions and Methods 2-47

CHAPTER 2

Messaging Enabler Interface Reference

2-48 Functions and Methods

Index

A E

About slip 1-25 endpoint 1-12
Alive 2-16 error codes 1-11
applications list of built-in 2-2

and a msgModule 1-3,1-28
and Messaging Enabler 1-3, 1-28

B

built-in error codes 2-2

C

callback functions 1-10

DoCallBack 2-21
Cancel 2-17
ChangeCofing 1-28, 2-41
Close 2-18

compatibility information 1-7

D

DeleteMessageFromDir 2-19
DeleteMsgModule 1-27,2-39
DirectCommand 2-20
DoCallBack 1-10, 2-21
DoEvent 1—12, 2-22

F

fromRef slot 1-18
functionality of a msgModule 1-4
functions and methods

Alive 2-16

Cancel 2-17

ChangeCofing 1-28, 2-41
Close 2-18
DeleteMessageFromDir 2-19
DeleteMsgModule 1-27,2-39
DirectCommand 2-20
DoCallBack 1-10, 2-21
DoEvent 1-12,2-22
GetConfig 2-26

GetDir 2-30
GetMessageFromDir 2-31
GetNextMessage 2-32
GetPreference 1-25, 2-33
InstallScript 2-33

Open 2-33
ProcessCombinedMessage 2-38
RegMsgModule 1-26,2-39
RemoveScript 2-34
SavePreference 1-25, 2-35
SendDirectCommand 1-29, 2-45
SendMessage 2-35

IN-1

INDEX

SetConfig 2-36
TranslateError 1-11, 2-38
UnRegMsgModule 1-28,2-40

G

GetConfig 2-26

GetDir 2-30

GetMessageFromDir 2-31

GetNextMessage 2-32

GetPreference 1-25, 2-33

global functions
DeleteMsgModule 1-27,2-39
RegMsgModule 1-26, 2-39
UnRegMsgModule 1-28,2-40

H

hardware preferences 1-23

In/Out Box item frame 2-4
installing and removing a msgModule 1-26
InstallScript 2-33

item frame 2-4

M

message channel 1-2
message module 1-2
messages
multi-part 1-6
receiving 1-13

IN-2

receiving multi-part 1-16
receiving text and frame 1-16
sending 1-17
messaging devices 1-2
Messaging Enabler
and applications 1-3, 1-28
and msgModule 1-2
Messaging Enabler methods
ChangeCofing 1-28, 2-41
SendDirectCommand 1-29, 2-45
msgModule 1-2
and applications 1-3, 1-28
and Messaging Enabler 1-2
creating 1-8
functionality 1-4
installing and removing 1-26

msgModule methods 1-

Alive 2-16
Cancel 2-17
Close 2-18
DeleteMessageFromDir 2-19
DirectCommand 2-20
DoCallBack 1-10, 2-21
DoEvent 1-12, 2-22
GetConfig 2-26
GetDir 2-30
GetMessageFromDir 2-31
GetNextMessage 2-32
GetPreference 1-25,2-33
InstallScript 2-33
Open 2-33
ProcessCombinedMessage 2-38
RemoveScript 2-34
SavePreference 1-25,2-35
SendMessage 2-35
SetConfig 2-36
TranslateError 1-11, 2-38
msgModules
and endpoints 1-12
multi-part messages 1-6

INDEX

N SetConfig 2-36
setting 1-18
name references storing data 1-25

and the Messaging Enabler 1-18

T

O
toRef slot

Open 2-33 obtaining information from 1-20
TranslateError 1-11, 2-38

P
U

preference slips 1-5, 1-22

custom 1-24 UnRegMsgModule 1-28, 2-40

hardware preferences 1-23
ProcessCombinedMessage 2-38
protoMsgModule 1-8, 2-9

R
RegMsgModule 1-26,2-39

RemoveScript 2-34
removing a msgModule 1-26
replies 1-6

reply frames 2-7

Reply soup 1-21

result codes 1-11

S

SavePreference 1-25, 2-35
SendDirectCommand 1-29, 2-45
sending events

DoEvent function 1-12, 2-22
SendMessage 2-35

IN-3

	Figures and Tables
	About This Document
	Related Books
	Sample Code
	Conventions Used in This Book
	Special Fonts
	Tap Versus Click
	Frame Code

	Developer Products and Support
	Undocumented System Software Objects

	Messaging Enabler Interface
	About the Messaging Enabler
	The Messaging Enabler and msgModules
	Figure�1-1 Messaging Enabler hierarchy

	The Messaging Enabler and Applications
	Functionality of a msgModule
	Preference Slips
	Figure�1-2 Messaging Enabler and a msgModule hardw...

	Replies
	Figure�1-3 The replies slip

	Multipart Messages
	Compatibility

	Using the Messaging Enabler
	Creating a msgModule
	Implementing msgModule Methods
	Using Callback Functions
	Result Codes
	Sending Events
	Table�1-1 Messaging Enabler events ������

	msgModules and Endpoints

	Receiving Messages
	Sample Message Receiving Method
	Receiving Multipart Messages
	Text and Frame Messages

	Sending Messages
	Using Name References with the Messaging Enabler
	Creating the fromRef Slot of an Incoming Message
	Table�1-2 Slots to include in name references

	Obtaining Information from the toRef Slot of an Ou...

	The Reply Soup
	Providing Preferences
	Providing Hardware Preferences
	Table�1-3 msgModule slots controlling hardware pre...
	Figure�1-4 msgModule hardware preference slip

	Providing a Custom Preference Slip

	Message Module Methods for Storing Data
	Customizing the About Slip
	Figure�1-5 msgModule About slip

	Installing and Removing a msgModule
	Application Program Interface to a msgModule
	Using the ChangeConfig Method
	Using the SendDirectCommand Method

	Messaging Enabler Interface Reference
	Constants
	Built-in Result Codes
	Table�2-1 Built-in error codes

	Data Structures
	Item Frame
	Reply Frames

	Proto
	protoMsgModule

	Functions and Methods
	Global Functions
	Messaging Enabler Methods

	Index

