

ð

ð

Messaging Enabler

version 1.2

Apple Computer, Inc.
© 1997 Apple Computer, Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying,
recording, or otherwise, without
prior written permission of Apple
Computer, Inc., except in the
normal use of the software or to
make a backup copy of the
software and any documentation
provided on CD-ROM. Printed in
the United States of America.
The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for licensed
Newton platforms.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for printing or clerical
errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleTalk,
eMate, Espy, LaserWriter, the light
bulb logo, Macintosh, MessagePad,

Newton, Newton Connection Kit,
and New York are trademarks of
Apple Computer, Inc., registered in
the United States and other
countries.
Geneva, NewtonScript, Newton
Toolkit, and QuickDraw are
trademarks of Apple Computer, Inc.
Acrobat, Adobe Illustrator, and
PostScript are trademarks of Adobe
Systems Incorporated, which may
be registered in certain
jurisdictions.
CompuServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered
trademark of Frame Technology
Corporation.
Helvetica and Palatino are
registered trademarks of
Linotype-Hell AG and/or its
subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.
Microsoft is a registered trademark
of Microsoft Corporation.
Windows is a trademark of
Microsoft Corporation.
QuickView™ is licensed from
Altura Software, Inc.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,

EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
“AS IS,” AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

iii

Table of Contents

Figures and Tables v
Related Books vii
Sample Code viii
Conventions Used in This Book ix

Special Fonts ix
Tap Versus Click ix
Frame Code x

Developer Products and Support xi
Undocumented System Software Objects xii

Chapter 1

Messaging Enabler Interface

1-1

About the Messaging Enabler 1-2
The Messaging Enabler and msgModules 1-2
The Messaging Enabler and Applications 1-3
Functionality of a msgModule 1-4
Preference Slips 1-5
Replies 1-6
Multipart Messages 1-6
Compatibility 1-7

Using the Messaging Enabler 1-7
Creating a msgModule 1-8
Implementing msgModule Methods 1-9

Using Callback Functions 1-10
Result Codes 1-11
Sending Events 1-12
msgModules and Endpoints 1-12

Receiving Messages 1-13
Sample Message Receiving Method 1-14
Receiving Multipart Messages 1-16

iv

Text and Frame Messages 1-16
Sending Messages 1-17
Using Name References with the Messaging Enabler 1-18

Creating the fromRef Slot of an Incoming Message 1-18
Obtaining Information from the toRef Slot of an Outgoing

Message 1-20
The Reply Soup 1-21
Providing Preferences 1-22

Providing Hardware Preferences 1-23
Providing a Custom Preference Slip 1-24

Message Module Methods for Storing Data 1-25
Customizing the About Slip 1-25
Installing and Removing a msgModule 1-26
Application Program Interface to a msgModule 1-28

Using the ChangeConfig Method 1-28
Using the SendDirectCommand Method 1-29

Chapter 2

Messaging Enabler Interface Reference

2-1

Constants 2-1
Built-in Result Codes 2-1

Data Structures 2-4
Item Frame 2-4
Reply Frames 2-7

Proto 2-8
protoMsgModule 2-9

Functions and Methods 2-38
Global Functions 2-39
Messaging Enabler Methods 2-41

v

Figures and Tables

Figure 1-1

Messaging Enabler hierarchy 1-3

Figure 1-2

Messaging Enabler and a msgModule hardware
preference slips 1-5

Figure 1-3

The replies slip 1-6

Table 1-1

Messaging Enabler events 1-12

Table 1-2

Slots to include in name references 1-19

Table 1-3

msgModule slots controlling hardware
preference 1-23

Figure 1-4

msgModule hardware preference slip 1-24

Figure 1-5

msgModule About slip 1-26

Table 2-1

Built-in error codes 2-2

vi

P R E F A C E

vii

About This Document

This document describes how to use the Newton Messaging
Enabler version 1.2, and how to write message modules. Message
modules are plug-in modules which represent a particular
messaging device to the Messaging Enabler.

Related Books

This book is one in a set of books available for Newton
programmers. You’ll also need to refer to these other books
in the set:

■

Newton Programmer’s Guide

. This book is the definitive guide to
Newton programming, providing conceptual information and
instructions for using the Newton application programming
interfaces.

■

Newton Programmer’s Reference

. This online book is the
comprehensive reference to the Newton programming
interface. It documents all routines, prototypes, data structures,
constants, and error codes defined by the Newton system for
use by NewtonScript developers.

■

Newton Toolkit User’s Guide

. This book comes with the Newton
Toolkit development environment. It introduces the Newton
development environment and shows how to develop
applications using Newton Toolkit. You should read this book
first if you are a new Newton application developer.

■

The NewtonScript Programming Language

. This book comes with
the Newton Toolkit development environment. It describes the
NewtonScript programming language.

P R E F A C E

viii

■

Newton Book Maker User’s Guide

. This book comes with the
Newton Toolkit development environment. It describes how to
use Newton Book Maker and Newton Toolkit to make Newton
digital books and to add online help to Newton applications.

■

Newton 2.0 User Interface Guidelines

. This book contains
guidelines to help you design Newton applications that
optimize the interaction between people and Newton devices.

Sample Code

There is sample code that deals specifically with the Messaging
Enabler.

The Newton Toolkit development environment, from Apple
Computer, includes many sample code projects. You can examine
these samples, learn from them, and experiment with them. These
sample code projects illustrate most of the topics covered in this
book. They are an invaluable resource for understanding the
topics discussed in this book and for making your journey into the
world of Newton programming an easier one.

The Newton Developer Technical Support team continually
revises the existing samples and creates new sample code. The
latest sample code is included each quarter on the Newton
Developer CD, which is distributed to all Newton Developer
Program members and to subscribers of the Newton monthly
mailing. Sample code is updated on the Newton Development
side on the World Wide Web (

http://devworld.apple.com/
dev/newtondev.shtml

) shortly after it is released on the
Newton Developer CD. For information about how to contact
Apple Computer regarding the Newton Developer Program, see
the section “Developer Products and Support,” on page xi.

The code samples in this book show methods of using various
routines and illustrate techniques for accomplishing particular

P R E F A C E

ix

tasks. All code samples have been compiled and, in most cases,
tested. However, Apple Computer does not intend that you use
these code samples in your application.

To make the code samples in this book more readable, only
limited error handling is shown. You need to develop your own
techniques for detecting and handling errors.

Conventions Used in This Book

This book uses the following conventions to present various kinds
of information.

Special Fonts

This book uses the following special fonts:

■

Boldface

. Key terms and concepts appear in boldface on first
use.

■

Courier typeface

. Code listings, code snippets, and special
identifiers in the text such as predefined system frame names,
slot names, function names, method names, symbols, and
constants are shown in the Courier typeface to distinguish
them from regular body text. If you are programming, items
that appear in Courier should be typed exactly as shown.

■

Italic typeface

. Italic typeface is used in code to indicate replace-
able items, such as the names of function parameters, which
you must replace with your own names. The names of other
books are also shown in italic type, and

rarely

, this style is used
for emphasis.

Tap Versus Click

Throughout the Newton software system and in this book, the
word “click” sometimes appears as part of the name of a method
or variable, as in

ViewClickScript

 or

ButtonClickScript

.

P R E F A C E

x

This may lead you to believe that the text refers to mouse clicks. It
does not. Wherever you see the word “click” used this way, it
refers to a tap of the pen on the Newton screen (which is some-
what similar to the click of a mouse on a desktop computer).

Frame Code

If you are using the Newton Toolkit (NTK) development environ-
ment in conjunction with this book, you may notice that this book
displays the code for a frame (such as a view) differently than
NTK does.

In NTK, you can see the code for only a single frame slot at a time.
In this book, the code for a frame is presented all at once, so you
can see all of the slots in the frame, like this:

{ viewClass: clView,

viewBounds: RelBounds(20, 50, 94, 142),

viewFlags: vNoFlags,

viewFormat: vfFillWhite+vfFrameBlack+vfPen(1),

viewJustify: vjCenterH,

ViewSetupDoneScript: func()

:UpdateDisplay(),

UpdateDisplay: func()

SetValue(display, 'text, value);

};

If while working in NTK, you want to create a frame that you see
in the book, follow these steps:

1. On the NTK template palette, find the view class or proto
shown in the book. Draw out a view using that template. If the
frame shown in the book contains a

_proto

 slot, use the
corresponding proto from the NTK template palette. If the
frame shown in the book contains a

viewClass

 slot instead of

P R E F A C E

xi

a

_proto

 slot, use the corresponding view class from the NTK
template palette.

2. Edit the

viewBounds

 slot to match the values shown in
the book.

3. Add each of the other slots you see listed in the frame, setting
their values to the values shown in the book. Slots that have
values are attribute slots, and those that contain functions are
method slots.

Developer Products and Support

The

Apple Developer Catalog

 (ADC) is Apple Computer’s
worldwide source for hundreds of development tools, technical
resources, training products, and information for anyone
interested in developing applications on Apple computer
platforms. Customers receive the

Apple Developer Catalog

featuring
all current versions of Apple development tools and the most
popular third-party development tools. ADC offers convenient
payment and shipping options, including site licensing.

To order product or to request a complimentary copy of the

Apple
Developer Catalog

 contact

Apple Developer Catalog
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink ORDER.ADC

Internet order.adc@applelink.apple.com

World Wide Web http://www.devcatalog.apple.com

P R E F A C E

xii

If you provide commercial products and services, call
408-974-4897 for information on the developer support programs
available from Apple.

For Newton-specific information, see the Newton developer
World Wide Web page at:

http://devworld.apple.com/dev/newtondev.shtml

Undocumented System Software Objects

When browsing in the NTK Inspector window, you may see
functions, methods, and data objects that are not documented in
this book. Undocumented functions, methods, and data objects
are not supported, nor are they guaranteed to work in future
Newton devices. Using them may produce undesirable effects on
current and future Newton devices.

1-1

C H A P T E R 1

Messaging Enabler Interface 1

This chapter describes the Messaging Enabler verion 1.2 interface. The
Messaging Enabler, along with one or more message modules, provides
transport-level communication between an application and a messaging
device. This makes sending a page as easy as printing or faxing.

This chapter describes how to

■

Create a message module to interface between the Messaging Enabler and
a particular messaging device.

■

Customize the user interface to your message module.

■

Install and remove a message module.

■

Interact with the Messaging Enabler from an installed application.

This text assumes a basic familiarity with programming for the Newton. In
particular, you should be familiar with the NewtonScript programming
language, building and downloading projects with the Newton Toolkit, and
Chapter 22, “Transport Interface,” of

Newton Programmer’s Guide

. It is also
recommended that you understand the information in Chapter 3, “Views,”
Chapter 21, “Routing Interface,” and Chapter 23, “Endpoint Interface,” of

Newton Programmer’s Guide

.

Figure 1-0
Table 1-0

C H A P T E R 1

Messaging Enabler Interface

1-2

About the Messaging Enabler

About the Messaging Enabler 1

The Messaging Enabler is intended to provide high-level support for a wide
variety of

messaging devices

. Messaging devices are both one-way and
two-way pagers, or more generally, any device that can receive (and maybe
send) short, usually less than 5 KB, wireless messages. The Messaging
Enabler provides much of the functionality of a transport that would be
necessary to support these devices. The particular routines needed to
support a messaging device are implemented in a plug-in

message module

(msgModule) created from

protoMsgModule

. The msgModule comes
between the Messaging Enabler and the

message channel

. The message
channel is considered to be everything from the Messaging Enabler to the
outside world. That is, the message channel starts at the msgModule,
continues through the messaging device, and to the outside world from there.

The Messaging Enabler provides the user interface, and handles the
interactions with installed applications, by way of the In/Out Box. The
msgModule creator can thus concentrate on writing communications code.
Another advantage of this setup is that the user sees a consistent interface
with any type of messaging device.

The Messaging Enabler and msgModules 1

A msgModule’s only contact with the system is through the Messaging
Enabler. In turn, the Messaging Enabler’s only contact with the system is
through the In/Out Box; this is true of all transports in the Newton operating
system. From the other end, the user’s interactions with the message channel
are similarly limited to the In/Out Box. The user creates a message in some
application that supports routing, and the message is routed to the In/Out
Box. The Messaging Enabler takes over from here. This arrangement is
schematized in Figure 1-1.

C H A P T E R 1

Messaging Enabler Interface

About the Messaging Enabler

1-3

Figure 1-1

Messaging Enabler hierarchy

The Messaging Enabler and Applications 1

Applications may interact with the Messaging Enabler by using the global
function

TransportNotify

. An application may use this function to
change a configuration setting, and optionally to disable user preferences.
This is intended for vertical applications to properly configure the Messaging
Enabler to known parameters.

An application may also perform msgModule commands, if the msgModule
supports this. This functionality is up to the msgModule designer to provide.

Built-in
Applications

In/Out Box

Messaging Enabler (2.0 transport)

Installed
Applications

Message
Module

Message
Module

Hardware Hardware
(receive only)

TransportNotify

C H A P T E R 1

Messaging Enabler Interface

1-4

About the Messaging Enabler

The Messaging Enabler simply passes messages from the application to the
msgModule. This can be useful if an application is being distributed with the
msgModule.

Functionality of a msgModule 1

The Messaging Enabler is intended to work with a wide variety of messaging
devices. These devices have different capabilities, and the Messaging Enabler
has been designed to take advantage of the capabilities of particular
messaging devices, while still supporting messaging devices that provide
only a minimal functionality.

All msgModules must implement the following minimal functionality to
work with the Messaging Enabler:

■

Describe its functionality to the Messaging Enabler; this is done by setting
certain Boolean slots.

■

Initiate and terminate a connection with the message channel.

■

Receive and delete messages from the message channel.

A msgModule may also provide the following functionality:

■

Send messages.

■

Retrieve a directory of incoming messages.

■

Detect the presence of either the messaging device or a new message.

■

Provide parameters to the built-in configuration options.

■

Provide custom preferences.

■

Provide a custom routing slip.

■

Customize the About slip.

■ Accept commands from an application

C H A P T E R 1

Messaging Enabler Interface

About the Messaging Enabler 1-5

Preference Slips 1
The Messaging Enabler provides a preference slip with choices which are not
specific to a particular msgModule, such as when to poll for messages,
whether to display status slips, and other such preferences. The Messaging
Enabler’s preference slip, shown to the left in Figure 1-2, is accessed through
the information (“i”) button of the In/Out Box. The Messaging Enabler also
provides a slip with common hardware configuration options for a particular
msgModule and messaging device. The hardware preference slip, shown to
the right in Figure 1-2, is accessed through the Device button in the
Messaging Enabler’s preference slip. The Device button provides a picker for
all installed msgModules.

Figure 1-2 Messaging Enabler and a msgModule hardware preference slips

You may also create a preference slip of options which are specific to your
msgModule. This slip is accessed through the Options button in the
Messaging Enabler’s preference slip. If no installed msgModules have a
custom slip, the Options button is not included.

C H A P T E R 1

Messaging Enabler Interface

1-6 About the Messaging Enabler

Replies 1
The Messaging Enabler allows the user both to reply to received messages,
and to attach possible replies to outgoing messages, if the msgModule
supports this. The user replies to an incoming message by choosing “Reply”
from the Tag button in the In/Out Box. Replies to outgoing messages are
created from the Replies button of the routing slip. Tapping this button
brings up the replies slip shown in Figure 1-3. These replies are stored in a
soup, which your msgModule may manipulate.

Figure 1-3 The replies slip

Multipart Messages 1
Some messaging devices allow multipart messages in order to overcome
message length restrictions. The Messaging Enabler provides the ability to
combine these message segments. The msgModule can simply retrieve the
individual message parts. The message is integrated by the Messaging
Enabler, and the user sees a single message in the In Box. If only part of the
multipart message is available at any time, individual message segments are

C H A P T E R 1

Messaging Enabler Interface

Using the Messaging Enabler 1-7

displayed prefixed with [a:b], where a is the segment number, and b is the
total number of segments.

Compatibility 1
The Messaging Enabler is a Newton 2.x transport. It is incompatible with
Newton system software 1.x versions. Messaging Enabler 1.0 does not send a
ProcessCombinedMessage method, this functionality is introduced in
version 1.2.

Using the Messaging Enabler 1

This section describes how to

■ create a msgModule

■ implement the msgModule methods

■ receive messages

■ send messages

■ use name references

■ control the Reply soup

■ provide preferences

■ customize the About slip

■ install and remove a msgModule

■ alter both the Messaging Enabler and a msgModule’s configuration
settings and send a msgModule a command from an application

C H A P T E R 1

Messaging Enabler Interface

1-8 Using the Messaging Enabler

Creating a msgModule 1
A msgModule object is a frame based on the protoMsgModule proto. To
create a msgModule, create a layout in NTK containing a single
protoTextButton and create an AfterScript with the following line:

thisView._proto := protoMsgModule

Note

The protoMsgModule frame is defined in the file
“pMsgMod.stream” file. ◆

The msgModule must set a number of slots to inform the Messaging Enabler
of its functionality. The msgModule slots of interest can be grouped as
follows:

■ Convenience and miscellaneous slots:
deviceTitle The user-visible name of the messaging device.
title The user-visible name of the msgModule.
version The version number.
declareSelf A reference to your msgModule.
pfVars A convenience frame for your data.
icon An icon identifying the msgModule.
about What to display in the About slip; see “Customizing the

About Slip” (page 1-25).

■ Slots related to user preferences; these are described in “Providing
Preferences” (page 1-22):

prefsTemplate A view template for a custom preference slip.
timeStrings The choices available for the “Clock” picker.
transmitterStrings

The choices available for the “Transmitter” picker.
soundStrings The choices available for the “Sound” picker.
portStrings The choices available for the “Connect Using” picker.
powerStrings The choices available for the “Power” picker.

C H A P T E R 1

Messaging Enabler Interface

Using the Messaging Enabler 1-9

■ Boolean slots which inform the Messaging Enabler of the message
channel’s functionality:

dirSupport Does the message channel support returning a directory
of available messages? If so, you must supply a GetDir
method (page 2-30).

cannedSupport Does the messaging channel support returning canned
replies?

persistConnection
Should the message channel be left open after receiving
messages?

■ Slot which describes the messaging channel’s sending ability:
sendOptions The addressing options that the message channel

supports; see “Sending Messages” (page 1-17).

■ Slots which determine if and when the Messaging Enabler should poll the
message channel:

pollMessage How often to send either a GetDir (page 2-30) or a
GetNextMessage (page 2-32) message, depending on
the value of dirSupport.

pollHardware How often to send an Open message (page 2-33).
pollAlive How often to send an Alive message (page 2-16).

For a full description of these slots see “protoMsgModule” beginning on
page 2-9.

Implementing msgModule Methods 1
Since the msgModule methods are called asynchronously, they must be
structured in a slightly idiosyncratic manner. The Messaging Enabler cannot
use the return values of the msgModule methods, therefore these methods
must report their outcome with a function call. The function they must call is
the proto-supplied msgModule method DoCallBack (page 2-21).

Furthermore, if the msgModule needs to communicate with the Messaging
Enabler, it must do so by sending it events. This is done by calling the
proto-supplied msgModule method DoEvent (page 2-22).

C H A P T E R 1

Messaging Enabler Interface

1-10 Using the Messaging Enabler

Note that the Messaging Enabler wraps all calls to msgModule methods in a
try...onexception block. If a msgModule method throws an exception the
Messaging Enabler will catch the exception and close the msgModule.

Using Callback Functions 1

All the msgModule methods that are called asynchronously must call the
proto-supplied msgModule method DoCallBack (page 2-21) after they have
completed their operation. These methods are passed a callBack parameter,
which must be passed on to the DoCallBack method. You should not alter
the value of this parameter, nor can you rely on its value.

In addition to callBack, the DoCallBack function accepts two other
parameters: complCode, which indicates the success of the function; and
complFrame, which is used to return data. Result codes to use for the
complCode parameter are discussed in “Result Codes” beginning on
page 1-11. The values for the complFrame parameter depend on the particular
method. These values are described under the particular method in
Chapter 2, “Messaging Enabler Interface Reference.”

The following sample code demonstrates how these methods should be
structured:

msgModule.MethodName := func (callBack , ...)

begin

// In this sample, the DoTheWork method performs

// whatever is required of MethodName, and returns an

// integer result code. Normally this work would be

// performed in the body of MethodName.

local theResult := :DoTheWork();

:DoCallBack(callBack, theResult, nil);

end;

C H A P T E R 1

Messaging Enabler Interface

Using the Messaging Enabler 1-11

Result Codes 1

Most msgModule methods must return an integer result code indicating the
success of the operation. This result code is returned through the complCode
parameter to the DoCallBack method. It is used both to indicate whether
the operation was successful and to map to error strings if necessary.

A number of result codes are built in to the Messaging Enabler. These are
listed in Table 2-1 “Built-in error codes” on page 2-2. Table 2-1 also lists the
string used in alerts corresponding to each error. However, before displaying
one of these strings, the Messaging Enabler calls your msgModule’s
TranslateError method (page 2-38), if it has one. You may return a string
from this method to use in the alert, instead of the Messaging Enabler
supplied string.

You may also define your own error codes. The built-in error codes are all
negative integers. You may define both negative and positive result codes.
The negative codes are treated just like the built-in error codes; these should
be integers below the constant kRES_MMBASE. Positive result codes indicate
to the Messaging Enabler a noncritical event. In this case, the Messaging
Enabler displays an alert, with the string your TranslateError method
returned, and continues.

Some of the method descriptions in Chapter 2, “Messaging Enabler Interface
Reference,” explicitly mention specific result codes. You should use these
codes if they apply, as the Messaging Enabler treats this code in a particular
manner. For example, the result code kRES_PARTIAL, when returned from
the GetDir method (page 2-30) indicates that there are more messages, and
GetDir needs to be called again.

Otherwise, if no result code is mentioned explicitly in the method
description, you should return the code that best describes the state of the
operation. The method description list a number of suggested error codes for
each particular method. These are only suggestions, you should return the
code that best describes the status of the operation. When returning error
codes, you should consider them from the point of view of what string the
user sees.

C H A P T E R 1

Messaging Enabler Interface

1-12 Using the Messaging Enabler

Sending Events 1

Aside from the call to DoCallBack within a msgModule method, the only
way for a msgModule to communicate with the Messaging Enabler is by
sending events. For example, if the msgModule detects that there is a new
message on the message channel, it should notify the Messaging Enabler
rather than wait to be polled.

The events your msgModule can send are summarized in Table 1-1.

Table 1-1 Messaging Enabler events

Events are sent to the Messaging Enabler by calling the proto-supplied
msgModule DoEvent method (page 2-22). For further information about
these events and how the Messaging Enabler reacts to each of them, see the
description of the DoEvent method.

msgModules and Endpoints 1

In most cases, the connection to the messaging device is created with an
endpoint. For instance you could instantiate an endpoint in your

Constant for
event name Event description

kEV_BATTERY The battery level of the messaging device has
changed.

kEV_CLOSED The messaging channel is no longer available.

kEV_DETECTED The messaging channel is available.

kEV_MEMORY The messaging device is either out of memory, or
no longer out of memory.

kEV_MESSAGE There is a change in the messages available.

kEV_PROGRESS There has been progress on a current operation.
This allows progress slips to be updated.

kEV_SERVICE The message channel is temporarily unavailable,
or no longer so.

C H A P T E R 1

Messaging Enabler Interface

Using the Messaging Enabler 1-13

msgModule’s Open method (page 2-33), and close, unbind, and dispose of it
in your Close method (page 2-18). However, it is not necessary that your
msgModule use endpoints.

For information on endpoints, see Chapter 23, “Endpoint Interface,” in
Newton Programmer’s Guide.

Receiving Messages 1
There are three ways messages can be received through the message channel.
If the msgModule pollMessage slot is non-nil, the Messaging Enabler
periodically sends the msgModule either a GetDir (page 2-30) or a
GetNextMessage (page 2-32) message, depending on the value of the
msgModule dirSupport slot.

If the message channel is open and the msgModule detects the arrival of a
message, it can send a kEV_MESSAGE event; see “Sending Events”
(page 1-12). This causes the Messaging Enabler to send either a GetDir or a
GetNextMessage message.

The user may also poll for messages at any time via the Receive button in the
In Box.

Messages are represented as In/Out Box item frames. The section “Item
Frame” beginning on page 2-4 describes the slots in an item frame that are
used particularly by the Messaging Enabler and your msgModule. For
information about the standard set of slots used by all In/Out Box item
frames, see Chapter 18, “Routing Interface Reference,” in Newton
Programmer’s Reference.

For information on how an application may retrieve items from the In Box,
see Chapter 22, “Transport Interface,” in Newton Programmer’s Guide. In
particular, you should read about the RegInBoxApps, RegAppClasses,
PutAway, and AutoPutAway functions. Applications receiving Message
Enabler items from the In Box should check whether the item has a segment
slot, as this indicates that it is not a complete message.

C H A P T E R 1

Messaging Enabler Interface

1-14 Using the Messaging Enabler

Sample Message Receiving Method 1

The following sample code shows how a number of item frame slots should
be set:

// This method is only necessary if we do not have directory support

msgModule.GetNextMessage := func(callBack)

begin

local message := nil; //NOTE: if we DON'T return a nil message,

 //this function will be called again

//For the sake of this example, we assume that the msgModule

//has a GetMessageFromPager function returns the message.

//

//Note that GetMessageFromPager MUST remove the message

//from the message channel.

local rawMessage := nil;

try

rawMessage := :GetMessageFromPager();

onexception |evt.ex.outOfMem| do

begin

:DoCallBack (callBack,kRES_MEMORY,nil);

return;

end;

onexception |evt.ex| do

begin

:DoCallBack (callBack,kRES_FAILED,nil);

return;

end;

C H A P T E R 1

Messaging Enabler Interface

Using the Messaging Enabler 1-15

if rawMessage then

begin

message := {

complete: true,

body : {

class: 'text,

text: rawMessage.text

},

title : rawMessage.title

};

// create a fromRef frame with the appropriate information

local theEmailString := Clone (rawMessage.email);

SetClass (theEmailString, '|string.email.internet|);

local fromRefTemplate := {

name: {

first: rawMessage.firstName,

last: rawMessage.lastName

 },

email: theEmailString,

country : nil,

};

local addressType := GetDataDefs('|nameRef.email|);

message.fromRef := addressType: MakeNameRef(fromRefTemplate,

 '|nameRef.email|

);

//Set the ID. Here, msgNum is slot in base view. We set

//msgNum to 0 when the msgModule is installed.

message.ID := msgNum := msgNum +1;

C H A P T E R 1

Messaging Enabler Interface

1-16 Using the Messaging Enabler

//If this message is intended for a specific application, we

//may want to set some extra slots for that application

message.appSymbol := 'theAppsSymbol;

message.appSpecificSlot := nil;

end; // if rawMessage

:DoCallBack (callBack, kRES_SUCCESS, message);

end

Receiving Multipart Messages 1

The Messaging Enabler provides the ability to combine multi-part messages.
The msgModule needs only set the segment, totalSegments, and
groupID slots to the appropriate numbers in the item frame. If all parts are
present, the Messaging Enabler will combine these and the user will see a
single message in the In Box. If all message segments are not present, the
individual segments are prefixed with [segment+1:totalSegments].

If using Message Enabler version 1.2 or later, it conditionally sends your
msgModule a ProcessCombinedMessage (page 2-38) message when all
parts are in, but before posting the message to the In box. You can do any
porcessing you wish on the combined message here.

Text and Frame Messages 1

The actual message data is stored in the body slot of the item frame. When a
text message is received, the body slot should be set to a frame with a class
slot of 'text and a text slot which contains the message string. Otherwise,
the format of this frame depends on what the application which is managing
this data expects.

If the message contains a frame that has been flattened, you should unflatten
it using the Translate global function, described in Chapter 23, “Endpoint
Interface,”in Newton Programmer’s Reference. However, if the message
contains only part of the flattened frame, you can treat it as a multipart

C H A P T E R 1

Messaging Enabler Interface

Using the Messaging Enabler 1-17

message. The Messaging Enabler will collect the individual parts, call
Translate, and set the body slot to the resulting frame. If returning part of
a flattened frame the body slot should be a frame with a class slot set to
'|file.frameSegment| and a data slot containing the binary data.

Sending Messages 1
The user originates a message, just like any other transport-related operation,
by tapping the Action button (the envelope button). This routes the message
to the Out Box. The Messaging Enabler then passes this message on by
calling your msgModule’s SendMessage method (page 2-35). The
SendMessage method is passed a message parameter which consists of an
In/Out Box item frame.

To support sending messages, the msgModule must have a non-nil
sendOptions slot and must implement the SendMessage method. For a
description of the slots in an item frame, see “Item Frame” (page 2-4).

The sendOptions slot contains an array of send options frames. A send
option frame specifies the following:

■ The routing slip to use; either a custom template, or a name reference
describing the type of addressing to use in the Messaging
Enabler-supplied routing slip.

■ The routing group this msgModule belongs to; predefined groups are
'print, 'mail, 'fax, and 'page. You may also define your own routing
group, but these must be registered with Newton Developer Technical
Support.

■ The title and icon shown in the Action button; these should correspond to
the routing group.

■ The type of data that can be sent; sending text and frame data is currently
supported.

■ The types of reply frames that can be attached to a message; see “Reply
Frames” (page 2-7).

For a full description of send option frames, see the description of the
sendOptions slot in “protoMsgModule” beginning on page 2-9.

C H A P T E R 1

Messaging Enabler Interface

1-18 Using the Messaging Enabler

It is up to your msgModule’s SendMessage (page 2-35) method to detect if
the size of an outgoing message is larger than the messaging channel can
handle. If so, it must partition the message and send the individual
segments. This is true regardless of whether the message contains text or a
frame.

Using Name References with the Messaging Enabler 1
A name reference is a reference to a Names soup entry, or a frame created on
the fly that has some of the slots of a Names soup entry. Name references are
used by the Messaging Enabler to specify the originator and receiver of a
message (these are stored in the message’s toRef and fromRef slots) and
the type of routing slip to display for outgoing messages.

You need to create a name reference only when setting the fromRef slot of
an incoming messages. Outgoing messages will have the toRef and
fromRef slots set by the Messaging Enabler, and incoming messages do not
need a toRef slot. If your msgModule supports sending messages, you will
also need to extract information from the toRef slot to use in your
SendMessage method (page 2-35).

Creating the fromRef Slot of an Incoming Message 1

To create a name reference, call the MakeNameRef method of the data
definition. The call to MakeNameRef requires either a Names soup entry, an
alias to one, or a frame with some of the slots of a Names soup entry. The
Names soup format is described in Chapter 16, “Built-in Applications and
System Data Reference,” in Newton Programmer’s Reference.

You should call MakeNameRef with a frame created on the fly containing
only a subset of a Names soup entry’s slots. The slots to include depend on
the type of name reference, as summarized in Table 1-2. If the value of any of
these slots is unavailable to you, you may either not include this slot or set it
to nil.

C H A P T E R 1

Messaging Enabler Interface

Using the Messaging Enabler 1-19

Table 1-2 Slots to include in name references

The following sample code sets the fromRef slot of an incoming message:

msgModule.GetNextMessage := func (callBack)

begin

...

local item := {};

local myData := {};

myData.name := {

first :sendersFirstName,

last :sendersLastName

};

myData.email := SetClass(

sendersEmailAdress,

'|string.email.internet|

);

item.fromRef := GetDataDefs('|nameRef.email|)

:MakeNameRef(myData,'|nameRef.email|);

...

:DoCallBack(callBack, kRES_SUCCESS, item);

end

Name reference Slots to include

'|nameRef.people| name

'|nameRef.phone| name, phone, country

'|nameRef.fax| name, phone, country

'|nameRef.email| name, email, country

'|nameRef.people.pager| name, pagers

C H A P T E R 1

Messaging Enabler Interface

1-20 Using the Messaging Enabler

To set the class of a pager, use either one of the predefined class symbols, or
define your own class symbol using the global function RegPagerType. The
following are the predefined class symbols:

'|string.pager|

'|string.pager.skytel|

'|string.pager.mobilecomm|

'|string.pager.embarc|

For information about the RegPagerType function, and its companion
UnRegPagerType, see Chapter 26, “Utility Functions,” in Newton
Programmer’s Reference.

Obtaining Information from the toRef Slot of an Outgoing
Message 1

When sending a message, you are passed an item frame which contains a
toRef slot. This slot holds an array of name references for the recipient(s) of
the message. To obtain information from these name references to use when
sending the message out the message channel, call the name reference’s
GetRoutingInfo method. GetRoutingInfo returns an array of routing
information frames. Routing information frames contain a name slot and
certain slots with routing information, depending on which name reference’s
GetRoutingInfo method is called.

The following code retrieves the pager slot of an array of name references:

msgModule.SendMessage := func (callBack, message)

begin

...

dataDef := GetDataDefs ('|nameRef.people.pager|);

pagersArray := dataDef:GetRoutingInfo(message.toRef);

...

end;

C H A P T E R 1

Messaging Enabler Interface

Using the Messaging Enabler 1-21

The variable pagersArray will contain an array of frames with the
following format:

{

pagerNum: pagerNumberString,
pagerPin: pagerPINString

}

Note that the string pagerNumberString will have the same class as the pager,
that is, '|string.pager| or a subclass of it. Pager classes are discussed in
“Creating the fromRef Slot of an Incoming Message” (page 1-18).

To retrieve the email slot use code such as:

msgModule.SendMessage := func (callBack, message)

begin

...

dataDef := GetDataDefs ('|nameRef.email|);

emailsArray := dataDef:GetRoutingInfo(message.toRef);

...

end;

The Reply Soup 1
Replies are stored in the Reply soup. A list of stored replies is shown to the
user when she taps the Replies button in the Routing slip. Entries in this
soup are reply frames; the format of these frames is described in “Reply
Frames” (page 2-7). The soup’s name is kMsgEnablerReplySoupName.

A msgModule may add or delete entries in this soup. It is important that any
changes are made with functions that transmit the change (these functions
end in “Xmit”). The msgModule InstallScript method (page 2-33) is a
handy place to make these changes. For more information on manipulating
soups, see Chapter 11, “Data Storage and Retrieval,” in Newton Programmer’s
Guide.

C H A P T E R 1

Messaging Enabler Interface

1-22 Using the Messaging Enabler

This soup contains canned replies provided by the msgModule, user-created
replies, and the acknowledgment reply.

The list of canned messages is retrieved by the Messaging Enabler by
sending the msgModule a GetDir message (page 2-30). This is usually done
once, when the msgModule is installed. The Messaging Enabler retrieves the
list of canned messages whenever a msgModule is opened with a new serial
number; if it has no serial number the version string is used. The serial
number is obtained by sending the msgModule a GetConfig message
(page 2-26); the version string is in the msgModule version slot. The
msgModule may also request that the Messaging Enabler update the list of
canned messages by sending a kEV_MESSAGE event; see “Sending Events”
beginning on page 1-12.

The list of user replies is maintained by the user, through the New and
Delete buttons of the Reply slip.

Note

If the user attempts to add a reply to a message and the
Reply soup is empty, the Message Enabler populates the
soup with the acknowledgment reply and user replies. These
user reply frames have the following strings in their text
slot:

"Yes/OK", "No", "Will call later", "Call me",
"On my way", "Running late", "Need more info",
"Send # to call", "Call home", "Where are you",
"Will arrive 15m", "Will arrive 30m", "Traffic
delay", "Pick me up", "Busy", and "Finished". ◆

Providing Preferences 1
The Messaging Enabler supplies a preference slip, accessed through the
information (“i”) button in the In/Out Box. This slip provides a Device
picker which brings up the hardware preference slip. You may also supply a
custom preference slip. If any installed msgModules supply a custom
preference slip, the Messaging Enabler’s preference slip will include an
Options button to allow access to these slips.

C H A P T E R 1

Messaging Enabler Interface

Using the Messaging Enabler 1-23

Providing Hardware Preferences 1

The hardware preference slip consists of up to five pickers for the typical
hardware configuration options that may be set in a messaging device. The
labels of these pickers are set by the Messaging Enabler, but it is up to the
msgModule to provide the menu choices (labelCommands) for each picker.
Table 1-3 lists the msgModule slots that specify the menu choices for these
pickers.

Table 1-3 msgModule slots controlling hardware preference

Each one of these msgModule slots should contain either an array of strings
or nil. If the slots holds the value nil, or is not present, then the
corresponding picker is not included in the preference slip. For example, the
following msgModule creates the preference slip shown in Figure 1-4
(page 1-24):

myMsgModule := {

_proto : protoMsgModule,

...

timeStrings := ["Set Newton from pager",

 "Set pager from Newton"],

soundStrings := ["Off", "Quiet", "Loud"],

powerStrings := ["On", "Off"],

...

}

msgModule slot Picker label

timeStrings “Clock”

transmitterStrings “Transmitter”

soundStrings “Sound”

portStrings “Connect Using”

powerStrings “Power”

C H A P T E R 1

Messaging Enabler Interface

1-24 Using the Messaging Enabler

Figure 1-4 msgModule hardware preference slip

IMPORTANT

The first element in each of these arrays is the default for the
picker. Pick the first element with forethought. ▲

The Messaging Enabler calls your msgModule’s SetConfig method
(page 2-36) when one of these settings is changed if the msgModule is open.
Otherwise, this new value is simply used next time the msgModule is
opened.

Providing a Custom Preference Slip 1

You may supply a template for a custom preference slip by including a
prefsTemplate slot in your msgModule. If this slot exists, the Messaging
Enabler’s preference slip includes an Options button. This button provides
access to the slip in the prefsTemplate slot.

You must ensure that this slip is rotatable, for consistency with the
Messaging Enabler preference slips. To accomplish this, you must supply a
ReorientToScreen method in your view template. You may set the
ReorientToScreen slot to the ROM constant ROM_DefRotateFunc. For
more information on this, see the description of the ReorientToScreen
method in Chapter 2, “Views Reference,” of Newton Programmer’s Reference.

The proto-supplied msgModule methods SavePreference (page 2-35)
and GetPreference (page 2-33) can be useful when writing the methods of
this template. These methods are described in “Message Module Methods
for Storing Data” (page 1-25).

C H A P T E R 1

Messaging Enabler Interface

Using the Messaging Enabler 1-25

Message Module Methods for Storing Data 1
The proto-supplied msgModule methods GetPreference (page 2-33) and
SavePreference (page 2-35) are designed to save you the effort of writing
soup manipulation code. You may store any information by calling the
SavePreference method. This method takes two parameters, a symbol for
the variable name and the actual data. This data is stored in a soup. The
following sample code stores an array associated with the symbol
'encryptionScheme:

//Note, 'msgModule is the value in the declareSelf slot

msgModule:SavePreference(

'encryptionScheme,

['orange,'red]

);

The GetPreference method is used to retrieve data stored with
SavePreference, as in the following code sample:

encryption := msgModule:GetPreference('encryptionScheme);

The SavePreference method should also be used to alter the value of any
symbol previously stored with SavePreference.

The msgModule slot pfVars is also provided to aid in data storage. Any
compile time data stored in this slot is kept in the package, and values which
have been changed at run time are stored in the heap. See the description of
this slot in “protoMsgModule” (page 2-9).

Customizing the About Slip 1
The msgModule about slot is used to provide information for the About
slip, shown in Figure 1-5. The About slip is accessed through the information
(“i”) button in the Messaging Enabler’s preference slip. This slip contains
both static and dynamic information.

C H A P T E R 1

Messaging Enabler Interface

1-26 Using the Messaging Enabler

Figure 1-5 msgModule About slip

The about slot can contain a string, a view template, or the value nil. If a
view template is provided, this view replaces the Messaging
Enabler-supplied About slip. This view should look like the built-in About
slips, and should be rotatable. To make the view rotatable, you must supply
a ReorientToScreen method in your view template. You may set the
ReorientToScreen slot to the ROM constant ROM_DefRotateFunc. For
more information on this, see the description of the ReorientToScreen
method in Chapter 2, “Views Reference,” of Newton Programmer’s Reference.

If this slot contains a string or the value nil, the About slip will contain the
following objects:

■ The strings in the msgModule slots title and version.

■ The string in the about slot, if provided (in Figure 1-5 this is the string
"Static text"). If the about slot holds the value nil, the other
information is still displayed.

■ A string returned by the msgModule GetConfig method (page 2-26), if
defined (in Figure 1-5 this is the string "Dynamic text").

■ An integer message count returned by GetConfig, if defined (in
Figure 1-5 this is the number 2).

Installing and Removing a msgModule 1
A msgModule is installed using the RegMsgModule function (page 2-39). It
should be called from your part’s InstallScript; for information on auto
part’s InstallScript, see Chapter 2, “Getting Started,” in Newton

C H A P T E R 1

Messaging Enabler Interface

Using the Messaging Enabler 1-27

Programmer’s Guide. The RegMsgModule function takes two parameters, a
msgModule and a symbol which is considered your msgModule’s
appSymbol. The following code registers a msgModule in a file named
“myMessageModule”:

SetPartFrameSlot('msgModuleTemplate,

GetLayout("myMessageModule")

);

InstallScript := func(partFrame, removeFrame)

begin

call kRegMsgModuleFunc

with (kAppSymbol, partFrame.msgModuleTemplate);

end;

Note

The call kFunctionNameFunc with (args) syntax is
used because this function is defined in the stream file
“pMsgMod.stream.” The DeleteMsgModule and
UnRegMsgModule functions discussed below must also be
called using this syntax. ◆

To remove your msgModule you need to supply both a DeletionScript
and a RemoveScript. For information on the DeletionScript and the
RemoveScript, see Chapter 2, “Getting Started,” in Newton Programmer’s
Guide. The DeletionScript function should call the DeleteMsgModule
function (page 2-39), as in the following code sample:

SetPartFrameSlot('DeletionScript, func()

begin

call kDeleteMsgModuleFunc with (kAppSymbol);

end

);

C H A P T E R 1

Messaging Enabler Interface

1-28 Using the Messaging Enabler

The RemoveScript function should call UnRegMsgModule function
(page 2-40), as in the following code sample:

RemoveScript := func(removeFrame)

begin

call kUnRegMsgModuleFunc with (kAppSymbol);

end;

Application Program Interface to a msgModule 1
There are two ways an installed NewtonScript application can interact with
the Messaging Enabler. It may change configuration options and send a
msgModule a command (if the msgModule supports this). The Messaging
Enabler provides the two methods ChangeConfig (page 2-41) and
SendDirectCommand (page 2-45) to accomplish this. To call these methods
you must use the global function TransportNotify. The
TransportNotify function is described in Chapter 18, “Routing Interface
Reference,” in Newton Programmer’s Reference.

Using the ChangeConfig Method 1

The ChangeConfig method (page 2-41) can be used to change both the
Messaging Enabler’s and a msgModule’s preferences. The Messaging
Enabler preferences that may be set are those available to the user in its
preference slip, shown in Figure 1-2 on page 1-5, as well as a few preferences
that the user can’t set. The msgModule preferences that may be set with
ChangeConfig are exactly those that the user may set in the msgModule’s
hardware preference slip, also shown in Figure 1-2 on page 1-5.

The following sample code demonstrates a call to ChangeConfig:

TransportNotify (

'msgEnabler, //The Messaging Enabler’s transport sym

'ChangeConfig,

[

callBackFn, //fn. to call when ChangeConfig is done

C H A P T E R 1

Messaging Enabler Interface

Using the Messaging Enabler 1-29

{ //Messaging Enabler preferences

disable:true, //don’t let user set prefs

autoStatus:nil, //don’t show status slips

pollPeriod:'syCheck5,//get msgs every 5 mins

nowOrLater:'now, //send msgs immediately

},

{ //msgModule preferences

deviceSym:'|msgModuleSym:Sig|, //which msgModule

portIndex:0, //1st elem. in portStrings array

//Note that the 1st elem always

//holds the default string

}

]

);

Using the SendDirectCommand Method 1

The SendDirectCommand method (page 2-45) calls a msgModule’s
DirectCommand method (page 2-20). The DirectCommand method is
intended for a msgModule to implement an application program interface
(API). The command parameter to the DirectCommand method may be any
NewtonScript object. It is through this parameter that the application
informs the DirectCommand method of both the action to perform and the
data to use.

If you as the creator of the msgModule want a third party application to take
advantage of the functionality provided by your DirectCommand method,
it is up to you to document the possible values the command parameter can
take.

C H A P T E R 1

Messaging Enabler Interface

1-30 Using the Messaging Enabler

Summary 1

Constants 1

Built-in Result Codes 1

kRES_SUCCESS

kRES_INUSE

kRES_MEMORY

kRES_FAILED

kRES_NOTCONNECTED

kRES_UNSUPPORTED

kRES_COMMS

kRES_TIMEOUT

kRES_SYNCHRONIZE

kRES_INVPORT

kRES_INVDEVICE

kRES_READY

kRES_NOCANCEL

kRES_NOTREADY

kRES_UNCHANGED

kRES_NOTFOUND

kRES_BATTERY

kRES_NOACCESS

kRES_MSGSIZE

kRES_INVADDRESS

kRES_INVMESSAGE

kRES_MSGDATA

kRES_MSGEMPTY

kRES_NOSERVICE

C H A P T E R 1

Messaging Enabler Interface

Using the Messaging Enabler 1-31

kRES_PREFSCHANGED

kRES_BATTERYWARN

kRES_CFGINVALID

kRES_PARTIAL

kRES_NOSEND

kRES_NORECEIVE

kRES_STORE

kRES_NOMESSAGE

Data Structures 1

Item Frame 1

anItemFrame := {

deviceSym : symbol, //symbol identifying msgModule

reply : frame, //A reply frame

ID : integer, //unique message ID

complete : Boolean, //is this the whole message?

title : string, //message title

body : frame, //message data

fromRef : nameRef,//sender
toRef : array, //array of recipients

appSymbol : symbol, //application to receive this msg

replies : array, //acceptable replies to this msg

replyIndex : integer, //index to sendOptions array

segment : integer, //message part number

totalSegments: integer,//total number of segments
groupID : integer, //id of group of segments

error : integer, //integer result code

...

}

C H A P T E R 1

Messaging Enabler Interface

1-32 Using the Messaging Enabler

Reply Frame 1

aReplyFrame := {

type : symbol, //reply type

deviceSym : symbol, //symbol for msgModule

text : string, //the reply

replyID : integer, //integer ID

complete : Boolean, //is this the whole reply?

...

}

Proto 1

protoMsgModule 1

aMsgModule := {

_proto : protoMsgModule,//proto msgModule object

about : stringViewTemplateOrNil,//info in About slip
cannedSupport: Boolean,//support canned replies?
declareSelf : symbol, //msgModule base view

deviceTitle : string, //messaging device name

dirSupport : Boolean, //support directory of messages?

icon : bitmap, //msgModule icon

persistConnection: Boolean,//keep connection open
pfVars : frame, //for your data

pollAlive : integer, //when to poll for aliveness

pollHardware: integer, //when to poll for openess

pollMessage : integer, //when to poll for messages

portStrings : array, //strings in port picker

powerStrings: array, //strings in power picker

prefsTemplate: viewTemplate,//custom prefs. slip
sendOptions : array, //ways to send data

soundStrings: array, //strings in sound picker

C H A P T E R 1

Messaging Enabler Interface

Using the Messaging Enabler 1-33

timeStrings : array, //strings in time picker

title : string, //type of messaging

transmitterStrings:array,//strs in transmitter picker
version : string, //verison string

Alive : function, //is msg. channel avialable?
Cancel : function, //cancel present operation
Close : function, //close msg channel
DeleteMessageFromDir: function,//delete msg. from dir.
DirectCommand: function,//perform command from app.
DoCallBack : function, //execute callBack function
DoEvent : function, //process event
GetConfig : function, //get configuration info
GetDir : function, //get dir of msgs/canned replies
GetMessageFromDir: function,//get next msg. from dir.
GetNextMessage: function,//get next message
GetPreference: function,//returns pref. value
InstallScript: function,//called when installed
Open : function, //open the msg. channel
RemoveScript: function, //called when removed
SavePreference: function,//saves a preference value
SendMessage : function, //send a message
SetConfig : function, //set configuration info
TranslateError: function,//map result code to string
ProcessCombinedMessage: function, //process combined msg

...

}

C H A P T E R 1

Messaging Enabler Interface

1-34 Using the Messaging Enabler

Functions and Methods 1

Global Functions 1

DeleteMsgModule(symbol) //deletes a msgModule
RegMsgModule(symbol, msgModule) //registers a msgModule
UnRegMsgModule(symbol) // unregisters a msgModule

Messaging Enabler Methods 1

messagingEnabler:ChangeConfig(callBack, cfgMsgEnabler, cfgMsgModule)
//change either Enabler or msgModule configuration

messagingEnabler:SendDirectCommand(callBack,options,command)
//call a msgModule’s DirectCommand method

Constants 2-1

C H A P T E R 2

Messaging Enabler Interface
Reference 2

This chapter lists all constants, data structures, protos, functions, and
methods used by the Messaging Enabler.

Constants 2

This section described the constants used by the Messaging Enabler.

Built-in Result Codes 2
Table 2-1 describes the built-in error codes. You may customize the error
messages used by your msgModule by defining a TranslateError

Figure 2-0
Table 2-0

C H A P T E R 2

Messaging Enabler Interface Reference

2-2 Constants

method (page 2-38). For information about result codes see “Result Codes”
(page 1-11).

Table 2-1 Built-in error codes

Result code Error string

kRES_SUCCESS Success.

kRES_INUSE The required communication port for the
deviceTitle is currently in use.\n Try resetting your
Newton PDA. Refer to the handbook for
information on resetting

kRES_MEMORY There is not enough memory to complete the
operation.\n Try resetting your Newton PDA.
Refer to the handbook for information on
resetting.

kRES_FAILED An error has occurred. The last operation
failed.\n You may retry the operation.

kRES_NOTCONNECTED An error has occurred. The deviceTitle has not
been opened. Try resetting your Newton PDA.
Refer to the handbook for information on
resetting.

kRES_UNSUPPORTED An error has occurred. The function requested is
not supported by the installed message module.

kRES_COMMS Communication with the deviceTitle has ended.

kRES_TIMEOUT The deviceTitle is not responding to requests.\n
Please check the connection to the deviceTitle.

kRES_SYNCHRONIZE The deviceTitle is not communicating correctly.
(Data Error)

kRES_INVPORT The deviceTitle could not be found at the required
location.

kRES_INVDEVICE The connected device does not appear to be a
deviceTitle.

kRES_READY There is no operation to cancel.

C H A P T E R 2

Messaging Enabler Interface Reference

Constants 2-3

kRES_NOCANCEL The current operation can't be stopped right
now.\n You may try again later.

kRES_NOTREADY The deviceTitle is busy and can't do anything else
right now.\n Wait until the current operation
completes and try again.

kRES_UNCHANGED No new messages were found.

kRES_NOTFOUND The message requested was not found.\n You
may have previously deleted the message.

kRES_BATTERY The deviceTitle battery is too low to continue.\n
You need to replace or recharge the cell and try
again.

kRES_NOACCESS The deviceTitle is not in range to send.\n Move to
a better location and try again.

kRES_MSGSIZE The deviceTitle can't send messages of this size.\n
Try creating several smaller messages.

kRES_INVADDRESS The destination address is invalid.

kRES_INVMESSAGE The message content can't be sent by the
deviceTitle.

kRES_MSGDATA Message content contains errors.

kRES_MSGEMPTY Message contains no content.

kRES_NOSERVICE Your deviceTitle has not been activated with your
service provider.

kRES_PREFSCHANGED The Messaging Enabler preferences have been
modified by an installed application.

kRES_BATTERYWARN The deviceTitle battery is low. You should change
or recharge the cell as soon as possible.

kRES_CFGINVALID The configuration item to set contains an invalid
value.

Table 2-1 Built-in error codes

Result code Error string

C H A P T E R 2

Messaging Enabler Interface Reference

2-4 Data Structures

Data Structures 2

This section describes the data structures used by the Messaging Enabler.

Item Frame 2
The Messaging Enabler extends the standard In/Out Box item frame to
include several new slots. The msgModule may also extend an item frame to
contain any other specific slots that are needed.

The standard set of slots in item frames are described in Chapter 18,
“Routing Interface Reference,” in Newton Programmer’s Reference. Only those
extra slots used by the Messaging Enabler are listed here.

kRES_PARTIAL There is not enough memory to retrieve all
messages from the deviceTitle. Please delete some
of the messages to retrieve more.

kRES_NOSEND The deviceTitle is unable to send the message at
the moment.

kRES_NORECEIVE The deviceTitle us unable to receive messages at
the moment.

kRES_STORE The Newton PDA does not have enough store
memory to complete the operation.\n Try
deleting inbox items or storing new items on a
card.

kRES_NOMESSAGE There are no messages pending.

Table 2-1 Built-in error codes

Result code Error string

C H A P T E R 2

Messaging Enabler Interface Reference

Data Structures 2-5

Slot descriptions

deviceSym This slot is added by the Messaging Enabler. A symbol
indicating the msgModule that owns this item frame.
This is the appSymbol that the msgModule registered
with. It is for use by applications that need to register to
automatically receive Messaging Enabler items from the
In Box. Do not modify this slot.

reply This slot is added by the Messaging Enabler. A reply
frame; see “Reply Frames” (page 2-7). This is set by the
Messaging Enabler to specify the reply to be sent to this
item frame. The msgModule should check this slot
when sending a message to determine if the message is
a reply or a new message. See the description of the
msgModule SendMessage method (page 2-35). Do not
modify this slot.

ID Required. An integer uniquely identifying this message.
complete Optional. A Boolean indicating whether this data is the

complete message or if there is more data to be retrieved.
title Required. A string. Set this to a description of the

message body.
body Optional. A frame. Set this to the message data. For text

messages use the defined 'text data definition, which
is a frame with the following slots:
class The symbol 'text.
text A string that is the message contents.
If the message contains a segment of a flattened frame,
use a frame with the following slots:
class The symbol '|file.fragment|.
data The binary data for this part of the

flattened frame.
If the message is a frame, simply set this body slot to
that frame.
See “Text and Frame Messages” beginning on page 1-16.

fromRef Optional. A name reference or other information that
identifies the sender. If this slot is present and the

C H A P T E R 2

Messaging Enabler Interface Reference

2-6 Data Structures

msgModule slot sendOptions is non-nil, the user can
create a new message to reply to this message. The new
message will be sent to the address in this slot. See
“Using Name References with the Messaging Enabler”
(page 1-18).

toRef Optional. An array containing one or more name
references used to identify the recipient(s) of the item.
See “Using Name References with the Messaging
Enabler” (page 1-18).

appSymbol Optional. Set this slot to an application symbol if your
msgModule is intended to receive messages destined
for only one application.

replies Optional. An array containing reply type symbols
and/or reply frames describing the possible replies to
this message.
A reply frame contains a type slot, which can have one
of four values: 'ack, 'user, 'canned, and 'choice.
For replies of type 'ack, 'user, or 'canned, this
symbol is all that needs to be included in this replies
array. For replies of type 'choice, the whole reply
frame must be included in this replies array.
For information on reply frames, see “Reply Frames”
(page 2-7).
The following array is a possible value for this slot:

['ack,

'user,

'canned,

{ type:'choice,

text:"Reply choice 1",

replyID:0

},

{ type:'choice,

text:"Reply choice 2",

replyID:1

C H A P T E R 2

Messaging Enabler Interface Reference

Data Structures 2-7

}

]

 If the msgModule sets this slot, it must supply a
SendMessage method (page 2-35), even if the
msgModule slot sendOptions is nil.

replyIndex Optional. An integer. Valid only if the msgModule slot
sendOptions is an array with more than one item.
This determines the sendOptions item to display to
originate the new reply.

segment Optional. An integer. Required if this is a message
segment. This is the current block number for the
segmented message. Segments are counted beginning
at 0.

totalSegments Optional. An integer. Required if this is a message
segment. The total number of blocks this message
consists of.

groupID Required if this is a message segment. An integer. A
unique identifier for the group of segmented messages.

error Optional. Set this to an integer result code if an error
occurs. See “Result Codes” (page 1-11).

Reply Frames 2
Reply frames contain the following slots:

Slot descriptions

type Required. A symbol specifying the class of the reply.
Currently supported types of replies are:

'ack An acknowledgment.
'choice A reply option extracted from a received

message. A reply frame of this type is
valid only in the replies array of an

C H A P T E R 2

Messaging Enabler Interface Reference

2-8 Proto

item frame; see “Item Frame” beginning
on page 2-4.

'user A reply option from the internal list of
user-created replies. These replies are
stored in the Reply soup; see “The Reply
Soup” (page 1-21).

'canned A reply option supplied by the messaging
device. The current list used by the
Messaging Enabler is stored in the Reply
soup; see “The Reply Soup” (page 1-21).

deviceSym Optional. Required if the type slot is set to 'canned.
The symbol stored in the deviceSym slot of the
msgModule, this is the symbol the msgModule used in
the call to RegMsgModule (page 2-39).

text Required unless the type slot is set to 'ack. A string
that is the actual reply message.

replyID Required if the type slot is set to 'canned. A unique
integer identifying this canned reply.

complete Required for replies of class 'canned. A Boolean. Set
this to nil if the text slot does not contain the entire
canned message; that is, it is an abbreviation for the
canned message. Currently the Messaging Enabler
requires this to be true.

Proto 2

This section describes the single Messaging Enabler proto,
protoMsgModule, its data slots, and methods.

C H A P T E R 2

Messaging Enabler Interface Reference

Proto 2-9

protoMsgModule 2
This object is provided as a basis for all msgModules (). A msgModule serves
as an interface between a particular messaging device and the Messaging
Enabler.

Slot descriptions

_proto Required. Set this slot to protoMsgModule.
about Optional. A string, a view template, or nil. The default

is nil.
If this slot is nil, an About slip is still available to the
user from the "About title" choice of the information
(“i”) menu. The title slot is described on (page 2-15).
If this slot contains a string, it is used to display static
information about the msgModule; for example, "Test
Pager Driver\n© 1996 Apple Computer." The
following information is also displayed in this view: the
title and version slots, and the statusText and
messageCount slots returned by the GetConfig
method (page 2-26), if defined. Use the statusText
and messageCount slots to provide dynamic
information.
If this slot holds a view template, that view is created
and displayed as the About slip.

cannedSupport Optional. A Boolean. The default is nil. Does the
msgModule support canned replies?
If true, the following msgModule method is required:
GetDir (page 2-30)

declareSelf Optional. A symbol. The default is 'msgModule. This
symbol can be used to reference the base frame of the
msgModule.

deviceTitle Optional. A string. The default is the value of the
msgModule title slot. The user-visible name of the
messaging device.

C H A P T E R 2

Messaging Enabler Interface Reference

2-10 Proto

dirSupport Optional. A Boolean. The default is nil. Does the
msgModule support retrieving a directory of available
messages?
If true, the following msgModule methods are
required:
GetDir (page 2-30)
GetMessageFromDir (page 2-31)
DeleteMessageFromDir (page 2-19)
If this slot is set to true, the msgModule slot
persistConnection must also be set to true.
If nil, the following msgModule method is required:
GetNextMessage (page 2-32)

icon Optional. An icon. If present this icon is used to identify
this msgModule and is displayed with In/Out Box
items and the routing slip picker. The default is the
Messaging Enabler icon.

persistConnection
Optional. A Boolean. The default is true. Should the
message channel be left open after retrieving messages?
If true then the Messaging Enabler leaves the
msgModule open until it receives a kEV_CLOSED event,
or the msgModule returns a failure to a request from the
Messaging Enabler. See “Sending Events” (page 1-12)
and “Result Codes” (page 1-11).
Set this slot to nil if the messaging device consumes a
large amount of power while the msgModule is open.
The msgModule could save power by opening and
closing the message channel for each request if it has
some other means of detecting that the messaging
device is not available.
This slot must be set to true if the msgModule slot
dirSupport is true.

pfVars Optional. A frame. This frame can be used to store
msgModule-specific variables.

C H A P T E R 2

Messaging Enabler Interface Reference

Proto 2-11

Before the msgModule’s InstallScript is called, this
slot is assigned to a frame containing only a _proto
slot. This _proto slot points to your original pfVars
frame. This technique minimizes system heap usage,
while allowing this frame to be modifiable.

Note

You may ignore the discussion above. The inheritance
mechanism makes these changes transparent to the
application developer. ◆

For information on an alternate way of storing writeable
data, see “Message Module Methods for Storing Data”
(page 1-25).

pollAlive Optional. An integer. The Messaging Enabler sends
your msgModule an Alive message (page 2-16) every
pollAlive seconds. Since this method uses system
resources, it is recommended not to set this slot below
30 seconds.
The Messaging Enabler does not display a status slip,
even if the “Show status slips” preference is selected, for
the periodic Alive message-sends.
This preference allows the Newton device to return an
unused system resource to the system if the messaging
device is no longer available.
If there is another way to detect that the hardware is
gone, such as an endpoint event handler, you should
use that, since the calls to Alive take up system
resources.

pollHardware Optional. A Boolean. The default is nil. If true the
Messaging Enabler periodically sends your msgModule
the Open message (page 2-33) while the msgModule is
closed. The rate at which these messages are sent is set
by the user in the “Get messages” preference; see
“Providing Preferences” (page 1-22).
If both the pollMessage and pollHardware slots are
nil, the “Get messages” picker is not displayed. If your

C H A P T E R 2

Messaging Enabler Interface Reference

2-12 Proto

msgModule never sends the kEV_DETECTED event, you
should consider setting this slot to true; see “Sending
Events” (page 1-12).
The Messaging Enabler does not display a status slip,
even if the “Show status slips” preference is selected, for
these periodic Open message-sends.

pollMessage Optional. A Boolean. The default is nil. If true then
the Messaging Enabler periodically sends your
msgModule either the GetNextMessage (page 2-32) or
GetDir (page 2-30) message, depending on the value of
the msgModule dirSupport slot. If both
pollMessage and pollHardware are nil, the “Get
messages” preference is not displayed; see “Providing
Preferences” (page 1-22).
If your msgModule never sends the kEV_MESSAGE
event, you should consider setting this slot to true; see
“Sending Events” (page 1-12).
The Messaging Enabler does not display a status slip,
even if the “Show status slips” preference is selected, for
these periodic GetDir or GetNextMessage
message-sends.

portStrings Optional. An array of strings or nil. These strings make
up the options for the “Connect Using” picker in the
hardware preference slip. If this slot is nil or not
present, the “Connect Using” picker is not displayed.
See “Providing Hardware Preferences” (page 1-23).

powerStrings Optional. An array of strings or nil. These strings make
up the options for the “Power” picker in the hardware
preference slip. If this slot is nil or not present, the
“Power” picker is not displayed.
Presence of this slot requires that the following
msgModule methods be provided:
GetConfig (page 2-26)
SetConfig (page 2-36)
See “Providing Hardware Preferences” (page 1-23).

C H A P T E R 2

Messaging Enabler Interface Reference

Proto 2-13

prefsTemplate Optional. A view template or nil. The default is nil.
The view template is instantiated when the user taps the
Options button in the preference slip.
The following slots are added by the Messaging Enabler
to the view before it is instantiated:
msgModule A reference to the your msgModule

instance.
ptTransport

This slot is used internally; do not
override it.

See “Providing a Custom Preference Slip” (page 1-24).

sendOptions Optional. A send option frame, an array of send option
frames, or nil. The default is nil.
A send options frame contains the necessary slots to
support a particular addressing type for sending
messages. If this slot is not present the user cannot
originate an outgoing message, since the string in the
msgModule deviceTitle slot is not listed in any
routing pickers. The user may still be able to reply to
received messages if a received item frame contains the
required slots. For information on the format of a
received message see “Item Frame” (page 2-4).
Send options frames contain the following slots:
routeSlipType

Required. Either a view template or an
installed nameRef data definition symbol.
The following nameRefs are predefined:
'|nameRef.people|

'|nameRef.fax|

'|nameRef.phone|

'|nameRef.email|

'|nameRef.people.pager|

The view template should be a routing
slip template; for information on how to
create a routing slip template see

C H A P T E R 2

Messaging Enabler Interface Reference

2-14 Proto

Chapter 22, “Transport Interface,” in
Newton Programmer’s Guide.

group Required. A symbol defining the routing
group for this send slip. Currently defined
groups are 'print, 'fax, 'mail and
'page. You may define your own, but
should register your group symbol with
Newton Developer Technical Support.

groupTitleRequired. A string for the name of the
group for sending messages. For the
predefined groups, use the strings
"Print", "Fax", "Mail", and "Page".

groupIcon Optional. An icon. This is the icon for the
group of this message module. If this slot
is not present, the msgModule icon slot
is used. For the predefined groups you
should use the corresponding group icon:
ROM_RoutePrintIcon

ROM_RouteFaxIcon

ROM_RouteMailIcon

ROM_RoutePageIcon
replyTypesOptional. An array of reply type symbols.

The following reply type symbols are
allowed: 'ack, 'user and 'canned.
This defines the types of reply frames
that can be attached to the message to be
sent; see “Reply Frames” (page 2-7).

dataTypes Optional. An array of symbols that
specify the types of data that this send
frame supports. Possible values are
'frame and 'text. The default is
['text].

soundStrings Optional. An array of strings or nil. These strings make
up the options for the “Sound” picker in the hardware
preference slip. If this slot is nil or not present, the
“Sound” picker is not displayed.

C H A P T E R 2

Messaging Enabler Interface Reference

Proto 2-15

Presence of this slot requires that the following
msgModule methods be provided:
GetConfig (page 2-26)
SetConfig (page 2-36)
See “Providing Hardware Preferences” (page 1-23).

timeStrings Optional. An array of strings or nil. These strings make
up the options for the “Clock” menu in the hardware
preference slip. If this slot is nil or not present, the
“Clock” picker is not displayed.
It is recommended that the following array be used for
synchronizing the time to and from the Newton:
["Set Newton from deviceTitle",
"Set deviceTitle from Newton"]

Presence of this slot requires that the following
msgModule methods be provided:
GetConfig (page 2-26)
SetConfig (page 2-36)
See “Providing Hardware Preferences” (page 1-23).

title Optional. A string. The default is "Message". This
string is used to identify the particular type of
messaging. This string is displayed in the picker for
receiving messages, and the titles for the preferences.

transmitterStrings
Optional. An array of strings or nil. These strings make
up the options for the “Transmitter” picker in the
hardware preference slip. If this slot is nil or not
present, the “Transmitter” picker is not displayed.
Presence of this slot requires that the following
msgModule methods be provided:
GetConfig (page 2-26)
SetConfig (page 2-36)
See “Providing Hardware Preferences” (page 1-23).

version Optional. A string with the user-visible version number
of this particular msgModule. This string is displayed in

C H A P T E R 2

Messaging Enabler Interface Reference

2-16 Proto

the About slip. This is also used to ensure the Reply
soup is up to date if the msgModule does not support
retrieving the serial number with the GetConfig
method (page 2-26); see “The Reply Soup” beginning on
page 1-21.

IMPORTANT

The _class, new, dispose, pcEvent, boOpen,
inAlarmKey, inAliveKey, stSerial, syActive,
arAbleToSend, arTransportRegistry,
fnTryDispatchEvent, ptNotifyAction, deviceSym,
and doEvent slots are reserved internally by
protoMsgModule. ▲

The methods of interest in protoMsgModule are described in the following
subsections, in alphabetical order.

Alive 2

msgModule:Alive(callBack)

Called to check that the message channel is still available.

Required if the msgModule slot pollAlive is non-nil.

callBack A frame to pass to DoCallBack (page 2-21) when this
method completes. DoCallBack takes two additional
parameters, complCode and complFrame. Pass the
following values for these parameters:

complCode An integer error code; see “Result Codes”
(page 1-11). The following values are
suggested as reasonable for this method:
kRES_SUCCESS

kRES_FAILED

kRES_MEMORY

kRES_TIMEOUT
kRES_COMMS

complFrame Pass the value nil.

C H A P T E R 2

Messaging Enabler Interface Reference

Proto 2-17

If the message channel is no longer available, you should call DoCallBack
with complCode set to a result code indicating why the message channel is
unavailable. The Messaging Enabler does not send a Close message
(page 2-18) to the msgModule and assumes that all resources have been
released back to the system. There is no need to send a kEV_CLOSED event as
well.

The return value of this method is ignored.

Cancel 2

msgModule:Cancel(callBack)

Called to cancel any outstanding asynchronous calls from the Messaging
Enabler.

This method is optional. If it is not defined the Messaging Enabler assumes
that asynchronous methods may not be cancelled. In this case, the Messaging
Enabler will stop once the current operation is complete. For example,
consider the case where the user taps the Stop button while the Messaging
Enabler is polling the msgModule for messages, by calling
GetNextMessage (page 2-32). If the Cancel method is not defined, the
Messaging Enabler will wait for the current GetNextMessage to return, but
will not call GetNextMessage again.

callBack A frame to pass to DoCallBack (page 2-21) when this
method completes. DoCallBack takes two additional
parameters, complCode and complFrame. Pass the
following values for these parameters:

complCode An integer error code; see “Result Codes”
(page 1-11). The following values are
suggested as reasonable for this method:
kRES_SUCCESS

kRES_FAILED

kRES_MEMORY

kRES_TIMEOUT
kRES_NOCANCEL

kRES_NOTCONNECTED

C H A P T E R 2

Messaging Enabler Interface Reference

2-18 Proto

kRES_READY

complFrame Pass the value nil.

You should not close the communications channel because of to a cancel
request, unless the cancel occurs while the msgModule is processing an Open
message (page 2-33). The channel should be properly closed so that any
subsequent calls to Open succeed. That is, the net effect of canceling an Open
call should be a closed message channel.

The Messaging Enabler does not expect the operation being cancelled to call
DoCallBack. For example, if the Messaging Enabler first calls
GetNextMessage and later calls Cancel, Cancel is expected to call
DoCallBack, but GetNextMessage isn’t.

The return value of this method is ignored.

Close 2

msgModule:Close(callBack)

Called to close the message channel and free all used resources back to the
system.

This method is required.

callBack A frame to pass to DoCallBack (page 2-21) when this
method completes. DoCallBack takes two additional
parameters, complCode and complFrame. Pass the
following values for these parameters:

complCode An integer error code; see “Result Codes”
(page 1-11). The following values are
suggested as reasonable for this method:
kRES_SUCCESS

kRES_FAILED

kRES_MEMORY

kRES_TIMEOUT
kRES_NOTCONNECTED

kRES_READY

complFrame Pass the value nil.

C H A P T E R 2

Messaging Enabler Interface Reference

Proto 2-19

The msgModule instance is not removed at this point. The Messaging
Enabler may send the Open message (page 2-33) again after this method, so
the msgModule should reset any instance variables needed at this point.

IMPORTANT

The Close message can be sent at any time, even if another
operation is in progress. This means the msgModule must
abort and close if it receives this message, even if data is lost
by doing so.

The Messaging Enabler waits for a safe time to send the
Close message. The user can, however, request that the
message channel be closed while the Messaging Enabler is
waiting. At this point, the Message Enabler informs the user
that data may be lost. Therefore, if you are sent a Close
message, either no data will be lost, or the user has OK’d the
risk. ▲

▲ W A R N I N G

You must catch all exceptions from your Close method, as
it must guarantee return. If your Close method does not
return, the system may halt. ▲

DeleteMessageFromDir 2

msgModule:DeleteMessageFromDir(callBack, arMsgID)

Called to remove the messages specified by the arMsgID array from the
message channel.

Required if the msgModule slot dirSupport is true.

callBack A frame to pass to DoCallBack (page 2-21) when this
method completes. DoCallBack takes two additional
parameters, complCode and complFrame. Pass the
following values for these parameters:

complCode An integer error code; see “Result Codes”
(page 1-11). The following values are
suggested as reasonable for this method:

C H A P T E R 2

Messaging Enabler Interface Reference

2-20 Proto

kRES_SUCCESS

kRES_FAILED

kRES_MEMORY

kRES_TIMEOUT
kRES_NOTFOUND

kRES_NOTCONNECTED

kRES_NOTREADY

complFrame Pass the value nil.

arMsgID An array of message identifiers. This is a unique integer
previously returned from the GetDir method
(page 2-30). The GetDir method passed this value as
one of the slots in the complFrame parameter in its call to
DoCallBack.

The return value of this method is ignored.

DirectCommand 2

msgModule:DirectCommand(callBack, options, command)

Called by the Messaging Enabler when it receives a SendDirectCommand
message (page 2-45). You may implement this method to allow an
application to send commands directly to the message channel.

This method is optional.

callBack A frame to pass to DoCallBack (page 2-21) when this
method completes. DoCallBack takes two additional
parameters, complCode and complFrame. Pass the
following values for these parameters:

complCode The Messaging Enabler does not process
the return code from this method. This
return code is passed directly to the
application which called
SendDirectCommand.

C H A P T E R 2

Messaging Enabler Interface Reference

Proto 2-21

complFrame Any valid NewtonScript object. If you
need to return data to
SendDirectCommand, use this value.

options A frame containing the following slots:

open Required. A Boolean. If this slot is true
and the message channel is not currently
open, the MsgModule should attempt to
open the message channel before
executing the command. The MsgModule
should then send a kEV_DETECTED event
after the command completes if the
message channel is left open; see
“Sending Events” beginning on page 1-12.

port Optional. If the msgModule slot
portStrings is non-nil, an integer
array index to the msgModule slot
portStrings.

command Any valid NewtonScript object (usually a frame). Use
this parameter to allow the SendDirectCommand
method both to describe which action the msgModule
should take, and to supply the msgModule with any
needed data.

If you wish to allow applications other than yours to
send commands to the message channel, you must
document the values this parameter can take.

The return value of this method is ignored.

DoCallBack 2

msgModule:DoCallBack(callBack, complCode, complFrame)

Executes the function encapsulated in the callBack argument. Most of the
msgModule methods need to call this function when they complete. See
“Using Callback Functions” beginning on page 1-10.

You should not need to override this method, but if you do, you must call the
inherited method.

C H A P T E R 2

Messaging Enabler Interface Reference

2-22 Proto

callBack The callBack parameter is passed to the msgModule
method which is calling DoCallBack.

compCode An integer result code returned by the msgModule
method calling DoCallBack. The built-in result codes
are listed in Table 2-1 (page 2-2).

complFrame Any valid NewtonScript object. Allowable values for
this parameter depend on which msgModule method is
calling DoCallBack.

The return value of this method is ignored.

DoEvent 2

msgModule:DoEvent(evID, evData)

Sends an event synchronously to the Messaging Enabler. See “Sending
Events” beginning on page 1-12.

You should not need to replace this method, but if you do you must call the
inherited method.

evID An integer event code. The following codes are
supported by the Messaging Enabler.

kEV_BATTERY
The battery level of the messaging device
has changed.

kEV_CLOSED
The message channel is no longer
available. The communication link has
probably been broken. The Messaging
Enabler will either poll the message
channel (if pollHardware is true) or
await a kEV_DETECTED event.

kEV_DETECTED
The message channel is available.

kEV_MEMORY
The message channel either has no

C H A P T E R 2

Messaging Enabler Interface Reference

Proto 2-23

memory available, or it now does after
reporting a shortage.

kEV_MESSAGE
The message channel has detected that
messages are available. This causes the
Messaging Enabler to resynchronize to
the message channel.

kEV_PROGRESS
There is progress to report. This event
allows a msgModule to modify the
progress indicator provided by the
Messaging Enabler. The Messaging
Enabler displays a progress indicator for
each message sent to the msgModule.
This is the only event that is sent
synchronously to the Messaging Enabler.

kEV_SERVICE
The message channel is not in range to
send or receive messages, or the
messaging device is temporarily
unavailable. While the message channel is
not in service the user cannot send any
messages; the About slip displays an alert
stating that the message channel is out of
service.

evData A frame. The slots that should be in this frame depend
on the value of the evID parameter.

If evID is kEV_BATTERY, this frame should contain a
single slot:

state One of the following symbols: 'Dead,
'Alive, 'Warning.
A state of 'Dead indicates that the
message channel is no longer able to send
messages. The message enabler awaits
another kEV_BATTERY event with a state
of 'Alive before allowing messages to be

C H A P T E R 2

Messaging Enabler Interface Reference

2-24 Proto

sent again. A state of 'Warning issues a
message to the user with the string for the
kRES_BATTERYWARN result code; see
“Result Codes” beginning on page 1-11.

If evID is kEV_CLOSED, this frame should contain a
single slot:

reason An integer result code; the built-in result
codes are listed in Table 2-1 (page 2-2).
A slip is displayed containing the string
this error code represents, unless this slot
contains the integer kRES_SUCCESS. The
string kRES_COMMS has been designed to
be noninvasive in this context.

If evID is kEV_DETECTED, this frame can contain any
number of optional slots. If you have no slots you
would like to include in this frame, you may pass the
value nil for this parameter instead of a frame. Any
slots included in this frame, will be passed as the options
parameter to the Open (page 2-33) message. The
following two slots have special significance to the
Messaging Enabler:

port An integer corresponding to the port the
message channel is available on. This is
the array index of the array in the
msgModule slot portStrings.

open A Boolean. If true, the Messaging
Enabler will not send the Open message.
You should include this slot if the
message channel is open.

If evID is kEV_MEMORY, this frame should contain a
single slot:

state One of the following symbols: 'Full or
'OK.
The Messaging Enabler does not allow
sending messages after it has received this

C H A P T E R 2

Messaging Enabler Interface Reference

Proto 2-25

event with a state slot set to 'Full,
until it receives another one of these
events with a state slot set to 'OK.

If evID is kEV_MESSAGE, this frame should contain a
single slot:

state One of the following symbols: 'New or
'Canned.
The value 'New should be used for new
messages. The Messaging Enabler will
then sends your msgModule the GetDir
(page 2-30) or GetNextMessage
(page 2-32) message (depending on the
value of the msgModule dirSupport
slot).
The value 'Canned should be used for a
new list of canned messages; some
messaging service providers send these
lists. The Messaging Enabler then sends
your msgModule the GetDir message
(page 2-30).

If evID is kEV_PROGRESS, this frame should contain the
following slots:

type Required. One of the following symbols:
'vGauge, 'vBarber, or 'vStatus.
The value 'vGauge specifies that a gauge
indicator should be used. Gauge
indicators display the percentage of the
operation which has completed.
The value 'vBarber specifies that a
barber indicator should be used. Barber
indicators do not display how much of
the operation has completed.
The value 'vStatus specifies that a slip
with a text string should be used.

C H A P T E R 2

Messaging Enabler Interface Reference

2-26 Proto

value Required if the type slot is set to
'vGauge. An integer from 0 to 100
indicating what percentage of the gauge
should be filled.

statusTextOptional. A string with the status
message to display.

If evID is kEV_SERVICE, this frame should contain a
single slot:

state One of the following symbols:
'NoService, 'Busy, 'OutService, or
'InService.
If the state slot is 'NoService, a user
alert is displayed immediately to inform
the user that the message channel is not
registered. The string mapped to the
kRES_NOSERVICE result code is
displayed in the alert; see “Result Codes”
beginning on page 1-11.
If the state slot is 'Busy or
'OutService a user alert is displayed
when the user attempts to retrieve or send
messages. The strings kRES_NOTREADY
and kRES_NOACCESS, respectively, are
displayed.
Sending this event with a state slot set
to 'InService cancels a previous event
of any of the other three types.

GetConfig 2

msgModule:GetConfig(callBack, cfgFrame)

Called by the Messaging Enabler to retrieve current configuration
information. The cfgFrame parameter contains a frame with the slots required
by the Messaging Enabler. You should set these slots, and return this frame
in the complFrame parameter to the DoCallBack method.

C H A P T E R 2

Messaging Enabler Interface Reference

Proto 2-27

Required if any of the following msgModule slots are non-nil:
soundStrings, powerStrings, transmitterStrings, or
timeStrings.

The Messaging Enabler uses this method at start-up to ensure that the
message channel’s configuration is correct. If any slots are returned with the
value nil, or with a value that does not agree with the user setting, the
Messaging Enabler calls the SetConfig method (page 2-36) to set these
slots. Setting as many of the cfgFrame slots as possible, speeds up the start-up
process.

callBack A frame to pass to DoCallBack (page 2-21) when this
method completes. DoCallBack takes two additional
parameters, complCode and complFrame. Pass the
following values for these parameters:

complCode An integer error code; see “Result Codes”
(page 1-11). The following values are
suggested as reasonable for this method:
kRES_SUCCESS

kRES_FAILED

kRES_MEMORY

kRES_TIMEOUT
kRES_NOTCONNECTED

kRES_NOTREADY

kRES_UNSUPPORTED

complFrame Set this slot to the altered cfgFrame.

cfgFrame A frame with the slots required by the Messaging
Enabler. This frame has one or more of the slots
described below. Set these slots to an appropriate value,
and pass this frame as the complFrame parameter to the
DoCallBack method.

soundIndex
Required only if the msgModule slot
soundStrings is non-nil. Set this slot
to an integer for the current device setting

C H A P T E R 2

Messaging Enabler Interface Reference

2-28 Proto

of the sound corresponding to the array
index of the soundStrings array. Leave
this set to nil if the msgModule is unable
to retrieve the current setting.

powerIndex
Required only if the msgModule slot
powerStrings is non-nil. Set this slot
to an integer for the current device setting
of the power corresponding to the array
index of the powerStrings array. Leave
this set to nil if the msgModule is unable
to retrieve the current setting.

transmiterIndex
Required only if the msgModule slot
transmitterStrings is non-nil. Set
this slot to an integer for the current
device setting of the transmitter
corresponding to the array index of the
transmitterStrings array. Leave this
set to nil if the msgModule is unable to
retrieve the current setting.

time Required only if the msgModule slot
timeStrings is non-nil. Set this slot to
the device time, an integer for the number
of minutes elapsed since midnight,
January 1, 1904. If the Messaging Enabler
detects that this time is outside a tolerance
value of the Newton device time then it
sets the time using the current
timeStrings setting.

statusText
Optional. A string to return dynamic
device information. This is displayed as
the lower part of the About slip. This is to
return dynamic information about the
messaging device. An example might be,
“Ready to send. X bytes of free memory.”
This string may contain a newline

C H A P T E R 2

Messaging Enabler Interface Reference

Proto 2-29

character (/n), the Messaging Enabler
resizes the About slip accordingly. Leave
this set to nil if you do not support
dynamic device information.

serialNumber
Optional. A string for the messaging
device serial number. This slot is used to
ensure the Reply soup is synchronized;
see “The Reply Soup” beginning on
page 1-21. If this slot is not present, the
Messaging Enabler uses the version string
of the msgModule. Leave this set to nil if
you do not support retrieving the
messaging device serial number.

messageCount
Optional. Set this to an integer if you can
retrieve the number of messages currently
in the messaging device. This information
is displayed in the About slip. If you are
unable to retrieve the number of messages
in the device then leave this nil.

The following sample code illustrates the logical structure this method
should take:

msgModule.GetConfig := func (callBack, cfgFrame)

begin

...

if HasSlot(cfgFrame, 'slot1) then

cfgFrame.slot1 := value1;

if HasSlot(cfgFrame, 'slot2) then

cfgFrame.slot2 := value2;

...

end;

The return value of this method is ignored.

C H A P T E R 2

Messaging Enabler Interface Reference

2-30 Proto

GetDir 2

msgModule:GetDir(callBack, dir)

Called to either retrieve the current directory of messages or the current set
of canned replies from the message channel.

Required if either of the msgModule slots dirSupport or cannedSupport
is true.

callBack A frame to pass to DoCallBack (page 2-21) when this
method completes. DoCallBack takes two additional
parameters, complCode and complFrame. Pass the
following values for these parameters:

complCode An integer error code; see “Result Codes”
(page 1-11). The following values are
suggested as reasonable for this method:
kRES_SUCCESS

kRES_FAILED

kRES_MEMORY

kRES_TIMEOUT
kRES_NOTCONNECTED

kRES_NOTREADY

kRES_PARTIAL

complFrame An array of directory entries. If dir.type
is 'userMessages, these frames should
be item frames without a body slot; see
“Item Frame” (page 2-4). If dir.type is
'cannedMessages, these frames should
be reply frames; see “Reply Frames”
(page 2-7).

dir A frame describing the type of messages to be retrieved.
It contains the following slot:

type A symbol specifying the directory type to
retrieve. Either 'userMessages or
'cannedMessages.

C H A P T E R 2

Messaging Enabler Interface Reference

Proto 2-31

In some cases of low memory the user will not be able to view or receive all
messages at once. When returning an array of messages, the system heap
may be exhausted if the message list is large. The msgModule should try to
catch this |evt.ex.outOfMem| exception, and return the partial list of
messages retrieved to the Messaging Enabler, setting complCode to
kRES_PARTIAL. To avoid this the item frames returned should set the
complete slot to nil and return only the title of the message. The system
heap may also be exhausted if the list of canned messages is large.

The return value of this method is ignored.

GetMessageFromDir 2

msgModule:GetMessageFromDir(callBack, msg)

Called to completely receive a specific message from the message channel
previously retrieved with the GetDir method (page 2-30). The item frame
for the particular message, returned by the GetDir method, is passed in
through the msg parameter. This method should fill the relevant slots, and
pass this frame to the DoCallBack method (page 2-21) in the complFrame
parameter.

Required if the msgModule slot dirSupport is true.

callBack A frame to pass to DoCallBack (page 2-21) when this
method completes. DoCallBack takes two additional
parameters, complCode and complFrame. Pass the
following values for these parameters:

complCode An integer error code; see “Result Codes”
(page 1-11). The following values are
suggested as reasonable for this method:
kRES_SUCCESS

kRES_FAILED

kRES_MEMORY

kRES_TIMEOUT
kRES_NOTCONNECTED

kRES_NOTREADY

C H A P T E R 2

Messaging Enabler Interface Reference

2-32 Proto

kRES_NOTFOUND

complFrame An item frame with a body slot and the
complete slot set to true; see “Item
Frame” (page 2-4).

msg The requested item frame returned from a previous call
to the GetDir method (page 2-30).

The return value of this method is ignored.

GetNextMessage 2

msgModule:GetNextMessage(callBack)

Called to retrieve the next message from the message channel. The
msgModule must remove this message from the message channel before
returning the message.

Required if the msgModule slot dirSupport is nil.

callBack A frame to pass to DoCallBack (page 2-21) when this
method completes. DoCallBack takes two additional
parameters, complCode and complFrame. Pass the
following values for these parameters:

complCode An integer error code; see “Result Codes”
(page 1-11). The following values are
suggested as reasonable for this method:
kRES_SUCCESS

kRES_FAILED

kRES_MEMORY

kRES_TIMEOUT
kRES_NOTCONNECTED

kRES_NOTREADY

complFrame An item frame for the retrieved message,
or nil if there are no messages; see “Item
Frame” (page 2-4).
If nil is not returned in this argument,
the Messaging Enabler sends your

C H A P T E R 2

Messaging Enabler Interface Reference

Proto 2-33

msgModule another GetNextMessage
message.

The return value of this method is ignored.

GetPreference 2

msgModule:GetPreference(configSym)

Retrieves the value of a configuration item added with SavePreference
(page 2-35). See “Message Module Methods for Storing Data” (page 1-25).

Do not override this method.

configSym A symbol. The variable whose value is needed.

This method returns the value of configSym.

InstallScript 2

msgModule:InstallScript()

This method allows the msgModule to execute installation code. For
example, the msgModule may need to install a new data definition or view
definition into the system, or add replies to the Reply Soup.

This method is optional.

Note

Do not confuse this method with the InstallScript for
the package. ◆

The Messaging Enabler must be installed for this method to be executed.

The return value of this method is ignored.

Open 2

msgModule:Open(callBack, options)

Called by the Messaging Enabler before sending or receiving any messages.
The Messaging Enabler calls this method repeatedly at a period specified by
the user setting for “Get messages” if the msgModule slot pollHardware is
true, until Open eventually calls DoCallBack with kRES_SUCCESS.

C H A P T E R 2

Messaging Enabler Interface Reference

2-34 Proto

This method is required.

callBack A frame to pass to DoCallBack (page 2-21) when this
method completes. DoCallBack takes two additional
parameters, complCode and complFrame. Pass the
following values for these parameters:

complCode An integer error code; see “Result Codes”
(page 1-11). The following values are
suggested as reasonable for this method:
kRES_SUCCESS

kRES_FAILED

kRES_MEMORY

kRES_TIMEOUT

kRES_INUSE

kRES_INVDEVICE

kRES_INVPORT

complFrame Pass in the value nil.

options A frame with the following slot:

port An integer or nil. An integer is passed in
if the msgModule sent a kEV_DETECTED
event with the port slot set or if the
msgModule slot portStrings is
non-nil; otherwise nil is passed. The
integer is an array index to the
msgModule slot portStrings.

RemoveScript 2

msgModule:RemoveScript()

This method allows the msgModule to execute removal code. The
msgModule is still completely in memory before this method is called. This
message is sent only if you call the global function DeleteMsgModule. The
UnRegMsgModule function does not cause this method to be called.

This method is optional.

C H A P T E R 2

Messaging Enabler Interface Reference

Proto 2-35

The return value of this method is ignored.

SavePreference 2

msgModule:SavePreference(configSym, configValue)

Changes the value of a configuration symbol, or assigns a value to a new
symbol. This data is stored in a soup maintained by the Messaging Enabler.
See “Message Module Methods for Storing Data” (page 1-25).

Do not override this method.

configSym A symbol. The variable whose value is needed.

configValue Any valid NewtonScript object. The value to assign to
configSym.

The return the value of this method is unspecified.

SendMessage 2

msgModule:SendMessage(callBack, message)

Called to send a message.

Required if the msgModule slot sendOptions is non-nil, or an item frame
is received that has the replies slot set.

callBack A frame to pass to DoCallBack (page 2-21) when this
method completes. DoCallBack takes two additional
parameters, complCode and complFrame. Pass the
following values for these parameters:

complCode An integer error code; see “Result Codes”
(page 1-11). The following values are
suggested as reasonable for this method:
kRES_SUCCESS

kRES_FAILED

kRES_MEMORY

kRES_TIMEOUT

kRES_NOTCONNECTED

kRES_NOTREADY

C H A P T E R 2

Messaging Enabler Interface Reference

2-36 Proto

kRES_UNSUPPORTED

kRES_NOSERVICE

kRES_INVADDRESS

kRES_INVMESSAGE

complFrame Pass in the value nil.

message An item frame for the message to send; see “Item
Frame” (page 2-4). If the item frame has a non-nil
reply slot, the message to be sent is a reply to this item
frame; that is, the message text is in
message.reply.text, unless the reply is of type 'ack
in which case the message argument won’t have a reply
slot. If the reply slot is nil then this is a new message
to be sent; that is, the message content is in the
message.body frame.

Note

The value in this parameter may be larger than the
message channel can handle. It is up to you to test for
this case, and split up the message if necessary. ◆

The return value of this method is ignored.

SetConfig 2

msgModule:SetConfig(callBack, cfgFrame)

Called by the Messaging Enabler to set the configuration items of the
message channel. The Messaging Enabler uses this method at start-up and
when the user changes their preferences.

Required if any of the following msgModule slots is non-nil:
soundStrings, powerStrings, transmitterStrings, or
timeStrings.

callBack A frame to pass to DoCallBack (page 2-21) when this
method completes. DoCallBack takes two additional

C H A P T E R 2

Messaging Enabler Interface Reference

Proto 2-37

parameters, complCode and complFrame. Pass the
following values for these parameters:

complCode An integer error code; see “Result Codes”
(page 1-11). The following values are
suggested as reasonable for this method:
kRES_SUCCESS

kRES_FAILED

kRES_MEMORY

kRES_TIMEOUT

kRES_NOTCONNECTED

kRES_NOTREADY

kRES_UNSUPPORTED

complFrame Pass in the value nil.

cfgFrame A frame containing the following slots specifying the
configuration items to set:

soundIndex This slot is present only if the msgModule
slot soundStrings is non-nil. An
integer index to the soundStrings array.

powerIndex This slot is present only if the msgModule
slot powerStrings is non-nil. An
integer index to the powerStrings array.

portIndex This slot is present only if the msgModule
slot portStrings is non-nil. An integer
index to the portStrings array.

transmitterIndex
This slot is present only if the msgModule
slot transmitterStrings is non-nil.
An integer index to the
transmitterStrings array.

timeIndex This slot is present only if the msgModule
slot timeStrings is non-nil. An integer
index to the timeStrings array.

The return value of this method is ignored.

C H A P T E R 2

Messaging Enabler Interface Reference

2-38 Functions and Methods

TranslateError 2

msgModule:TranslateError(resultCode)

Called to translate a result code to an error string and return this error string
to the Messaging Enabler. This allows your msgModule to customize its
error messages, both by mapping built-in integer error codes to different
strings, and by allowing you to use your own error codes. The Messaging
Enabler calls this method before using one of the default strings specified in
Table 2-1 (page 2-2). For more information on result codes, see “Result
Codes” beginning on page 1-11.

This method is optional.

resultCode An integer result code.

This method should return the string to display to the user. Return nil to
use the predefined error string. Return an empty string to avoid displaying a
message for this error.

ProcessCombinedMessage 2

msgModule:ProcessCombinedMessage(itemFrame)

Called after a multi-part message has been combined, but before it is
submitted to the Inbox. This allows your msgModule to perform operations
on the item frame before it is submitted to the Inbox.

This method is optional.

itemFrame An item frame, as described in “Item Frame” (page 2-4).

The return value of this method is ignored.

Functions and Methods 2

This section list functions and methods used by the Messaging Enabler.

C H A P T E R 2

Messaging Enabler Interface Reference

Functions and Methods 2-39

Global Functions 2
This section lists the global functions provided by the Messaging Enabler.

DeleteMsgModule 2

DeleteMsgModule(symbol)

Removes information stored in the system that is specific to a msgModule
and closes the msgModule if open. Usually you call this function from the
DeletionScript of your msgModule part. This function sends a Close
message (page 2-18) to the msgModule if it is open, and sends it a
RemoveScript message (page 2-34) if it has one defined. For more
information and sample code, see “Installing and Removing a msgModule”
(page 1-26).

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK stream file “pMsgMod.stream”. Call it
using this syntax:

call kDeleteMsgModuleFunc with (symbol);
▲

symbol The msgModule appSymbol. This is the symbol used in
the call to RegMsgModule (page 2-39).

The return value of this function is undefined.

RegMsgModule 2

RegMsgModule(symbol, msgModule)

Registers a new msgModule with the system. Call this function from the
InstallScript of your msgModule part. This function creates a new
msgModule instance and sends it the InstallScript message (page 2-33),
if this message is defined. For more information and sample code, see
“Installing and Removing a msgModule” (page 1-26).

C H A P T E R 2

Messaging Enabler Interface Reference

2-40 Functions and Methods

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK stream file “pMsgMod.stream”. Call it
using this syntax:

call kRegMsgModuleFunc with (symbol, msgModule);
▲

symbol The msgModule appSymbol.

msgModule The msgModule template. This template must be based
on protoMsgModule (page 2-9).

The return value of this function is undefined.

UnRegMsgModule 2

UnRegMsgModule(symbol)

Unregister a msgModule from the system. Usually you call this function
from the RemoveScript of your msgModule part. If this function is called
while the msgModule is open, the Messaging Enabler becomes unstable and
a system alert is displayed. This can happen if the msgModule is on a storage
card, which is made unavailable while the msgModule is open. The
Messaging Enabler protects against this by marking the msgModule package
busy when it is open. For more information and sample code, see “Installing
and Removing a msgModule” (page 1-26).

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK stream file “pMsgMod.stream”. Call it
using this syntax:

call kUnRegMsgModuleFunc with (symbol);
▲

symbol The msgModule appSymbol. This is the symbol used in
the call to RegMsgModule (page 2-39).

The return value of this function is undefined.

C H A P T E R 2

Messaging Enabler Interface Reference

Functions and Methods 2-41

Messaging Enabler Methods 2
The following two methods allow an application to interact with the
Messaging Enabler. See “Implementing msgModule Methods” beginning on
page 1-9.

ChangeConfig 2

messagingEnabler:ChangeConfig(callBack, cfgMsgEnabler, cfgMsgModule)

Sets the Messaging Enabler’s and/or a msgModule’s preferences, and,
optionally, blocks the user from altering these preferences. The Messaging
Enabler preferences are specified in the cfgMsgEnabler parameter;
msgModule preferences are specified in the cfgMsgModule parameter. See
also “Using the ChangeConfig Method” (page 1-28).

IMPORTANT

This method should be called with TransportNotify
function. The TransportNotify method is documented in
Chapter 19, “Transport Interface Reference,” in Newton
Programmer’s Reference.

Call it using this syntax:

TransportNotify(

'MsgEnabler,

'ChangeConfig,

[callBack, cfgMsgEnabler, cfgMsgModule]
)

▲

callBack Optional. A frame or nil. If you pass nil, you do not
receive notification when this method completes. The
frame defines a callback function to be executed once
this method has completed. This frame must contain the
following two slots:

receiver A frame. The receiver to which to send
message.

C H A P T E R 2

Messaging Enabler Interface Reference

2-42 Functions and Methods

message A symbol naming the message to be sent.
This method must accept two parameters
complFrame and complCode.

complFrame A symbol or nil. If an error occurs trying
to set on of the configuration items, this
symbol will be the slot that is incorrect.

complCode An integer result code; see “Result
Codes” beginning on page 1-11. The
following result codes are the possible
values for this parameter:
kRES_SUCCESS

kRES_NOTSUPPORTED

kRES_CFGINVALID

cfgMsgEnabler A frame or nil. Set to nil if you do not want to
configure any Messaging Enabler preferences. The
frame contains the Messaging Enabler preferences to be
set. The following slots are configurable:

disable A Boolean. The value true means that
you want to disable the user access to the
Messaging Enabler preferences. The
default is nil.

hideItems A Boolean. The value true means that
items are not displayed in the In/Out Box.
The default is nil.

covertItems
A Boolean. The value true means items
are not logged or saved. The default is
nil.

pollPeriodA symbol. This sets the “Get messages”
preference. The allowed values are
'syCheck1, 'syCheck5, 'syCheck10,
'syCheck30, and 'syCheckNever.
These constants correspond to the number

C H A P T E R 2

Messaging Enabler Interface Reference

Functions and Methods 2-43

of minutes between updates. The default
is 'syCheckNever.

powerOnCheck
A Boolean. The value true means the
Messaging Enabler checks the message
channel when the MessagePad is powered
on. The user sets this in the “Get
messages” preference. The default is true.

whenReceiving
A symbol. This sets the “When receiving”
preference. Set this to either 'browse or
'download. The default is 'browse.

alarm A symbol. This sets the “Notify”
preference. Set this to either 'Internal
or 'None. The default is 'Internal.

autoStatusA Boolean. The value true means that
you want to display the status dialogs.
The value nil means that only the
notifyIcon is shown. This slot corresponds
to the “Show status dialogs” preferences
check box. The default is true.

outboxLogging
Only used if the msgModule slot
sendOptions is non-nil. One of the
values 'save, 'log, or nil. This value
determines what’s done with an entry
after the send completes successfully. The
value 'save means the item is saved in
the Out Box; 'log means the item is
deleted from the Out Box and a log entry
is made; and nil means the item is
deleted from the Out Box. The user sets
this in the “After sending” preference.
The default is nil.

inboxFiling
A symbol indicating the In Box folder in
which to file an item when it is received.

C H A P T E R 2

Messaging Enabler Interface Reference

2-44 Functions and Methods

Specify a symbol representing a folder
name, or nil to file incoming items in the
Untitled folder. The symbol must
represent an existing folder. Note that
filing doesn’t occur until after the In/Out
Box is closed. The user sets this in the
“File read items in” preference. The
default is nil.

outboxFiling
A symbol indicating the Out Box folder in
which to file an item after it is sent.
Specify a symbol representing a folder
name, or nil to file sent items in the
Untitled folder. The symbol must
represent an existing folder Note that
filing doesn’t occur until after the In/Out
Box is closed. The default is nil.

nowOrLater
A symbol indicating what action the Send
button in the routing slip should take
when the user taps it. Specify the symbol
'now to force the button always to send
items immediately (corresponds to the
“Send now” preferences choice). Specify
the symbol 'later to force the button
always to send items later (corresponds to
the “Send later” preferences choice).
Specify nil to force the button to display
a picker allowing the user to choose now
or later each time (corresponds to the
“Specify when” preferences choice). The
user sets this in the “When Sending”
preference. The default is nil.

cfgMsgModule A frame or nil. Pass in nil if you do not want to
configure a specific msgModule. The frame contains the
msgModule preferences to be set. The required

C H A P T E R 2

Messaging Enabler Interface Reference

Functions and Methods 2-45

msgModule must be installed in the system. The
following slots are configurable:

deviceSym Required. This must be the appSymbol of
the msgModule that the msgModule
registered with.

powerIndexAn integer. An index to the array in the
msgModule slot powerStrings. If this
index is out of range the default will be
used. The default is 0.

transmitterIndex
An integer. An index to the array in the
msgModule slot transmitterStrings.
If this index is out of range the default is
used. The default is 0.

soundIndexAn integer. An index to the array in the
msgModule slot soundStrings. If this
index is out of range the default is used.
The default is 0.

portIndex An integer. An index to the array in the
msgModule slot portStrings. If this
index is out of range the default is used.
The default is 0.

timeIndex An integer. An index to the array in the
msgModule slot timeStrings. If this
index is out of range the default is used.
The default is 0.

If the preferences view is open when this message is received, the Messaging
Enabler closes the preferences view and displays an alert to the user. The
alert displays the string mapped to the kRES_PREFSCHANGED result code,
see “Result Codes” beginning on page 1-11.

SendDirectCommand 2

messagingEnabler:SendDirectCommand(callBack,options,command)

Calls a msgModule’s DirectCommand method (page 2-20). See “Using the
SendDirectCommand Method” (page 1-29).

C H A P T E R 2

Messaging Enabler Interface Reference

2-46 Functions and Methods

IMPORTANT

This method should be called with TransportNotify
function. The TransportNotify method is documented in
Chapter 19, “Transport Interface Reference,” in Newton
Programmer’s Reference.

Call it using this syntax:

TransportNotify(

'MsgEnabler,

'SendDirectCommand,

[callBack, options, command]
)

▲

callBack A frame that is the callback to be executed once this
method has completed. This contains two slots:

receiver The receiver to which to send the message.
message A symbol naming the message to be sent.

This method accepts two parameters
complFrame and complCode.

complFrame Specific to the command being sent and
may be any type of NewtonScript object.
This should be documented by the
particular msgModule for each command
supported.

complCode An integer result code. See “Result
Codes” (page 1-11).

options A frame containing the following slots:

open A Boolean. If true the msgModule
attempts to open the message channel if it
is not currently open.

deviceSym The appSymbol the msgModule
registered with.

C H A P T E R 2

Messaging Enabler Interface Reference

Functions and Methods 2-47

command Specific to the particular msgModule. It is up to the
msgModule developer to document the format this
parameter should take.

The Messaging Enabler sets the complCode to the integer result code
kRES_UNSUPPORTED, if the msgModule installed does not support the
DirectCommand method. The complFrame is set to nil and the complCode to
kRES_FAILED if the msgModule generates an error.

C H A P T E R 2

Messaging Enabler Interface Reference

2-48 Functions and Methods

IN-1

Index

A

About slip 1-25
Alive 2-16
applications

and a msgModule 1-3, 1-28
and Messaging Enabler 1-3, 1-28

B

built-in error codes 2-2

C

callback functions 1-10
DoCallBack 2-21

Cancel 2-17
ChangeCofing 1-28, 2-41
Close 2-18
compatibility information 1-7

D

DeleteMessageFromDir 2-19
DeleteMsgModule 1-27, 2-39
DirectCommand 2-20
DoCallBack 1-10, 2-21
DoEvent 1-12, 2-22

E

endpoint 1-12
error codes 1-11

list of built-in 2-2

F

fromRef slot 1-18
functionality of a msgModule 1-4
functions and methods

Alive 2-16
Cancel 2-17
ChangeCofing 1-28, 2-41
Close 2-18
DeleteMessageFromDir 2-19
DeleteMsgModule 1-27, 2-39
DirectCommand 2-20
DoCallBack 1-10, 2-21
DoEvent 1-12, 2-22
GetConfig 2-26
GetDir 2-30
GetMessageFromDir 2-31
GetNextMessage 2-32
GetPreference 1-25, 2-33
InstallScript 2-33
Open 2-33
ProcessCombinedMessage 2-38
RegMsgModule 1-26, 2-39
RemoveScript 2-34
SavePreference 1-25, 2-35
SendDirectCommand 1-29, 2-45
SendMessage 2-35

I N D E X

IN-2

SetConfig 2-36
TranslateError 1-11, 2-38
UnRegMsgModule 1-28, 2-40

G

GetConfig 2-26
GetDir 2-30
GetMessageFromDir 2-31
GetNextMessage 2-32
GetPreference 1-25, 2-33
global functions

DeleteMsgModule 1-27, 2-39
RegMsgModule 1-26, 2-39
UnRegMsgModule 1-28, 2-40

H

hardware preferences 1-23

I

In/Out Box item frame 2-4
installing and removing a msgModule 1-26
InstallScript 2-33
item frame 2-4

M

message channel 1-2
message module 1-2
messages

multi-part 1-6
receiving 1-13

receiving multi-part 1-16
receiving text and frame 1-16
sending 1-17

messaging devices 1-2
Messaging Enabler

and applications 1-3, 1-28
and msgModule 1-2

Messaging Enabler methods
ChangeCofing 1-28, 2-41
SendDirectCommand 1-29, 2-45

msgModule 1-2
and applications 1-3, 1-28
and Messaging Enabler 1-2
creating 1-8
functionality 1-4
installing and removing 1-26

msgModule methods 1-9
Alive 2-16
Cancel 2-17
Close 2-18
DeleteMessageFromDir 2-19
DirectCommand 2-20
DoCallBack 1-10, 2-21
DoEvent 1-12, 2-22
GetConfig 2-26
GetDir 2-30
GetMessageFromDir 2-31
GetNextMessage 2-32
GetPreference 1-25, 2-33
InstallScript 2-33
Open 2-33
ProcessCombinedMessage 2-38
RemoveScript 2-34
SavePreference 1-25, 2-35
SendMessage 2-35
SetConfig 2-36
TranslateError 1-11, 2-38

msgModules
and endpoints 1-12

multi-part messages 1-6

I N D E X

IN-3

N

name references
and the Messaging Enabler 1-18

O

Open 2-33

P

preference slips 1-5, 1-22
custom 1-24
hardware preferences 1-23

ProcessCombinedMessage 2-38
protoMsgModule 1-8, 2-9

R

RegMsgModule 1-26, 2-39
RemoveScript 2-34
removing a msgModule 1-26
replies 1-6
reply frames 2-7
Reply soup 1-21
result codes 1-11

S

SavePreference 1-25, 2-35
SendDirectCommand 1-29, 2-45
sending events

DoEvent function 1-12, 2-22
SendMessage 2-35

SetConfig 2-36
setting 1-18
storing data 1-25

T

toRef slot
obtaining information from 1-20

TranslateError 1-11, 2-38

U

UnRegMsgModule 1-28, 2-40

	Figures and Tables
	About This Document
	Related Books
	Sample Code
	Conventions Used in This Book
	Special Fonts
	Tap Versus Click
	Frame Code

	Developer Products and Support
	Undocumented System Software Objects

	Messaging Enabler Interface
	About the Messaging Enabler
	The Messaging Enabler and msgModules
	Figure�1-1 Messaging Enabler hierarchy

	The Messaging Enabler and Applications
	Functionality of a msgModule
	Preference Slips
	Figure�1-2 Messaging Enabler and a msgModule hardw...

	Replies
	Figure�1-3 The replies slip

	Multipart Messages
	Compatibility

	Using the Messaging Enabler
	Creating a msgModule
	Implementing msgModule Methods
	Using Callback Functions
	Result Codes
	Sending Events
	Table�1-1 Messaging Enabler events ������

	msgModules and Endpoints

	Receiving Messages
	Sample Message Receiving Method
	Receiving Multipart Messages
	Text and Frame Messages

	Sending Messages
	Using Name References with the Messaging Enabler
	Creating the fromRef Slot of an Incoming Message
	Table�1-2 Slots to include in name references

	Obtaining Information from the toRef Slot of an Ou...

	The Reply Soup
	Providing Preferences
	Providing Hardware Preferences
	Table�1-3 msgModule slots controlling hardware pre...
	Figure�1-4 msgModule hardware preference slip

	Providing a Custom Preference Slip

	Message Module Methods for Storing Data
	Customizing the About Slip
	Figure�1-5 msgModule About slip

	Installing and Removing a msgModule
	Application Program Interface to a msgModule
	Using the ChangeConfig Method
	Using the SendDirectCommand Method

	Messaging Enabler Interface Reference
	Constants
	Built-in Result Codes
	Table�2-1 Built-in error codes

	Data Structures
	Item Frame
	Reply Frames

	Proto
	protoMsgModule

	Functions and Methods
	Global Functions
	Messaging Enabler Methods

	Index

