

ð

ð

N e w t o n D r i v e r
D e v e l o p m e n t K i t s

Lantern

ª

 Data Link Layer Tools

Beta Draft 1.0

September 13, 1997
© Apple Computer, Inc. 1997

Apple Computer, Inc.
1997 Apple Computer, Inc.
l rights reserved.
o part of this publication or the
ftware described in it may be
produced, stored in a retrieval
stem, or transmitted, in any form
by any means, mechanical,

ectronic, photocopying,
cording, or otherwise, without
ior written permission of Apple

omputer, Inc., except in the
rmal use of the software or to
ake a backup copy of the
ftware. The same proprietary
d copyright notices must be

Þxed to any permitted copies as
ere afÞxed to the original. This
ception does not allow copies to
 made for others, whether or not
ld, but all of the material

urchased (with all backup copies)
ay be sold, given, or loaned to

applications only for licensed
Newton platforms.

Apple Computer, Inc.
1 InÞnite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleTalk,
eMate, Espy, LaserWriter, the light
bulb logo, Macintosh, MessagePad,
Newton, Newton Connection Kit,
and New York are trademarks of
Apple Computer, Inc., registered in
the United States and other
countries.
Geneva, NewtonScript, Newton
Toolkit, and QuickDraw are
trademarks of Apple Computer, Inc.
Acrobat, Adobe Illustrator, and
PostScript are trademarks of Adobe
Systems Incorporated, which may
be registered in certain
jurisdictions.
CompuServe is a registered service

charge to you provided you return the
item to be replaced with proof of
purchase to APDA.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
ÒAS IS,Ó AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY

Contents

Figures, Tables, and Listings v

Preface About This Book vii

How to Use This Book vii
Related Books vii
Conventions viii
Developer Products and Support ix

Chapter 1 Introduction 1

About Data Link Layer Drivers 1
What a Data Link Layer Driver Does 2
How Your Driver is Used 2

Application Requests 3
Driver Events 3
Driver ConÞguration 4

Data Link Layer Driver Packet Types 4
Newton Data Link Layer Architecture 4

About Newton Tasks 7
About Newton Tasks and Ports 7

When Your Driver is Called 8
Card Insertion 8
Application Attaches Your Driver 10
Client Requests 11
Card Removal or Application Completion 11

Implementing Your Own Driver 11

Chapter 2 How to Write a Lantern Driver 1

Data Link Layer Model Driver Code 1
Data Link Layer Model Driver P-class 2
Driver event deÞnitions 4
P-class Creation and Destruction Methods 4
Lantern Task Service Methods 5
Lantern Client Service Methods 9
Data Link Layer Driver Notes and Limitations 12

Busy Loops 13
Packet Delivery 13
Link Integrity Changes 13
iii
Draft. Preliminary,. ©1997 Apple Computer, Inc. 9/13/97

Exception Handling in Your Driver 14
Multicast Clients 14

Chapter 3 Data Link Layer Tool Reference 1

Data Link Layer Tool Constants and Data Types 1
Data Link Layer Error Codes 1

Data Link Layer Driver RPCs and Events 4
RPCs Sent to Your Driver 5
Events Your Driver Sends 7

The Data Link Layer Driver P-Class 8
Data Link Layer Driver P-Class Methods 9
Data Link Layer Driver P-Class Fields 13

The Data Link Layer Driver API P-Class 13
Data Link Layer Driver API P-Class Methods 14

TCardSocket Methods for Data Link Drivers 21
TCardPCMCIA Fields and Methods for Data Link Drivers 23
The Data Link Layer Driver Proto (protoLanternDriver) 26

The protoLanternDriver slots 27
The Data Link Layer Client Proto (protoLanternClient) 31

The protoLanternClient slots 31

Chapter 4 Building a Data Link Layer Driver 1

Building the Sample Driver 1
Installing the NCT Additions 2

Newton C++ Toolbox (NCT) 2
DDK Addition 2
PC-Card Addition 2
Data Link Layer Addition 3
iv

Draft. Preliminary,. ©1997 Apple Computer, Inc. 9/13/97

Figures, Tables, and Listings

Figures, Tables, and Listings v

Chapter 1 Introduction 1

Figure 1-1 Overview of the data link layer architecture 5
Figure 1-2 Detailed Lantern task architecture 6
Figure 1-3 Flow of control when a PC card is inserted 9
Figure 1-4 Flow of control for attaching an Appletalk ethernet device

driver 10

Chapter 2 How to Write a Lantern Driver 1

Chapter 3 Data Link Layer Tool Reference 1

Table 3-1 Data link layer driver events 4
Listing 3-1 The data link layer driver p-class 8
Listing 3-2 The data link layer driver API p-class 14
Listing 3-3 protoLanternDriver slots 26
Listing 3-4 protoLanternDriver slots 31

Chapter 4 Building a Data Link Layer Driver 1
v
Draft. Preliminary,. ©1997 Apple Computer, Inc. 9/13/97

vi

Draft. Preliminary,. ©1997 Apple Computer, Inc. 9/13/97

P R E F A C E

About This Book

This book introduces the Lantern Data Link Layer Tools Development Kit,
which you can use to add data link layer drivers to the Newton.

How to Use This Book 0

This book is both a tutorial introduction and a reference guide to the Lantern
Data Link Layer Tools Development Kit. You use this book in conjunction
with An Introduction to Newton Driver Development Kits, which describes the
components and functionality common to all Newton driver development
kits.

This book contains Þve chapters:

n Chapter 1, ÒIntroduction,Ó introduces data link layer drivers.

n Chapter 2, ÒHow to Write a Lantern Driver,Óprovides a tutorial guide to
building a data link layer driver.

n Chapter 3, ÒData Link Layer Tool Reference,Óprovides a reference listing
for the constants, data types, and functions that you use to develop data
link layer drivers for the Newton.

n Chapter 4, ÒBuilding a Data Link Layer Driver,Ódescribes the steps that
you need to take to build a data link layer driver for the Newton.

Related Books 0

This book is one in a set of books that describe the Newton driver
development kits. Each kit requires that you have a good understanding of
the Newton programming environment. The other books that you need to
use are:
vii
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

P R E F A C E

n An Introduction to Newton Driver Development Kits. This book describes
how to build Newton drivers, including a description of how p-classes
and packages work.

n Newton ProgrammerÕs Guide. This book is the deÞnitive guide and reference
for Newton programming with the NewtonScript language. It explains
how to write Newton programs and describes the system software
routines that you can use to do so.

n The NewtonScript Programming Language. This book describes the
NewtonScript programming language.

Conventions Used in This Book 0

This book uses the following conventions to present various kinds of
information.

Special Fonts 0
This book uses the following special fonts:

n Boldface. Key terms and concepts appear in boldface on Þrst use. These
terms are also deÞned in the Glossary.

n Code typeface. Code listings, code snippets, and special identifiers in the text
such as predeÞned system frame names, slot names, function names,
method names, symbols, and constants are shown in the Code typeface to
distinguish them from regular body text. If you are programming, items
that appear in Code typeface should be typed exactly as shown.

n Italic typeface. Italic typeface is used in code to indicate replaceable items,
such as the names of function parameters, which you must replace with
your own names. The names of other books are also shown in italic type,
and rarely, this style is used for emphasis.
viii

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

P R E F A C E

Developer Products and Support 0

The Apple Developer Catalog (ADC) is Apple ComputerÕs worldwide source
for hundreds of development tools, technical resources, training products,
and information for anyone interested in developing applications on Apple
computer platforms. Customers receive the Apple Developer Catalog featuring
all current versions of Apple development tools and the most popular
third-party development tools. ADC offers convenient payment and
shipping options, including site licensing.

To order product or to request a complimentary copy of the Apple Developer
Catalog contact

Apple Developer Catalog
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

For Newton-speciÞc information, see the Newton developer World Wide
Web page at:

http://devworld.apple.com/dev/newtondev.shtml

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

World Wide Web http://www.devcatalog.apple.com
ix
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

P R E F A C E

x

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 1

Figure 1-0
Table 1-0
Listing 1-0
Introduction 1

This chapter provides an introduction to the Lantern Driver Development
Kit, which you use to create data link layer drivers for Newton devices.

About Data Link Layer Drivers 1

The data link layer in communications is the layer that translates data into a
format that can be used with a speciÞc hardware device. Newton data link
layer devices are typically PC Cards. A Lantern driver interfaces a data link
layer device to the Newton Operating System.

You can write a driver for a speciÞc hardware device using the functions and
methods deÞned in this book. NewtonScript and C++ applications written
for the Newton can then use your driver to access that hardware device. To
implement a data link layer driver, you need to do the following:

n Implement a version of the TLanternDriver p-class, which interfaces your
device with the Newton Operating System. The functions and methods in
this p-class implement the instantiation, data management, and event
handling operations of your driver.
About Data Link Layer Drivers 1-1
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 1

Introduction

n Add event-handling functions for any driver-speciÞc events that your
driver supports. For example, an ethernet card driver needs to handle
ethernet-speciÞc or card-speciÞc events.

n Implement a version of protoLanternDriver to conÞgure and/or provide a user
interface for your driver and to deÞne device-speciÞc events for
protoLanternClients.

What a Data Link Layer Driver Does 1
A Lantern driver translates an input or output data stream into a format for
the device being controlled by the driver. The driver can perform these
actions:

n translate an output data packet into a format that the hardware device
transmits out from the Newton

n translate input data received by the device into input data packets for use
on the Newton

A single driver can perform both actions. A client application requests the
services of a driver and then makes calls into the driver to send or receive
data.

The Newton Operating System requires a data link layer driver for each
hardware device that is used to transmit data over a network. Some
examples of hardware devices that require data link layer drivers are:

n wireless Ethernet cards

n wired Ethernet cards

n non-Ethernet, wireless packet devices

n data acquisition PC Card

How Your Driver is Used 1
When a card device is inserted into the Newton, the system software
determines which driver is to be loaded for that card and instantiates the
driver. Client applications can then send requests to the driver, and the
1-2 About Data Link Layer Drivers

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 1

Introduction

driver notiÞes applications of certain conditions by sending events to the
applications.

Application Requests 1

To use your driver, a client application sends requests to the driver with
Remote Procedure Calls (RPC). An RPC is a function call from one task to a
subroutine in another task. The driver handles the request and sends a reply
back to the client.

The Newton Operating System deÞnes a set of client RPCs for data link layer
drivers. You implement a version of each RPC in your driver.

Note

The client application waits for your driver to reply before
continuing, which means that you must reply to each
request as soon as possible. However, your driver can reply
and then subsequently service the request. Beware that any
data structure passed from the client application may be
disposed after the reply, which means that your driver must
save the data in its own data space. u

Driver Events 1

When certain conditions arise or change, your driver needs to notify its client
applications, so that the applications can respond to those conditions. For
example, when some failure occurs in your driver, the application may need
to notify the user or retry an operation.

The Newton Operating System deÞnes a set of events that it uses to notify
Lantern clients of state and condition changes. Your driver sends these
events when appropriate. The application provides an event handler for each
event.

In addition, your driver can deÞne its own, driver-speciÞc set of events. If
you do this, you need to publish information for application developers,
informing them of the speciÞcs of these events. The driver needs to provide
an event handler for these events and applications can send these events to
your driver.
About Data Link Layer Drivers 1-3
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 1

Introduction

Driver ConÞguration 1

You must implement a conÞguration module for your driver. This module is
an instance of protoLanternDriver, which provides several conÞguration and setup
functions.

The conÞguration module communicates with your driver to determine
certain characteristics, and informs the system of those characteristics.

Data Link Layer Driver Packet Types 1
NIE 2.0 and AppleTalk have been adapted to use the Newton Operating
System data link layer software to support ethernet devices. Any ethernet
data link layer driver installed on a Newton can be used by AppleTalk and
NIE 2.0.

In addition to supporting NIE 2.0 and AppleTalk, you driver can be used by
any NewtonScript application (in the form of a protoLanternClient) to send and
receive speciÞc kinds of input and output packets. It is your responsiblity to
publish the details required to use your driver, such as the driver-speciÞc
events you may want to provide as an API.

Newton Data Link Layer Architecture 1

The Newton data link layer architecture is designed to support devices
without having to know any details about the hardware or the clients who
use the hardware. Figure 1-1 shows an overview of the architecture, and
Figure 1-2 provides a more detailed picture of the Lantern task architecture.
1-4 Newton Data Link Layer Architecture

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 1

Introduction
Figure 1-1 Overview of the data link layer architecture
Newton Data Link Layer Architecture 1-5
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 1

Introduction
Figure 1-2 shows a more detailed version of the Lantern architecture.

Figure 1-2 Detailed Lantern task architecture
1-6 Newton Data Link Layer Architecture

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 1

Introduction
About Newton Tasks 1
The Newton operating system is multitasking, with Lantern as a task
controlled by the operating system. Each data link layer driver runs within
the Lantern task.

Lantern receives requests from and sends requests (or replies) to other tasks.
Lantern makes sure that each driver request is sent to the appropriate driver.
The data link layer drivers use the Remote Procedure Call (RPC) mechanism
to create an interface with other software components of the system. RPC is
implemented as a requestÐreply mechanism: one task sends a RPC request to
another task, which sends a RPC reply back to the requester after it
completes the request.

Events and event handlers work with the RPC mechanism. Client
applications can communicate with your driver by using remote procedure
calls and by calling methods in the driver p-class.

This section provides a brief description of Newton tasks and provides an
overview of how communications tools Þt into the system software
architecture.

About Newton Tasks and Ports 1
Each driver is running in a separate Newton task. In the Newton system
software, each task

n has its own heap

n has its own machine state, which is preserved across activations of the task

n is scheduled according to a priority value

n can be preempted

n has a port

The task uses its port to receive RPC requests from other tasks, and to send
replies and requests to other tasks. Each data link driver task allocates a port
for itself when it is started.
Newton Data Link Layer Architecture 1-7
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 1

Introduction
When Your Driver is Called 1

Your data link layer driver is called by the Newton OS when

n the PC card is inserted into the Newton device

n an application client attaches your driver

n an application client sends communications requests to your driver

n an application client Þnishes with your driver

n the PC card is removed from the Newton device

Card Insertion 1
When the user inserts a PC card with a device that uses your driver, the
Newton OS Þrst checks the manufacturer and product strings in the CIS on
the card, instantiates the appropriate driver, and then calls methods in your
protoLanternDriver to communicate with the driver, configure it, and identify it to
the system. Figure 1-3 shows the ßow of control when the PC card is inserted.
1-8 When Your Driver is Called

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 1

Introduction
Figure 1-3 Flow of control when a PC card is inserted
When Your Driver is Called 1-9
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 1

Introduction
Application Attaches Your Driver 1
When an application client attaches your driver, the Newton OS sends the
attach request to your driver. At this time, the client and the operating system
send several requests to your driver to get a link established and ready your
driver for client use.

Figure 1-4 Flow of control for attaching an Appletalk ethernet device driver

Note that you cannot rely upon the ordering of the calls shown in Figure 1-4,
because some client applications may use a different order.
1-10 When Your Driver is Called

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 1

Introduction
Client Requests 1
Once the link is established and your driver is ready, the client application
sends requests to your driver to send and receive data.

Card Removal or Application Completion 1
When the client application is done with your driver, or when the card is
removed, the client sends your driver the DeleteMulticastAddress request,
and then the Newton OS tells your driver to close the communications link.
When the card is removed, your driverÕs p-class instance is deleted.

Implementing Your Own Driver 1

To implement your driver, you need to implement one p-class and one
prototype:

n Implement a protoLanternDriver that allows NewtonScript and C++ clients to
access your driver. This proto allows Newton applications to use your
driver like an endpoint.

n Implement a TLanternDriver p-class to handle RPCs from clients of your
driver and manage the internal state of the driver.

Chapter 2, ÒHow to Write a Lantern DriverÓ provides a description and
sample code for implementing your driver p-class and prototype.
Implementing Your Own Driver 1-11
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 1

Introduction
1-12 Implementing Your Own Driver

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 2

Figure 2-0
Table 2-0
Listing 2-0
How to Write a Lantern
Driver 2

This chapter provides a detailed description of how to write a Lantern driver,
using a simple driver template to guide you through the process.

Data Link Layer Model Driver Code 2

The model driver code in this chapter is a model Lantern driver for an
Ethernet card. You can use as a shell for implementing your own driver. The
source Þles for this code are found on the CD-ROM that accompanies this
book.

Chapter 3, ÒData Link Layer Tool Reference,Ó contains complete descriptions
of the protocols, classes, method, functions, and constants that you use to
implement your driver.

This chapter begins with the declaration of the model driver p-class, and
then describes the model driver implementation in the following sections:

n driver event deÞnitions

n p-class creation and destruction methods
Data Link Layer Model Driver Code 2-1
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 2

How to Write a Lantern Driver
n Lantern task service methods

n Lantern client service methods

This chapter concludes with a list of driver implementation notes and
limitations that you need to consider.

Data Link Layer Model Driver P-class 2
This section shows the declaration of the TTemplateDriver p-class. This is the
p-class for the model Ethernet data link layer driver described in this chapter.

#define kPacketAddrSize (6)
#define kTimerTime (100) // Milliseconds

PROTOCOL TTemplateDriver : public TLanternDriver// Protocol class
PROTOCOLVERSION(1.0) // Protocol class version

{
public:

// Protocol Class Interface

// DO NOT change the following line (Required)
PROTOCOL_IMPL_HEADER_MACRO(TTemplateDriver);

TLanternDriver* New(void);
void Delete();

// Task services

// driver initialization
NewtonErr Init(void);

// start or resume card operations
NewtonErr Enable();

// stop or suspend card operations
NewtonErr Disable();

// handle a card interrupt
void InterruptHandler()

private:
// Client Services(from event handlers of TLanterDriverAPI)
2-2 Data Link Layer Model Driver Code

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 2

How to Write a Lantern Driver
// transmit a buffer
void SendBuffer(Ptr thePacket, Size size);

// transmit a CBufferList
void SendCBufferList(CBufferList* thePacket);

// return the device address
void GetDeviceAddress(UByte* addr, Size size);

// add a multicast address
void AddMulticastAddress(UByte* addr);

// delete a multicast address
void DelMulticastAddress(UByte* addr);

// get the link integrity flag
void GetLinkIntegrity(void);

// Optional services
// Set to receive in promiscuous mode

void SetPromiscuous(ULong promiscuous);
// Get a throughput statistic

void GetThroughput(void);

// Private Services for this driver
// Called when driver timer expires

void TimerExpired(void);

// Internal variables
// internal status

ULong fStatus;
// Ethernet address

UChar fEthernetAddr[kPacketAddrSize];
// link integrity status

Boolean fLinkIntegrity;
// is a timer event posted?

Boolean fTimerPosted;
// the time for the next timer event

TTime* fTickTime;

};

// Internal status definitions
enum kStatus
{

// no status yet
kStatusNoStatus = 0x00000000,

// card power is turned on
kStatusCardPowerOn = 0x00000001,
Data Link Layer Model Driver Code 2-3
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 2

How to Write a Lantern Driver
};

Driver event deÞnitions 2
This section shows the model driver code for deÞning an event (a timer
event) for driver use.

#define kTemplateTimerEvent 'tmpl','timr',0 // Timer event

P-class Creation and Destruction Methods 2
This section describes the TLanternDriver protocol methods that you need to
provide in your driver to manage creation and destruction of the p-class. The
protocol for the model driver is named TTemplateDriver.

PROTOCOL_IMPL_SOURCE_MACRO(TTemplateDriver) // DONÕT CHANGE THIS!

New 2

The New method of your p-class needs to allocate and initialize any driver
variables that you use.

This method is called when the user inserts the card into the Newton device.
Note that the fCardSocket, fCardPCMCIA, and fDriverAPI variables have not yet been
set at the time of this call. They are available in the Init method.

The model driver implementation of New creates a timer event record.

TLanternDriver* TTemplateDriver::New()
{

fTickTime = new TTime;

return this; // Always return this
}

WARNING

The Newton p-class handler does not automatically call
imbedded class constructors. If you deÞne an imbedded
class in your p-class, you must explicitly call the constructor
for that class. The code segment below shows an example. u
2-4 Data Link Layer Model Driver Code

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 2

How to Write a Lantern Driver
PROTOCOL TTemplateDriver: ...
{

...
TImbedClass fImbed;
...

}

...

TTemplateDriver::New()
{

...
new(&fImbed) TImbedClass;
...

}

Delete 2

Your p-class destructor method, Delete, is called when the card is removed
from the Newton device. Your implementation needs to perform any needed
clean-up operations, and free any memory that you have allocated.

void TTemplateDriver::Delete()
{

delete fTickTime;
fTickTime = nil;

}

Lantern Task Service Methods 2
This section describes the methods that you need to provide in your driver
p-class to implement task service level methods.

Init 2

Your driverÕs Init method is called when the card has been inserted into the
Newton device and a client has requested the services of your driver. You use
this method to initialize your driver and set up the card.

The model driver implementation of Init registers the appropriate method
for each Lantern event request.

NewtonErr TTemplateDriver::Init()
Data Link Layer Model Driver Code 2-5
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 2

How to Write a Lantern Driver
{
NewtonErr err = noErr;

//¥¥¥ add code here to check if the card is working correctly

// add Lantern request functions
fDriverAPI->AddEventHandler(kLanternSendBuffer,

(DriverProcPtr) &TTemplateDriver::SendBuffer);
fDriverAPI->AddEventHandler(kLanternSendCBufferList,

(DriverProcPtr) &TTemplateDriver::SendCBufferList);
fDriverAPI->AddEventHandler(kLanternGetDeviceAddress,

(DriverProcPtr) &TTemplateDriver::GetDeviceAddress);
fDriverAPI->AddEventHandler(kLanternAddMulticastAddress,

(DriverProcPtr) &TTemplateDriver::AddMulticastAddress);
fDriverAPI->AddEventHandler(kLanternDelMulticastAddress,

(DriverProcPtr) &TTemplateDriver::DelMulticastAddress);
fDriverAPI->AddEventHandler(kLanternGetLinkIntegrity,

(DriverProcPtr) &TTemplateDriver::GetLinkIntegrity);

// add Optional handlers
fDriverAPI->AddEventHandler(kLanternSetPromiscuous,

(DriverProcPtr) &TTemplateDriver::SetPromiscuous);
fDriverAPI->AddEventHandler(kLanternGetThroughput,

(DriverProcPtr) &TTemplateDriver::GetThroughput);

// add private timer services handler
fDriverAPI->AddEventHandler(kTemplateTimerEvent,

(DriverProcPtr) &TTemplateDriver::TimerExpired);
fTimerPosted = false;

return err;
}

Enable 2

You Enable method is called whenever a client requires the services of your
card. This method is called for the Þrst client that uses your driverÕs services;
it is not called when subsequent clients ask for the services of your driver.

The model driver implementation of Enable turns on power to the card and
posts a timer event to itself (the driver) to get its timer handling going.

NewtonErr TTemplateDriver::Enable()
{

NewtonErr err = noErr;
2-6 Data Link Layer Model Driver Code

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 2

How to Write a Lantern Driver
Boolean powerOn;

// turn on card power
fDriverAPI->PowerOn(&powerOn); // turn on card power
fStatus |= kStatusCardPowerOn; // and remember that it is on

//¥¥¥ Add your code here

if (!fTimerPosted)
{

// this posts the event to our own task so we get the event
fTimerPosted = true;
*fTickTime = GetGlobalTime() + TTime(kTimerTime, kMilliseconds);
fDriverAPI->PostLocalEvent(fTickTime, kTemplateTimerEvent);

}
return err;

}

WARNING

You must not access card memory until after your driver is
enabled. If you attempt to do so, the entire Lantern
subsystem may halt. u

Disable 2

Your Disable method is called when the Newton OS determines that there are
no clients requiring the services of your driver or that the card is no longer
available. Your implementation needs to terminate any receive or transmit
operations.

The model driver implementation of Disable turns off power to the card.

NewtonErr TTemplateDriver::Disable()
{

NewtonErr err = noErr;

fDriverAPI->PowerOff(); // turn off card power and remember it
fStatus &= ~kStatusCardPowerOn;

//¥¥¥ Add your code here
return err;

}

Data Link Layer Model Driver Code 2-7
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 2

How to Write a Lantern Driver
TimerExpired 2

The model driver creates a timer event type to allow it to periodically
perform operations. The driver receives the timer event, performs some
actions, and then sends the event to itself. You can use this code as a model
for implementing timer handling in your driver.

You can implement any number of timers in your driver: add a new event
type and a handler for that event for each timer you need. To deÞne a timer,
follow these steps:

1. DeÞne the event type, as shown in ÒDriver event deÞnitionsÓ (page 2-4).
2. Add an event handler method for that event type, as shown in the

model driverÕs implementation of the Init method (page 2-5).
3. Call PostLocalEvent with a delay to send the event.
4. Implement the method to handle your timer event.

ItÕs a good idea to check link integrity in your timer event handler. Note that
the model driverÕs timer event handler does not do this because link
integrity cannot be determined on the card that it is driving.

void TTemplateDriver::TimerExpired(void)
{

if (fStatus & kStatusCardPowerOn)
{
//¥¥¥ add your code here

// grab link integrity and post it here:
// Boolean linkIntegrity = GetLinkIntegrity();
// if (linkIntegrity != fLinkIntegrity)
// fDriverAPI->PostEvent(kLanternLinkIntegrity,

(ULong) (fLinkIntegrity = linkIntegrity));

// post the event to our own task so we get the event
fTimerPosted = true;
*fTickTime = *fTickTime + TTime(kTimerTime, kMilliseconds);
fDriverAPI->PostLocalEvent(fTickTime, kTemplateTimerEvent);

}
else
{

// else timer services are cancelled.
fTimerPosted = false;

}
}

2-8 Data Link Layer Model Driver Code

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 2

How to Write a Lantern Driver
InterruptHandler 2

Your InterruptHandler method is called by Lantern from the task level after an
interrupt line on the card is asserted. This method is dispatched as a priority
event from the Newton OS interrupt handler, which means that it is not a
true interrupt handler. This means that it does not have to execute as
time-critical or out-of state code. However, the method is dispatched before
any other pending RPCs waiting for your driver.

Lantern makes an assumption that a device can buffer inbound data for at
least the amount of time required for the interrupt event to be dispatched
(which can lead to some loss of packets). The current minimum time
between a card interrupt and the execution of your InterruptHandler method is
approximately 50 mSecs. This timing is subject to change in future releases.

void TTemplateDriver::InterruptHandler()
{

NewtonErr err = noErr;
//¥¥¥ Add your code here

fDriverAPI->InterruptDone(); // optional and not really needed
}

Lantern Client Service Methods 2
This section describes the methods that you need to provide in your driver
p-class to implement client service level methods.

SendBuffer 2

Your SendBuffer method is called when Lantern needs your driver to send data.
You need to send the data asynchronously, and you must buffer the data.

void TTemplateDriver::SendBuffer(Ptr thePacket, Size packetSize)
{

NewtonErr err = noErr;

//¥¥¥ Add your code here

fDriverAPI->PostReply(err);
}

Data Link Layer Model Driver Code 2-9
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 2

How to Write a Lantern Driver
SendCBufferList 2

Your SendCBufferList method is called when Lantern needs your driver to send
data. You need to send the data asynchronously, and you must buffer the
data.

void TTemplateDriver::SendCBufferList(CBufferList* thePacket)
{

NewtonErr err = noErr;

//¥¥¥ Add your code here

fDriverAPI->PostReply(err);
}

GetDeviceAddress 2

Your driver receives the GetDeviceAddress request when a client needs to know
the hardware address of your device.

The model driver implementation of this method returns the 6-byte device
Ethernet hardware address.

void TTemplateDriver::GetDeviceAddress(UByte* addr, Size size)
{

NewtonErr err = noErr;

//¥¥¥ change the following as needed

if (size <= sizeof(fEthernetAddr)) {
memcpy((char*)addr, (char*)fEthernetAddr,size);

}
else {

err = eLANTERN_DriverValueRangeError;
}

fDriverAPI->PostReply(err);
}

AddMulticastAddress 2

Your driver receives the AddMulticastAddress request when a client wants you to
add a multicast address.

void TTemplateDriver::AddMulticastAddress(UChar* addr)
2-10 Data Link Layer Model Driver Code

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 2

How to Write a Lantern Driver
{
NewtonErr err = noErr;

//¥¥¥ Add your code here

fDriverAPI->PostReply(err); // Reply
}

DelMulticastAddress 2

Your driver receives the DelMulticastAddress request when a client wants you to
delete a multicast address.

void TTemplateDriver::DelMulticastAddress(UChar* addr)
{

NewtonErr err = noErr;

//¥¥¥ Add your code here

fDriverAPI->PostReply(err); // Reply
}

GetLinkIntegrity 2

Your driver receives the GetLinkIntegrity request when a client needs to
determine the current status of the link integrity. If you cannot determine this
for your device, return true.

void TTemplateDriver::GetLinkIntegrity()
{

NewtonErr err = noErr;
ULong linkIntegrity = true;

//¥¥¥ Add your code here
// linkIntegrity = GetLinkIntegrity(); // Get link status
fDriverAPI->PostReply(err, 1, linkIntegrity);// Reply

}

SetPromiscuous 2

You can use promiscuous mode for an ethernet device driver to receive all
packets on a network, regardless of the destination ethernet address. This
effectively allows you to snoop the network.
Data Link Layer Model Driver Code 2-11
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 2

How to Write a Lantern Driver
When your driver receives this event, you need to enable the hardware on
the card to use promiscuous mode. The model driver implementation does
not support this mode and thus replies that the event was not handled.

void TTemplateDriver::SetPromiscuous(ULong promiscuous)
{

NewtonErr err = noErr;
//¥¥¥ Change the following if supported

err = eLANTERN_DriverUnhandledEvent;
fDriverAPI->PostReply(err);// Reply

}

GetThroughput 2

Some devices maintain an average throughput value for their ethernet
hardware. An application can send this event to your driver to retrieve the
throughput value(s).

If your hardware does not support this capability, you need to reply to the
event with an unhandled event error, as does the model driver.

You can return 0 for any throughput value that your hardware does not
support. You can also return separate values for the receive, transmit, and
overall throughput values.

The model driver implementation does not support this mode and thus
replies that the event was not handled.

void TTemplateDriver::GetThroughput(void)
{

NewtonErr err = noErr;

//¥¥¥ Change the following if supported

err = eLANTERN_DriverUnhandledEvent;
fDriverAPI->PostReply(err);// Reply

}

Data Link Layer Driver Notes and Limitations 2
This section provides a collection of implementation notes for data link layer
drivers.
2-12 Data Link Layer Model Driver Code

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 2

How to Write a Lantern Driver
Busy Loops 2

n You should never use busy wait loops when performing input/output
operations in your driver. Only use busy wait loops if the device registers
need a read/write delay to allow for hardware latency.

n You can use short (100ms or less) busy wait loops for device state or
control operations. Operations such as these are typically called
synchronously from the client.

Packet Delivery 2

n The Newton system software considers a packet successfully delivered as
soon as the request is received. If your driver fails to successfully deliver a
packet, the packet must be discarded. The client is expected to implement
protocols to deal with this situation.

n The Newton system software queues input packets strictly to provide
efÞcient support of multiple clients. Packets are not queued indeÞnitely:
they may be dropped arbitrarily before all clients have read them.

n If packet delivery failure is occurring due to a poor communications link,
you can raise the LinkIntegrity event to signal the operating system that
the link is inoperable. The client can then choose to continue, abort the
link, or attempt to resolve.

n You must use asynchronous input/output when your driver implements
any form of handshake with a remote device for delivery of a packet.

n Lantern discards newer packets while waiting for the oldest packets to be
delivered.

Link Integrity Changes 2

n Your driver should not change state or behavior due to a change in link
integrity. Input/output requests may still arrive (and should be dropped)
while the link integrity is poor.
Data Link Layer Model Driver Code 2-13
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 2

How to Write a Lantern Driver
Exception Handling in Your Driver 2

n The Newton Operating System encloses all driver calls within an
exception-handling block, which means that you do not need to perform
your own exception handling in your implementation of the driver
methods.

Multicast Clients 2

If your driver has two clients and one subscribes to a multicast group, the
other client also receives those packets. This is a current limitation in the
Lantern architecture.
2-14 Data Link Layer Model Driver Code

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Figure 3-0
Table 3-0
Listing 3-0
Data Link Layer Tool
Reference 3

This chapter describes the constants, data types, and p-classes that you use to
implement a communications tool for the Newton.

Data Link Layer Tool Constants and Data Types 3

This section describes the constants and data types that you use with your
communications tool.

Data Link Layer Error Codes 3
This section lists the error codes generated by the Data Link Layer of the
Newton Operating System.

eLANTERN_DriverNotFound = -61001
eLANTERN_DriverInstallFailed = -61002
eLANTERN_DriverRemoveFailed = -61003
eLANTERN_DriverUnhandledEvent = -61004
eLANTERN_DriverPacketDropped = -61005
Data Link Layer Tool Constants and Data Types 3-1
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
eLANTERN_DriverException = -61006
eLANTERN_DriverNewAsyncFailed = -61007
eLANTERN_DriverCardNotInserted = -61008
eLANTERN_DriverAlreadyReplied = -61009
eLANTERN_DriverRequestNotRepliedTo = -61010

eLANTERN_DriverValueRangeError = -61200
eLANTERN_DriverHardwareFailure = -61201
eLANTERN_DriverResourceFailure = -61202

eLANTERN_ClientDispatchFailed = -61300
eLANTERN_ClientAlreadyBound = -61301
eLANTERN_ClientNotBound = -61302
eLANTERN_ClientNoMemory = -61303
eLANTERN_ClientNewAsyncMsgFailed = -61304
eLANTERN_ClientInvalidTaskType = -61305

Constant descriptions

eLANTERN_DriverNotFound

The driver could not be loaded.
eLANTERN_DriverInstallFailed

The driver installation failed.
eLANTERN_DriverRemoveFailed

The driver could not be removed.
eLANTERN_DriverUnhandledEvent

The driver did not support the specified request.
eLANTERN_DriverPacketDropped

The requested packet is no longer in the cache.
eLANTERN_DriverException

The driver caused an exception to be thrown. Note that
this is usually the evt.ex.abt.perm exception.

eLANTERN_DriverNewAsyncFailed

An internal resource is depleted.
eLANTERN_DriverCardNotInserted

The card handler is not available because RemoveServices
was called.

eLANTERN_DriverAlreadyReplied

The driver replied to an RPC twice.
3-2 Data Link Layer Tool Constants and Data Types

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
eLANTERN_DriverRequestNotRepliedTo

The driver did not reply to an RPC.
eLANTERN_DriverValueRangeError

The supplied data values are out of range for the device.
eLANTERN_DriverHardwareFailure

An unrecoverable hardware fault was detected.
eLANTERN_DriverResourceFailure

The driver could not perform the operation due to lack
of system resources.

eLANTERN_ClientDispatchFailed

Dispatching events is not supported by this task.
eLANTERN_ClientAlreadyBound

Attempt to bind a client that is already bound.
eLANTERN_ClientNotBound

The operation requires the client to be bound.
eLANTERN_ClientNoMemory

The client is out of memory.
eLANTERN_ClientNewAsyncMsgFailed

An asynchronous request failed because an internal
resource could not be accessed.

eLANTERN_ClientInvalidTaskType

The requested operation is not supported by this task
type.
Data Link Layer Tool Constants and Data Types 3-3
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
Data Link Layer Driver RPCs and Events 3

This section describes the remote procedure calls (RPCs) and events with
which your data link layer driver needs to work. Table 3-1 summarizes the
events.

Table 3-1 Data link layer driver events

RPC or event name Description

kLanternSendBuffer Sent to notify your driver that data needs
to be sent.

kLanternSendCBufferList Sent to notify your driver that data needs
to be sent.

KLanternGetDeviceAddress Sent to notify your driver to return the
hardware device address.

kLanternGetLinkIntegrity Sent to your driver to determine the
status of the link.

kLanternAddMulticastAddress Sent to your driver to add a speciÞed
hardware ethernet address as a multicast
address.

kLanternDelMulticastAddress Sent to your driver to notify you to delete
the speciÞed address as a multicast
address.

kLanternLinkIntegrity Your driver sends this event to all of its
clients to notify them that the status of
the link has changed.

kLanternDriverFailure Your driver sends this event to all of its
clients to notify them of a driver error
condition.
3-4 Data Link Layer Driver RPCs and Events

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
RPCs Sent to Your Driver 3
This section describes the remote procedure calls that are sent to your driver
by the Newton Operating System or by your client programs.

kLanternSendBuffer 3

kLanternSendBuffer kLanternEventClass,'sndB',2
// (Ptr ptr, Size size) : {}

The Newton Operating System sends the kLanternSendBuffer request when your
driver needs to send data in the form of a pointer to a buffer.

Event Send Arguments

ptr A pointer to the data to be sent. The size of the buffer
pointed to by ptr must be equal to or greater than the
minimum packet size.

size The number of bytes of data to be sent.

Event Return Arguments

None.

kLanternSendCBufferList 3

kLanternSendCBufferList kLanternEventClass,'sndC',1
// (CBufferList* data) : {}

The Newton Operating System sends the kLanternSendCBufferList request when
your driver needs to send data in the form of a CBufferList.

Event Send Arguments

data A pointer to a CBufferList that contains the data to be sent.

Event Return Arguments

None.

kLanternGetDeviceAddress 3

kLanternGetDeviceAddress kLanternEventClass,'gdva',2
// (UByte* addr, Size size) : {}
Data Link Layer Driver RPCs and Events 3-5
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
The Newton Operating System sends the kLanternGetDeviceAddress request to
request that your driver return the current hardware address. For ethernet
address, this is a 6-byte ethernet hardware address.

Event Send Arguments

addr A pointer to the address in which the hardware address
should be stored.

size The number of bytes to store.

Event Return Arguments

None.

kLanternGetLinkIntegrity 3

kLanternGetLinkIntegrity kLanternEventClass,'glit',0
// () : {ULong link}

A client sends the kLanternGetLinkIntegrity request to your driver to determine the
current status of the link. You return true if the link is available.

For an ethernet card, you return true if you can detect that the device is
connected to a LAN and false if you can detect that the device is not
connected. If you are unable to detect, return true.

Event Send Arguments

None.

Event Return Arguments

link An unsigned long value that speciÞes the status of the
link. Return true if the link is available.

kLanternAddMulticastAddress 3

kLanternAddMulticastAddress kLanternEventClass,'amca',1
// (UByte* addr) : {}

A client sends the kLanternAddMulticastAddress request to notify you to add a
speciÞc hardware device address as a multicast address. For example,
AppleTalk might need to add an AppleTalk broadcast address.
3-6 Data Link Layer Driver RPCs and Events

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
The driver is responsible for remembering any multicast addresses between
calls to the Enable and Disable methods of your driver.

If your driver receives multiple requests to add a speciÞc address as a
multicast address, you are responsible for maintaining a count in
coordination with kLanternDelMulticastAddress events. This is because two different
clients can request addition of the same address.

Event Send Arguments

addr The multicast address to add.

Event Return Arguments

None.

kLanternDelMulticastAddress 3

kLanternDelMulticastAddress kLanternEventClass,'dmca',1
// (UByte* addr) : {}

A client sends the kLanternDelMulticastAddress request to notify you that you
should remove the speciÞed multicast address.

Note that your driver is responsible for maintaining a count of requests to
use a speciÞed multicast address, which means that you must only delete the
address when the count reaches zero.

Event Send Arguments

data A pointer to a CBufferList that contains the data to be sent.

Event Return Arguments

None.

Events Your Driver Sends 3
This section describes the events that your driver sends to its clients.

kLanternLinkIntegrity 3

kLanternLinkIntegrity kLanternEventClass,'link',1
// (ULong link)
Data Link Layer Driver RPCs and Events 3-7
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
Your driver sends this event to notify clients that the status of the link has
changed with regard to media being available or connected. For example,
you send this event if the LAN cable is plugged in, or if a wireless connection
exists over which packets can be transported.

Event Send Arguments

link The status of the link. Set this to true if the link is
connected.

Event Return Arguments

None.

kLanternDriverFailure 3

kLanternDriverFailure kLanternEventClass,'fail',1
// (NewtonErr reason)

Your driver sends this event to notify clients that a driver error has occurred.

Event Send Arguments

err The driver-speciÞc error code.

Event Return Arguments

None.

The Data Link Layer Driver P-Class 3

This section describes the TLanternDriver p-class, which you implement to
create a data link layer driver. Listing 3-1 shows the TLanternDriver p-class.

Listing 3-1 The data link layer driver p-class

PROTOCOL TLanternDriver : public TProtocol
{
public:

static TLanternDriver* New(char*);
3-8 The Data Link Layer Driver P-Class

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
void Delete();

NewtonErr Init(void);

NewtonErr Enable(void);
NewtonErr Disable(void);
NewtonErr InterruptHandler(void);

protected:
friend class TLanternTask;

TCardSocket* fCardSocket;
TCardPCMCIA fCardPCMCIA;
TLanternDriverAPI* fDriverAPI;

}

Data Link Layer Driver P-Class Methods 3
This section describes the methods of the TLanternDriver p-class.

WARNING

If your code attempts to access the card after it has been
removed, an exception is thrown and the rest of your code
will not execute. To protect against this, you should enclose
your code in an exception block. u

New 3

static TLanternDriver::New(char*);

Is called to construct your p-class object.

return value None.

DISCUSSION

The New method is called to construct your p-class object. This constructor is
different than the standard C++ constructor because of the glue code that the
Newton Operating System uses to create the interface to this p-class.

IMPORTANT

Your implementation of the New method must return the
class instance pointer, as follows:
The Data Link Layer Driver P-Class 3-9
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
return this;

 u

Delete 3

void TLanternDriver::Delete();

Is called to delete your p-class object.

return value None.

DISCUSSION

Your implementation of the Delete method should free any resources
associated with your driver. For example, you can deallocate any memory
that has been allocated in your p-class.

Init 3

NewtonErr TLanternDriver::Init();

Is called when the card being controlled by your driver is inserted into the
Newton device or when the device is reset.

return value An error code.

DISCUSSION

Your implementation of the Init method can perform any initialization
required to determine that you can properly work with the card. For
example, you might test the cardÕs memory in your Init method.

Another common operation of the Init method is to register your event
handlers.

Enable 3

NewtonErr TLanternDriver::Enable();

Is called whenever the services of the card being controlled by your driver
are required.

return value An error code.
3-10 The Data Link Layer Driver P-Class

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
DISCUSSION

The Enable method is called when a client requests the services of your driver
or when the Newton is powered up after a prior power-off sequence. This
method is called when the Þrst client requires the services of your driver;
subsequent clients do not generate another call to Enable.

Your implementation of the Enable method needs to call the PowerOn method to
turn on Vcc to the card.

Note that the clients of an ethernet card can be one of the following:

n AppleTalk

n TCP/IP

n a protoLanternClient client in a NewtonScript application

You must maintain the current state of the device being controlled by your
driver at all times. This means that you must remember situations and events
such as the following:

n when your driver receives a request before being enabled, you may need
to save the request and activate it after enabling. Do this for any requests
that you cannot process without being enabled.

n when your driver receives a Disable request, you must save state so that
your driver can be reenabled in the same state.

n any state information generated by special events sent to your driver by
an instance of protoLanternDriver .

Disable 3

NewtonErr TLanternDriver::Disable();

Is called when the services provided by the card being controlled by your
driver are no longer needed.

return value An error code.

DISCUSSION

The Disable method is called when there are no more clients using the services
of your driver or when the card has been removed by the user.

Your implementation of the Disable method needs to turn off Vcc to the card.
The Data Link Layer Driver P-Class 3-11
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
InterruptHandler 3

void TLanternDriver::InterruptHandler();

Is called after an interrupt line on the card being controlled by your driver
changes level.

return value None.

DISCUSSION

The InterruptHandler method is called whenever an interrupt line changes level.
The Newton Operating System interrupt handler calls this method as a
priority event.

Since this is not a true interrupt handler, you do not have to execute this
method as time-critical or out-of-state code. However, it is a priority event,
which means that your driver receives the InterruptHandler call before receiving
any other pending events. The minimum time between a card interrupt and
your InterruptHandler method getting called is approximately 50 milliseconds;
however, the actual time could be longer.

The Newton Operating System assumes that the device being controlled by
your driver is capable of buffering inbound data for at least as long as is
required to dispatch an interrupt event. This can lead to a loss of data for
high bitrate devices or on noisy networks.

The PowerOn method enables interrupts for the PC card by default. This means
that any change in the IRQ level generates an interrupt. Some PC cards do
not interrupt in this manner; for example, some cards require a positive edge
IRQ change. If necessary for your card, you can call PowerOn and tell it to not
enable interrupts; you then enable card interrupts as required for your card.
Note that this method of handling interrupts will make your driver
incompatible with future multi-function card drivers.

You can optionally call the TLanternDriverAPI::InterruptDone method from within
your implementation of InterruptHandler. If you do not call InterruptDone, the system
assumes that you are done with the interrupt when your InterruptHandler
method returns. The Newton Operating System uses the InterruptDone method
to reenable interrupts on the device, if necessary.
3-12 The Data Link Layer Driver P-Class

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
Data Link Layer Driver P-Class Fields 3
This section describes the Þelds of the TLantern p-class.

fCardSocket 3

TCardSocket* TLanternDriver::fCardSocket;

Is a pointer to the TCardSocket instance associated with the driver. You can use
this to access methods of the TCardSocket class instance for your driver.

fCardPCMCIA 3

TCardPCMCIA* TLanternDriver::fCardPCMCIA;

Is a pointer to the TCardPCMCIA instance associated with the driver. You can
use this to access methods of the TCardPCMCIA class instance for your driver.

fDriverAPI 3

TCardSocket* TLanternDriver::fDriverAPI;

Is a pointer to the TLanternDriverAPI instance associated with the driver. You can
use this to access methods of the TLanternDriverAPI class instance for your card.

The Data Link Layer Driver API P-Class 3

This section describes the TLanternDriverAPI p-class, which provides the
methods that you call from your TLanternDriver implementation. Listing 3-2
shows the TLanternDriverAPI p-class.

Listing 3-2 The data link layer driver API p-class

PROTOCOL TLanternDriverAPI : public TProtocol
{
public:

static TLanternDriverAPI* New(char*);
void Delete();
The Data Link Layer Driver API P-Class 3-13
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
NewtonErr Init(TLanternTask*);

NewtonErr PowerOn(Boolean* powerOn, Boolean intEnable=true);
NewtonErr PowerOff(ULong msDelay=kDefaultPowerDownTime,

 Boolean intDisable=true);

Ptr NewPacketPtr(Size size);
NewtonErr RxReady(Ptr buf, Size size=0);
NewtonErr InterruptDone(void);

NewtonErr CardHandlerSpecific(ULong selector, ...);

NewtonErr AddEventHandler(kLanternEventType, DriverProcPtr);
NewtonErr PostEvent(kLanternEventType, ...);
NewtonErr PostLocalEvent(kLanternEventType, ...);
NewtonErr PostLocalEvent(TTime*, kLanternEventType, ...);
NewtonErr PostReply(NewtonErr);
NewtonErr PostReply(NewtonErr, ULong nArgs, ...);

}

Data Link Layer Driver API P-Class Methods 3
This section describes the methods of the TLanternAPI p-class. The Þrst three
methods of this p-class are called by the Newton Operating system and are
not of any use to you as a driver developer. These three methods are not
described and must not be called directly by your driver:

n TLanternDriverAPI::New

n TLanternDriverAPI::Delete

n TLanternDriverAPI::Init

PowerOn 3

NewtonErr TLanternDriverAPI::PowerOn(Boolean *powerOn,
Boolean intEnable);
3-14 The Data Link Layer Driver API P-Class

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
Your driver calls PowerOn to power up and initialize the device that it is
controlling.

powerOn Upon return, this is false if the card was already powered
up, and true if the card was not already powered up.

intEnable If true, enables interrupt control of the device. If you set
this to false, your driver will not be compatible with a
multifunction PC Card.

return value An error code.

DISCUSSION

The PowerOn method powers on the device being controlled by your driver.
You typically call this in your implementation of the TLanternDriver::Enable
method.

The PowerOn method performs the following actions:

1. powers on Vcc

2. resets the PCMCIA bus

3. waits for the card-ready line to be asserted

4. sets the bus access for 8-bit access

You can override this behavior in your driver by providing your own
power-on function instead of using PowerOn; however, if you do so, you lose
compatibility with multifunction PC Cards.

If powerOn is set to false when the method returns, it means that the card was
already powered up. This can happen because of delays in powering the
card off, or because the device is on a multifunction card on which other
devices are powered up. If powerOn returns false, your driver probably does
not need to reinitialize the card, which can save time.

If your card needs special processing to enable interrupts, you need to
provide that code after the PowerOn method has completed. The PowerOn
method enables IREQ on the bus, as shown here:

fSocket->EnableSocketInterrupt(kSocketCardIREQInt);
The Data Link Layer Driver API P-Class 3-15
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
PowerOff 3

NewtonErr TLanternDriverAPI::PowerOff(ULong msDelay,
 Boolean intDisable);

Your driver calls PowerOff to power down the device that it is controlling.

msDelay The number of milleseconds to delay before powering
down the device. Set this to the appropriate
power-down time. You often want to leave the power
on for a certain period of time before shutting down, in
case the deviceÕs services are quickly requested again.
This is useful for cards that have a long power-on time
such as wireless LAN cards, which typically take time to
acquire a network base station.

intDisable If true, disables interrupt control of the device and clears
out any pending interrupts. If false, your driver will not
be compatible with multifunction PC cards.

return value An error code.

DISCUSSION

The PowerOff method powers off the device being controlled by your driver.
Your driver needs to call this method when it no longer needs to use the
card; this is typically done in your TLanternDriver::Disable method.

The PowerOff method drops Vcc after the speciÞed delay time and if no other
drivers are using the card (for multifunction cards). If you need to override
this behavior in your driver, you can provide your own power-off function
instead of calling PowerOff; however, if you do so, you lose compatibility with
multifunction PC Cards.

NewPacketPtr 3

Ptr TLanternDriverAPI::NewPacketPtr(Size size);

Your driver calls this method when it receives a new packet of data.
NewPacketPtr allocates a block of memory for the data.

size The number of bytes requested for the new packet.

return value A pointer to the new packet.
3-16 The Data Link Layer Driver API P-Class

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
DISCUSSION

The NewPacketPtr method allocates memory for packet data, using a memory
allocation scheme that is optimized for packet memory requests.

If NewPacketPtr returns nil, your driver must discard the packet that it received
from the PC Card and rely on higher level protocols to recover the data.

Note

You can only allocate one packet at a time. If you attempt to
call NewPacketPtr a second time before calling RxReady,
NewPacketPtr deletes the previous memory buffer and returns a
new pointer to you. The Newton Operating System
automatically cleans up memory after you call RxReady or
when the p-class object is deleted.

RxReady 3

NewtonErr TLanternDriverAPI::RxReady(Ptr buf,
Size size);

Your driver calls RxReady after copying the packet data from the card buffer to
the packet buffer. This makes the buffer ready for any clients of your driver.

buf A pointer to the buffer contained the received data.

size The size, in bytes, of the received data buffer.

return value An error code.

DISCUSSION

When your driver receives a packet of data, you Þrst call the NewPacketPtr
method to allocate a buffer for that data, then copy the data to the buffer, and
then call RxReady to make the data available to your clients.

Inbound data packets are selectively queued until all clients have read them,
or until a certain amount of time has passed.

The Newton Operating System automatically discards the packet memory
when it is no longer needed. This means that your driver should not do
anything with buf once you have called RxReady.
The Data Link Layer Driver API P-Class 3-17
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
InterruptDone 3

NewtonErr TLanternDriverAPI::InterruptDone();

Your driver calls this method to tell the Newton Operating System that you
have Þnished handling an interrupt in your driverÕs InterruptHandler method.

return value An error code.

DISCUSSION

When you call InterruptDone, the Newton Operating System reenables
interrupts for the device (if necessary). If your InterruptHandler method does not
call InterruptDone, the Newton Operating System assumes that interrupts can be
reenables upon return from your InterruptHandler.

CardHandlerSpeciÞc 3

NewtonErr TLanternDriverAPI::CardHandlerSpecific(ULong selector, ...);

Your driver can use this method to access a CardSpecific method in the
CardHandler class for the PC Card.

selector ???.

return value An error code.

DISCUSSION

AddEventHandler 3

NewtonErr TLanternDriverAPI::AddEventHandler(
kLanternEventType eventType,
DriverProcPtr ptr);

You call this method to specify a method that is a handler for an event. You
must also call this method to handle Newton OS events sent to your driver.

eventType The type of event to be handled.

ptr A pointer to the function that handles the event.

return value An error code.
3-18 The Data Link Layer Driver API P-Class

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
DISCUSSION

You can extend your driver to handle events that are not predeÞned by the
Newton Operating System for data link layer drivers. If you document these
events for your clients, they can send these events to your driver. To handle
these events, you need to add a method to your TLanternDriver p-class
implementation and register that method with AddEventHandler.

To deÞne an event that your driver handles, you use a statement such as the
following:

#define kdeviceNameFunctionName kLanternClass, 'XXXX', n
// (call_arguments) :: (reply_arguments)

For example:

#define kLanternMyRPC kLanternClass, 'myEv', 1
// (CBufferList *) :: (Ulong result, MyStruct data;)

This example deÞnes an RPC named MyRPC with identiÞer 'myEv'. This RPC
takes one argument (a pointer to a CBufferList) and returns a structured reply.
You specify the call and reply parameters in the comment at the end of the
define statement.

If you deÞne a method in your driver named MyRPC to handle this event, you
would then register MyRPC as an event handler as shown here:

fDriverAPI->AddEventHandler(kLanternMyRPC, &myDriver::MyRPC)

Note

For more information about events, RPCs, and using these
with your driver, see Chapter 1, ÒIntroduction.Ó u

PostEvent 3

NewtonErr TLanternDriverAPI::PostEvent(kLanternEventType eventType, ...);

You call this method from your driver to post an event for all clients of your
driver.

eventType The type of event to post.

... Event-speciÞc data

return value An error code.
The Data Link Layer Driver API P-Class 3-19
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
DISCUSSION

You use the PostEvent method to post an event to all clients of your driver. This
is an asynchronous call.

PostLocalEvent 3

NewtonErr TLanternDriverAPI::PostLocalEvent(
TTime* evtTime,
kLanternEventType eventType, ...);

NewtonErr TLanternDriverAPI::PostLocalEvent(
kLanternEventType eventType, ...);

You call this method from your driver to post an event for your driver to
handle. Only use PostLocalEvent to post events to yourself.

eventTime The time at which to post a deferred event.

eventType The type of event to post.

... Event-speciÞc data

return value An error code.

DISCUSSION

You use the PostLocalEvent method to post an event to all clients that are
connected to your driver. You can post a standard driver event or a private
event that you have deÞned. You need to add an event handler (see
ÒAddEventHandlerÓ (page 3-18)) for any private events that you have
deÞned for your driver.

You can use the Þrst form of PostLocalEvent to post the event at a later time.

PostReply 3

NewtonErr TLanternDriverAPI::PostReply(NewtonErr err);
NewtonErr TLanternDriverAPI::PostReply(NewtonErr err,

 ULong nArgs,
 ...);
3-20 The Data Link Layer Driver API P-Class

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
You call the PostReply method to reply to an event that your driver has
handled, if the event requires a reply. Use the Þrst form to reply to an event
with no reply arguments.

err The error code for the reply.

nArgs The number of unsigned long values that follow in the
reply-speciÞc data.

... Reply-speciÞc data

return value An error code.

DISCUSSION

You call PostReply when your driver has Þnished handling an event. Clients
receive the reply and can examine and use the reply arguments.

You need to specify the number of unsigned long values that are in the reply
in nArgs. You can use the macro SizeOfStructAsArgs() to determine the size of any
structure that you are passing back as a reply.

Note

Data is copied from the stack back to the client reply buffer.
Any pointers in the argument list are passed literally, which
means that they may not be of any value to the client. u

TCardSocket Methods for Data Link Drivers 3

This section describes the methods of the TCardSocket p-class that you use in
your driver. You can access these methods using the TLanternDriver:fCardSocket
Þeld in your driverÕs p-class.

This section describes these methods:

n AttributeMemBaseAddr

n CommonMemBaseAddr

n IOBaseAddr

n SelectIOInterface
TCardSocket Methods for Data Link Drivers 3-21
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
n SetControl

n GetControl

AttributeMemBaseAddr 3

ULong TCardSocket::AttributeMemBaseAddr();

Returns the attribute memory base address for the card in the socket.

return value The attribute memory base address.

The attribute memory space for a PC-card is mapped linearly into Newon
memory space. There is no 64K addressing window on the Newton, as there
is on other platforms.

CommonMemBaseAddr 3

ULong TCardSocket::CommonMemBaseAddr();

Returns the common memory base address for the card in the socket.

return value The common memory base address.

The common memory space for a PC-card is mapped linearly into Newon
memory space. There is no 64K addressing window on the Newton, as there
is on other platforms.

IOBaseAddr 3

ULong TCardSocket::IOBaseAddr();

Returns the I/O base address for the card in the socket.

return value The I/O base address.

The I/O space for a PC-card is mapped linearly into Newon memory space.
There is no 64K addressing window on the Newton, as there is on other
platforms.

SelectIOInterface 3

void TCardSocket::SelectIOInterface();

Selects the I/O conÞguration on the PCMCIA bus.
3-22 TCardSocket Methods for Data Link Drivers

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
IOBaseAddr 3

void TCardSocket::SetControl(ULong control);

Sets the bus control value for the card.

control The bus control value.

return value None.

GetControl 3

ULong TCardSocket::GetControl(ULong control);

Returns the current bus control value on the card.

return value The bus control value.

TCardPCMCIA Fields and Methods for Data Link
Drivers 3

This section describes the methods and Þelds of the TCardPCMCIA p-class that
you use in your driver. You can access these methods and Þelds using the
TLanternDriver:fCardPCMCIA field in your driverÕs p-class.

This section describes these Þelds and methods from the TCardPCMCIA p-class:

n GetCardManufacturer

n GetCardProduct

n GetCardV1String3

n GetCardV1String4

n GetCardConfiguration

n fRegisterBaseAddress

n fNumOfConfigEntry

n fManufactureId

n fManufactureIdIno

n fFunctionId
TCardPCMCIA Fields and Methods for Data Link Drivers 3-23
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
This section also describes these Þelds from the TCardConfiguration class, which
you can access with the TCardPCMCIA::GetCardConfiguration method.

n fConfigurationNumber

n fIoAddresses

GetCardManufacturer 3

const char* TCardPCMCIA::GetCardManufacturer() const;

This method returns the string representation of the card manufacturer. This
is the Þrst string in the CIS Level 1 Version tuple.

return value A constant string.

GetCardProduct 3

const char* TCardPCMCIA::GetCardProduct() const;

This method returns the string representation of the card product name. This
is the second string in the CIS Level 1 Version tuple.

return value A constant string.

GetCardV1String3 3

const char* TCardPCMCIA::GetCardV1String3() const;

This method returns the third string in the CIS Level 1 version tuple.

return value A constant string.

GetCardV1String4 3

const char* TCardPCMCIA::GetCardV1String4() const;

This method returns the fourth string in the CIS Level 1 Version tuple..

return value A constant string.

GetCardConÞguration 3

TCardConfiguration* TCardPCMCIA::GetCardConfiguration(ULong configNum);
3-24 TCardPCMCIA Fields and Methods for Data Link Drivers

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
This method returns the speciÞed conÞguration object.

conÞgNum The number of the conÞguration entry that you want to
access.

return value A pointer to the conÞguration entry object.

fRegisterBaseAddress 3

ULong TCardPCMCIA::fRegisterBaseAddress;

Is the base address of the conÞguration registers for the card in attribute
memory.

fNumOfConÞgEntry 3

ULong TCardPCMCIA::fNumOfConfigEntry;

Is the number of conÞguration entries available.

fManufactureId 3

ULong TCardPCMCIA::fManufactureId;

Is the manufacturer code from the CIS Manufacturer Id tuple.

fManufactureIdInfo 3

ULong TCardPCMCIA::fManufactureIdInfo;

Is the manufacturer info value from the CIS Manufacturer Id tuple.

fFunctionId 3

ULong TCardPCMCIA::fFunctionId;

Is the function ID code from the CIS Function Id tuple.

fConÞgurationNumber 3

UChar TConfiguration::fConfigurationNumber;

Is the conÞguration number for the conÞguration entry object.

fIoAddresses 3

ULong TConfiguration::fIoAddresses[0];
TCardPCMCIA Fields and Methods for Data Link Drivers 3-25
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
Is the I/O address for this conÞguration.

The Data Link Layer Driver Proto (protoLanternDriver)3

This section describes protoLanternDriver, the NewtonScript proto that you need
to provide for your driver. You use this proto to register your card and
perform a few conÞguration operations.

You can also use this proto to provide extra conÞguration events that you can
send to clients to communicate conÞguration information.

You can also use this proto to deÞne custom external events that your clients
can send to you.

Listing 3-3 shows the protoLanternDriver slots.

Listing 3-3 protoLanternDriver slots

{
Config: func(ConfigInfo, enforceConfig),
AppSymbol: Symbol,
DeviceType: String,
DeviceDisplayName: String // or Array of Strings
DeviceCISProductName: String // or Array of Strings
DeviceClass: Symbol,
DeviceProtocolClassName: String,
ConfigBeforeUse: Boolean, // TRUE or NIL
AppleTalkAvailable: : Boolean, // TRUE or NIL
EventDefs: Array,

// optional slots:
DeviceInserted: func(),
DeviceRemoved: func(),
ConfigView: View,
MapErrorCode: func(ErrorCode),
StatusView: View,
ConfigChanged: func(ConfigInfo),
MakeMessageText: func()
}

3-26 The Data Link Layer Driver Proto (protoLanternDriver)

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
The protoLanternDriver slots 3
This section describes the slots of protoLanternDriver.

ConÞg 3

Config: func(ConfigInfo, enforceConfig)

This method is called when the device is inserted. You can use this method to
send the current conÞguration values to the driver; this allows you to put the
driver into a state that matches the conÞguration values stored in the
NewtonScript soup.

ConfigInfo A frame containing the information entered in the
ConfigView slip.

enforceConÞg If TRUE, you should return an error if the device cannot
be conÞgured.

AppSymbol 3

AppSymbol: Symbol

The application symbol (kAppSymbol) is used in the system registry to name
your driver. Your symbol must not conßict with any other registered drivers.

DeviceType 3

DeviceType: String

The four-character identiÞer string used to uniquely identify the device to
the Newton Operating System.

DeviceDisplayName 3

DeviceDisplayName: String

The device name string used when displaying information to the user. If
your driver can work with multiple devices, specify an array of device
display names.

DeviceCISProductName 3

DeviceCISProductName: String
The Data Link Layer Driver Proto (protoLanternDriver) 3-27
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
The string contained in the device CIS (for PC Card devices). If your driver
can work with multiple devices, specify an array of product name strings.

DeviceClass 3

DeviceClass: Symbol

The device class symbol. Currently, only 'ethernet is supported.

DeviceProtocolClassName 3

DeviceProtocolClassName: String

The string name of the p-class for your driver. For example, TTemplateDriver.

ConÞgBeforeUse 3

ConfigBeforeUse: Boolean

A Boolean value. If TRUE, indicates that the device must be conÞgured before
use. This means that a user notiÞcation is generated when the card is
inserted for the Þrst time.

If NIL, indicates that the device does not need to be conÞgured before use.

AppleTalkAvailable 3

AppleTalkAvailable: Boolean

A Boolean value. If TRUE, indicates that AppleTalk can be used with the
device. If NIL, indicates that AppleTalk cannot be used with the device.

EventDefs 3

EventDefs: Array
3-28 The Data Link Layer Driver Proto (protoLanternDriver)

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
An array of event deÞnition arrays. Each event deÞnition has the following
format:

event symbol The event name. For example: 'evGetMemory.

event class and ID A two-element array that contains the event class and
event ID. For example: ["netw", "gmem"].

send args array An array that speciÞes the type of each argument
posted with the event. An empty array indicates that no
arguments are posted. For example: [ULong].

reply args array An array that speciÞes the type of each argument
received back from event posting. An empty array
indicates that no arguments are received. For example:
[ULong].

The following is an example of an event deÞnition array:
['evGetMemory, ["netw", "gmem"], [ULong], [ULong]]

DeviceInserted 3

DeviceInserted: func()

You can optionally deÞne this method, which is called when the device is
inserted. You can use this method to provide an application-level function
whenever the device is inserted.

DeviceRemoved 3

DeviceRemoved: func()

You can optionally deÞne this method, which is called when the device is
removed. You can use this method to provide an application-level function
whenever the device is removed.

ConÞgView 3

ConfigView: View

A view template that allows the user to enter values for all of the items that
require conÞguration on the device.
The Data Link Layer Driver Proto (protoLanternDriver) 3-29
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
MapErrorCode 3

MapErrorCode: func(ErrorCode),

You can optionally deÞne this method to provide text descriptions of any
device-speciÞc error codes that your driver can return. Return a text string or
NIL for each error code. The default version of this method maps the Lantern
errors.

StatusView 3

StatusView: View,

You can optionally deÞne this view to display device status or performance
statistics.

ConÞgChanged 3

ConfigChanged: func(ConfigInfo),

You can optionally deÞne this method, which is called when the current
emporium changes. This happesn when the user selects a new worksite.

ConfigInfo A frame containing the information entered in the
ConfigView slip.

The default version of this method calls Config.

MakeMessageText 3

MakeMessageText: func()

You can optionally deÞne this method, which is called when your card slip is
about to open. You can use this method to display information to the user
about the card.

return value A string.

The default version of this view displays the CISInfo product name,
manufacturer name, and version information.
3-30 The Data Link Layer Driver Proto (protoLanternDriver)

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
The Data Link Layer Client Proto (protoLanternClient) 3

This section describes protoLanternClient, the NewtonScript proto that clients of
your driver use to access your driver.

Listing 3-4 shows the protoLanternDriver slots.

Listing 3-4 protoLanternDriver slots

{
Instantiate: func(DeviceFrame),
Init: func(Options),
Attach: func(Options),
Detach:: func(),
Delete: func(),
State: func(),
MapErrorCode: func(ErrorCode),
PostDriverEvent: func(EventSym, EventArgs),
RegisterForEvent: func(EventSym, Receiver, Message)
UnregisterForEvent: func(EventSym)
}

The protoLanternClient slots 3
This section describes the slots of protoLanternClient.

Instantiate 3

Instantiate: func(DeviceFrame)
The Data Link Layer Client Proto (protoLanternClient) 3-31
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
The Instantiate method creates a NewtonScript object (a client) that interfaces to
a data link layer driver.

DeviceFrame A frame that speciÞes driver information. This frame
contains the following slots:
appSymbol The application symbol.
DeviceName The text string of CIS Product Name

return value NIL to indicate successful instantiation, or an error code
if unsuccessful.

Init 3

Init: func(Options)

The Init method connects your client to an interface object. This is used for
passive communication with the driver, such as sending conÞguration
events. The card must be inserted, but the driver is not enabled.

Options A frame containing options for the initialization (not
currently used).

return value NIL if the connection is sucessful, or an error code if
unsuccessful.

Attach 3

Attach: func(Options)

The Attach method attaches your client to a driver, which allows you to
request driver services.

Options A frame containing options for the initialization (not
currently used).

return value NIL if the attach (open) is sucessful, or an error code if
unsuccessful.

Detach 3

Detach: func()
3-32 The Data Link Layer Client Proto (protoLanternClient)

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
The Detach method detaches your client from the driver, which means that
you can no longer request driver services.

return value NIL if the detach (close) is sucessful, or an error code if
unsuccessful.

Delete 3

Delete: func()

The Delete method deletes your client.

return value NIL if the deletion is sucessful, or an error code if
unsuccessful.

State 3

State: func()

The State method returns a symbol that speciÞes the current state of your
client.

return value One of the following symbols:
'ClientNotReady The client proto has been created but

is not yet instantiated.
'ClientReady The client proto is instantiated and

ready to use.
'APIReady The client is available for use.
'APIAttached The client is enabled to make driver

requests.

MapErrorCode 3

MapErrorCode: func(ErrorCode)

The MapErrorCode method returns a string that describes an error.

ErrorCode An error code.

return value A string describing the error or NIL if no description is
found for the error.
The Data Link Layer Client Proto (protoLanternClient) 3-33
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
PostDriverEvent 3

PostDriverEvent: func(EventSym, EventArgs)

The PostDriverEvent method sends an event from your client to the driver.

EventSym A symbol representing the event to be sent.

EventArgs An array of arguments used by the driver to process the
event. The contents of this array is dependent on the
event type being posted.

return value A frame that contains the following two slots:
Result NIL if the event was successfully to the

driver, or an error code if unsuccessful.
Data An array of the reply data, or NIL if no

reply data was received.

RegisterForEvent 3

RegisterForEvent: func(EventSym, Receiver, Message)

The RegisterForEvent method registers a callback function to be invoked
when a speciÞc event occurs.

EventSym A symbol representing the event.

Receiver The receiver frame to which the Message is sent.

Message The method of the receiver that is run when the Newton
Operating System receiveds the event.

return value NIL if registration is successful, or the error code
eLANTERN_ClientProtoRFESSpecificEventDefError if the event is
not deÞned or if registration fails.

UnregisterForEvent 3

UnregisterForEvent: func(EventSym)
3-34 The Data Link Layer Client Proto (protoLanternClient)

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
The UnregisterForEvent method unregisters the callback function that you
previously registered for a speciÞc event type.

EventSym A symbol representing the event.

return value NIL if the callback is successfully unregistered. If not,
one of the following two errors:
eLANTERN_ClientProtoURFENotRegisteredForEvent

Your client has no callbacks registered for
the event.

eLANTERN_ClientProtoURFEEventNotRegistered
No callbacks are registered for the
speciÞed event.
The Data Link Layer Client Proto (protoLanternClient) 3-35
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
Summary of Data Link Layer Reference 3

Data Link Layer Constants 3

Data Link Layer Error Codes 3

eLANTERN_DriverNotFound = -61001
eLANTERN_DriverInstallFailed = -61002
eLANTERN_DriverRemoveFailed = -61003
eLANTERN_DriverUnhandledEvent = -61004
eLANTERN_DriverPacketDropped = -61005
eLANTERN_DriverException = -61006
eLANTERN_DriverNewAsyncFailed = -61007
eLANTERN_DriverCardNotInserted = -61008
eLANTERN_DriverAlreadyReplied = -61009
eLANTERN_DriverRequestNotRepliedTo = -61010

eLANTERN_DriverValueRangeError = -61200
eLANTERN_DriverHardwareFailure = -61201
eLANTERN_DriverResourceFailure = -61202

eLANTERN_ClientDispatchFailed = -61300
eLANTERN_ClientAlreadyBound = -61301
eLANTERN_ClientNotBound = -61302
eLANTERN_ClientNoMemory = -61303
eLANTERN_ClientNewAsyncMsgFailed = -61304
eLANTERN_ClientInvalidTaskType = -61305

Data Link Layer Driver RPCs and Events 3

RPCs Sent to Your Driver 3

kLanternSendBuffer kLanternEventClass,'sndB',2
// (Ptr ptr, Size size) : {}
3-36 The Data Link Layer Client Proto (protoLanternClient)

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
kLanternSendCBufferList kLanternEventClass,'sndC',1
// (CBufferList* data) : {}

kLanternGetDeviceAddress kLanternEventClass,'gdva',2
// (UByte* addr, Size size) : {}

kLanternGetLinkIntegrity kLanternEventClass,'glit',0
// () : {ULong link}

kLanternAddMulticastAddress kLanternEventClass,'amca',1
// (UByte* addr) : {}

kLanternDelMulticastAddress kLanternEventClass,'dmca',1
// (UByte* addr) : {}

Events Your Driver Sends 3

kLanternLinkIntegrity kLanternEventClass,'link',1
// (ULong link)

kLanternDriverFailure kLanternEventClass,'fail',1
// (NewtonErr reason)

TLanternDriver P-Class 3

PROTOCOL TLanternDriver : public TProtocol
{
public:

static TLanternDriver* New(char*);
void Delete();

NewtonErr Init(void);

NewtonErr Enable(void);
NewtonErr Disable(void);
NewtonErr InterruptHandler(void);

protected:
friend class TLanternTask;

TCardSocket* fCardSocket;
TCardPCMCIA fCardPCMCIA;
TLanternDriverAPI* fDriverAPI;

}

The Data Link Layer Client Proto (protoLanternClient) 3-37
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
TLanternDriverAPI P-Class 3

PROTOCOL TLanternDriverAPI : public TProtocol
{
public:

static TLanternDriverAPI* New(char*);
void Delete();

NewtonErr Init(TLanternTask*);

NewtonErr PowerOn(Boolean* powerOn, Boolean intEnable=true);
NewtonErr PowerOff(ULong msDelay=kDefaultPowerDownTime,

 Boolean intDisable=true);

Ptr NewPacketPtr(Size size);
NewtonErr RxReady(Ptr buf, Size size=0);
NewtonErr InterruptDone(void);

NewtonErr CardHandlerSpecific(ULong selector, ...);

NewtonErr AddEventHandler(kLanternEventType, DriverProcPtr);
NewtonErr PostEvent(kLanternEventType, ...);
NewtonErr PostLocalEvent(kLanternEventType, ...);
NewtonErr PostLocalEvent(TTime*, kLanternEventType, ...);
NewtonErr PostReply(NewtonErr);
NewtonErr PostReply(NewtonErr, ULong nArgs, ...);

}

TCardSocket Methods 3
ULong TCardSocket::AttributeMemBaseAddr();

ULong TCardSocket::CommonMemBaseAddr();

ULong TCardSocket::IOBaseAddr();

void TCardSocket::SelectIOInterface();

void TCardSocket::SetControl(ULong control);

ULong TCardSocket::GetControl(ULong control);
3-38 The Data Link Layer Client Proto (protoLanternClient)

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
TCardPCMCIA Fields and Methods 3
const char* TCardPCMCIA::GetCardManufacturer() const;

const char* TCardPCMCIA::GetCardProduct() const;

const char* TCardPCMCIA::GetCardV1String3() const;

const char* TCardPCMCIA::GetCardV1String4() const;

TCardConfiguration* TCardPCMCIA::GetCardConfiguration(ULong configNum);

ULong TCardPCMCIA::fRegisterBaseAddress;

ULong TCardPCMCIA::fNumOfConfigEntry;

ULong TCardPCMCIA::fManufactureId;

ULong TCardPCMCIA::fManufactureIdInfo;

ULong TCardPCMCIA::fFunctionId;

UChar TConfiguration::fConfigurationNumber;

ULong TConfiguration::fIoAddresses[0];

protoLanternDriver Slots 3

{
Config: func(ConfigInfo, enforceConfig),
AppSymbol: Symbol,
DeviceType: String,
DeviceDisplayName: String // or Array of Strings
DeviceCISProductName: String // or Array of Strings
DeviceClass: Symbol,
DeviceProtocolClassName: String,
ConfigBeforeUse: Boolean, // TRUE or NIL
AppleTalkAvailable: : Boolean, // TRUE or NIL
EventDefs: Array,

// optional slots:
DeviceInserted: func(),
DeviceRemoved: func(),
ConfigView: View,
MapErrorCode: func(ErrorCode),
StatusView: View,
The Data Link Layer Client Proto (protoLanternClient) 3-39
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 3

Data Link Layer Tool Reference
ConfigChanged: func(ConfigInfo),
MakeMessageText: func()
}

protoLanternClient Slots 3

{
Instantiate: func(DeviceFrame),
Init: func(Options),
Attach: func(Options),
Detach:: func(),
Delete: func(),
State: func(),
MapErrorCode: func(ErrorCode),
PostDriverEvent: func(EventSym, EventArgs),
RegisterForEvent: func(EventSym, Receiver, Message)
UnregisterForEvent: func(EventSym)
}

3-40 The Data Link Layer Client Proto (protoLanternClient)

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 4

Figure 4-0
Listing 4-0
Table 4-0
Building a Data Link Layer
Driver 4

This chapter tells you how to build a data link layer driver.

Building the Sample Driver 4

This section describes the steps that you need to perform to build the sample
data link layer driver that was shipped on your CD-ROM. Use similar steps
to build your own driver.

To build the sample data link layer driver, you need to follow these steps:

5. Copy the contents of the NIE 2.0 DDK distribution CD-ROM to your hard
drive.

6. Copy the Þles in the folder ÒNTK:Move to SystemÓ to your System folder.

7. Reboot your computer.

8. Launch MPW.

9. When prompted by MPW, select the ÒSourcesÓ directory that you copied
in step 1 as the NCT root directory.
Building the Sample Driver 4-1
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 4

Building a Data Link Layer Driver
10. Select ÒNE2000 SampleÓ from the ÒNewton C++ ToolsÓ menu.

11. Launch NTK and open the ÒNE2KÓ sample project.

12. Build the sample project.

13. Load the package ÒNewton Devices.pkgÓ onto your Newton.

14. Download the package you just builtÑNE2K.pgkÑonto your Newton.

15. Run AppleTalk with the sample driver.

Installing the NCT Additions 4

To develop a data link layer driver, you need to install the Newton C++
Toolbox (NCT) and then add in several additions. This section describes the
components that you must install.

Newton C++ Toolbox (NCT) 4
The Newton C++ Toolbox provides a complete MPW environment for
developing C++ code for the Newton.

DDK Addition 4
The DDK NCT Addition to NCT adds a collection of MPW scripts that
extend MPW to include menu items for creating a DDK project.

The DDK NCT Addition also adds a collection of header Þles that you need
to build a communications tool.

PC-Card Addition 4
The PCMCIA DDK Addition adds the header Þles that you need to access a
PCMCIA card, including the TCardSocket and TCardPCMCIA classes.
4-2 Installing the NCT Additions

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 4

Building a Data Link Layer Driver
Data Link Layer Addition 4
The data link layer addition adds the protocol interfaces that you need to
build your data link layer driver.
Installing the NCT Additions 4-3
Preliminary Draft. ã Apple Computer, Inc. 9/13/97

C H A P T E R 4

Building a Data Link Layer Driver
4-4 Installing the NCT Additions

Preliminary Draft. ã Apple Computer, Inc. 9/13/97

	Figures, Tables, and Listings
	About This Book
	How to Use This Book
	Related Books
	Conventions Used in This Book
	Special Fonts

	Developer Products and Support

	Introduction
	About Data Link Layer Drivers
	What a Data Link Layer Driver Does
	How Your Driver is Used
	Application Requests
	Driver Events
	Driver Configuration

	Data Link Layer Driver Packet Types

	Newton Data Link Layer Architecture
	Figure�1-1 Overview of the data link layer archite...
	Figure�1-2 Detailed Lantern task architecture
	About Newton Tasks
	About Newton Tasks and Ports

	When Your Driver is Called
	Card Insertion
	Figure�1-3 Flow of control when a PC card is inser...

	Application Attaches Your Driver
	Figure�1-4 Flow of control for attaching an Applet...

	Client Requests
	Card Removal or Application Completion

	Implementing Your Own Driver

	How to Write a Lantern Driver
	Data Link Layer Model Driver Code
	Data Link Layer Model Driver P-class
	Driver event definitions
	P-class Creation and Destruction Methods
	Lantern Task Service Methods
	Lantern Client Service Methods
	Data Link Layer Driver Notes and Limitations
	Busy Loops
	Packet Delivery
	Link Integrity Changes
	Exception Handling in Your Driver
	Multicast Clients

	Data Link Layer Tool Reference
	Data Link Layer Tool Constants and Data Types
	Data Link Layer Error Codes

	Data Link Layer Driver RPCs and Events
	Table�3-1 Data link layer driver events�
	RPCs Sent to Your Driver
	Events Your Driver Sends

	The Data Link Layer Driver P-Class
	Listing�3-1 The data link layer driver p-class
	Data Link Layer Driver P-Class Methods
	Data Link Layer Driver P-Class Fields

	The Data Link Layer Driver API P-Class
	Listing�3-2 The data link layer driver API p-class...
	Data Link Layer Driver API P-Class Methods

	TCardSocket Methods for Data Link Drivers
	TCardPCMCIA Fields and Methods for Data Link Drive...
	The Data Link Layer Driver Proto (protoLanternDriv...
	Listing�3-3 protoLanternDriver slots
	The protoLanternDriver slots

	The Data Link Layer Client Proto (protoLanternClie...
	Listing�3-4 protoLanternDriver slots
	The protoLanternClient slots

	Building a Data Link Layer Driver
	Building the Sample Driver
	Installing the NCT Additions
	Newton C++ Toolbox (NCT)
	DDK Addition
	PC-Card Addition
	Data Link Layer Addition

