
NEWTON

Q&A:

ASK THE

LLAMA

Q I have a slip in my application that edits part of my application preferences. I use
GetAppPrefs to get the preferences frame, and then set a pointer to a subframe in my
slip:

myAppPref.viewSetupFormScript := func()

begin

local prefs := GetAppPrefs(kAppSymbol, kDefaultPrefFrame);

self.target := prefs.defaultNames;

inherited:?viewSetupFormScript();

end

The user makes the change and I use EntryChangeXmit, but sometimes I lose the
change. Any hints?

A It looks as if you’re encountering an interaction between soup entries and garbage
collection. In your viewSetupFormScript, you use GetAppPrefs to load the soup
entry corresponding to your application preferences into the NewtonScript heap.
Then you set a target slot in your preferences slip to the defaultNames slot in that
preferences frame. I assume that some time later, probably in the viewQuitScript,
you reload your preferences frame (with GetAppPrefs again) and call
EntryChangeXmit on the frame returned by that call.

The problem occurs because you use a local variable to point to your preferences
entry. Once the viewSetupFormScript is completed, this local goes away, so the
preferences entry is subject to garbage collection. This may seem unintuitive since
soups are where you store persistent data. However, there’s a difference between the
data that comprises an entry in a soup and an actual entry in the NewtonScript heap.
When you request a soup entry, the data from the soup is swapped into the heap so
that you can access it as a frame. The entry on the heap is a copy of the data in the
soup, not the real data. Changes to that heap copy aren’t written to the soup until you
call EntryChangeXmit.

After your GetPrefsEntry call, the heap looks like Figure 1. Then your
viewSetupFormScript returns and the prefs local goes away, so your heap looks like
Figure 2.

develop Newton Q&A Page 1

Figure 1 Figure 2
Heap after GetPrefsEntry Heap after viewSetupFormScript

Notice how there is nothing referencing the preferences entry (Figure 2), but there is
something referencing the defaultNames subobject. As far as the system is
concerned, the preferences entry frame is now available for garbage collection. The
next time the preferences entry is loaded in, an entire new copy of that entry is made,
including the defaultNames subobject. So self.target points to a valid NewtonScript
array that’s different from the new copy of your preferences entry.

This explains why the information doesn’t get updated, but not why this doesn’t
happen every time. It doesn’t happen every time because the soup system will cache
the frame representation of a requested entry. When you request an entry, the first
thing the soup system does is check for a cached entry. If it exists, it’s used, in which
case the defaultNames subobject is the same one that self.target is referencing —
that is, no new copy of the preferences entry is loaded into the heap.

So, what happens is that once the user finishes editing the entry, you call
GetAppPrefs, which may return the cached preferences entry. If garbage collection
has occurred, your target slot will point to the edited version of the defaultNames
structure, but not to the defaultNames slot value from the new preferences frame.
Figure 3 shows the heap after garbage collection has occurred. After your call to
GetAppPrefs, you get the situation shown in Figure 4. Your local prefs variable
points to a new heap copy of the preferences entry, but your target slot points to the
old defaultNames value. The EntryChangeXmit call will affect the new copy of the
soup entry, leaving it apparently unchanged.

develop Newton Q&A Page 2

Figure 3 Figure 4
Heap after garbage collection Heap after GetAppPrefs

There are two ways to fix this: you could put the edited defaultNames structure into
the preferences frame before calling EntryChangeXmit, or you could hold a
reference to the application preferences in your slip (or in your base view) for the
duration of the edit. The first way is more memory efficient.

The basic lesson is that keeping around references to objects inside soup entries is a
dangerous practice. The safe thing is to read in your entry, do the modifications, save
the entry then NIL out the reference.

Q I have an application that may print or fax many pages of information. I need to draw
a lot of the content of those pages. I know that in 1.x viewDrawScripts, faxing needed
to be fast. How about in 2.0? Are there better ways to go?

A The main thing missing in Newton 1.x OS is a method that gets called before the fax
connection is made. In Newton 2.0 OS, the formatInitScript method of your print
format will be called before the connection is made. You can use this script to do
time-consuming drawing and cache the results for later use.

An extension of this technique is to render all your pages into a Virtual Binary
Object and then access the appropriate place in that object during printing or faxing.
The advantage of this is that you save heap space, since a VBO is paged in to a
system heap (not the NewtonScript heap). For some devices this is the only way to
print large numbers of pages.

Q The setup application uses some nifty embedded keyboards. I checked the beta version
of the Newton Programmer’s Guide for a prototype, but there doesn’t appear to be
one. Is this an oversight? How can I make these keyboards?

develop Newton Q&A Page 3

A There are several, as yet undocumented, ROM prototypes for embedded keyboards.
They will appear in the final Newton Programmer’s Guide, but for now they’re in
the Newton Toolkit platform file:

• protoAlphaKeys — alphanumeric keypad

• protoNumericKeys — numeric keypad

• protoTouchtonePad — minimal phonepad

• protoPhonePad — phonepad plus punctuation and arrow keys

All of these embedded keyboards will send input to the current key view. All you
have to do is draw one out in your layout and make sure the target view is the current
key view. See the Newton DTS Q&A document on the Newton Developer CD for
instructions on how to use an afterScript to set the proto of a view.

Q I’m porting my code from Newton 1.x OS to Newton 2.0 OS. When I build my project
using Newton Toolkit 1.6 and the 2.0 platform file, I get an error telling me that
k<insertNameHere>Func is undefined. What’s the problem?

A The chances are that your 1.x code is using one of the platform file functions that
either have been incorporated into ROM or are obsolete. However, developers may
want to write code that works on both Newton 2.0 and 1.x devices. To enable this,
we provide the old functions but we mark them as deprecated, which means they
shouldn’t be used in Newton 2.0–savvy applications, but can be used for
compatibility reasons.

For example, in 1.x platform files there’s a kRegisterCardSoupFunc function; in the
2.0 platform file, this is called kRegisterCardSoupDeprecatedFunc since there is a
new and better way to register soups in Newton 2.0 OS. See the platform file release
notes for a list of deprecated functions, protos, and so on.

Q How are reals represented in the package format? The data field for 12.345 is
represented as 0x4028B0A3D70A3D71, for example.

A NewtonScript uses the Apple SANE double format (basically the IEEE format) for
floating-point numbers. These are implemented as 8-byte binary objects of class real
and contain a sign bit, 11 bits of biased exponent, and 52 bits of fraction.

0x4028B0A3D70A3D71 is the binary data (8 bytes) of the SANE representation of
12.345. It’s the same data that’s used to hold the number on the Newton itself.

develop Newton Q&A Page 4

Q I would like to add a separator line followed by some new application specific actions.
I proceeded to register a frame with the title as the symbol pickSeparator. It worked,
except that the separator was selectable. All I’m trying to achieve is an eye-pleasing
separation between the system actions and my actions. I also tried returning in the
GetTitle routine a frame with

{item: 'pickSeparator, pickable: nil}

but that resulted in a blank entry. Is there a way to do what I’m trying to do — that is,
to have a pickSeparator that isn’t selectable in the action button?

A In the routeScripts array, you can use a nil value instead of a frame. That will add
another pickSeparator at that position in the routeScripts. Note that the system will
fill in the separator between the items that are routing transports (like Print) and the
items that are actions (such as Delete). If you need to add this separator dynamically,
you can provide your own GetRouteScripts method that dynamically returns the
routeScripts frame.

That said, please check the latest Newton 2.0 User Interface Guidelines to make sure
that you’re putting a separator in a valid spot.

Q I’m profiling my application to see why it takes so long to open. However, of the time
it takes to open, only a small percentage is spent in my code. I’m measuring from the
start of the viewSetupFormScript to the end of the viewSetupDoneScript in my base
view.

A There are a few things you can do. The first is to make sure you’re profiling system
functions to see if that’s where the time is going. It may be that you’re doing things
in your startup process that would be better done at a later time.

You may also be running into low-memory conditions. Run the HeapShow utility
that comes with Newton Toolkit and look at the frames heap and free system space
(handles and pointers). You can do this in combination with NS Debug Tools to step
through your code and track memory usage. Note that the Newton Toolkit inspector
will use a fair bit of system space, so you may want to get a baseline memory usage
without the inspector connected.

Q How do I reset a protoTextList so that when I change the listItems and redisplay, the
display starts at the first item again? Right now if I’ve scrolled the text list and then I
reset it, the top item is wrong.

develop Newton Q&A Page 5

A The documentation mentions a SetupList method that you call when initializing the
view. However, this is not enough if you’re changing the listItems after you’ve
opened the textList. Since the current implementation of textList scrolls by offsetting
the origin, you also need to reset the origin.

Here’s a method that you can add to your own protoTextList that will add a text item
and redraw the list correctly:

myProtoTextList.AddItem := func()

begin

// make sure listItems is an array

if NOT listItems then

listItems := [];

local newItem := GetRandomWord(5, 10);

// insert in sorted order for strings

BInsert(listItems, newItem, '|Str<|, nil, nil);

// redisplay based on new data

// this will reset the list to the top item

:SetOrigin(0, 0);

:SetupList();

:RedoChildren();

end;

Q Can you write a funny Q&A ?

A Yes.

Q I’m having two problems with a protoPicker view. First, when I open a protoPicker
view (whose vFloating flag I haven’t turned off) it’s obscured by a textButton in the
main view. I can’t figure out why it doesn’t float over this plain vanilla textButton.

Also, I can’t select some of the items in the picker. The inaccessible items appear last
in the list, from the portion of the picker view that extends beyond the picker’s parent
view or the slip’s main view.

The only thing I can see unusual here is that the protoPicker view is not a sibling of
the textButton. The view hierarchy looks like this:

slipMainView

develop Newton Q&A Page 6

clusterView

protoPicker

textButton

Can you help?

A It looks like the protoPicker is being opened as a child of the clusterView. What this
means is that the active (tapable) area of the protoPicker will be clipped to the
bounds of the clusterView.

It also sounds like the clipping viewFlag of the clusterView is not set. That allows
the protoPicker to be drawn outside of it's parent, so you may think it is clickable
even when it is not.

There are 3 possible solutions:

• Resize the protoPicker so that it is no larger than the clusterView.

• Make the protoPicker a child of a view higher up in the heirarchy (e.g., the
slipMainView)

• If your protoPicker is larger than the application base view, use BuildContext to
attach it to the root view

The llama is
the unofficial mascot of the Developer Technical
Support group in Apple’s Newton Systems Group.
Send your Newton-related questions to
dr.llama@applelink.apple.com (AppleLink
DR.LLAMA). The first time we use a question from
you, we’ll send you a T-shirt.

Thanks
to jXopher Bell, Henry Cate, Bob Ebert, Mike
Engber, David Fedor, Ryan Robertson, Jim
Schram, Maurice Sharp, and Bruce Thompson for
these answers. Special thanks to Bob Ebert for the
answer on the format of reals.

If you need more answers,
check out http://dev.info.apple.com/newton on the
World Wide Web or Newton Developer Info on
AppleLink.

develop Newton Q&A Page 7

