
NEWTON Q&A: ASK THE LLAMA

This column first appeared in volume 23 of DEVELOP (the Apple technical journal for developers).
Copyright ©1995 Apple Computer, Inc. All rights reserved.

Q I have a program that communicates with the desktop. Part of the information sent is real
numbers. I’ve found functions to stuff almost every other type of data into a binary
object except real numbers. How do I do that?

A You have two choices. First, you could just print the real number as a string (using
SPrintObject), send the string, and convert it back on the other side. Clearly this isn’t a
good idea if you want to maintain a high degree of precision.

The other choice is to construct the correct type of binary object for the target desktop
machine. In other words, take the Newton real representation and convert it into, say,
IEEE floating point. Once you’ve constructed your target binary representation, you
can use BinaryMunger to stuff that binary object into whatever packet of data you’re
constructing.

Note that Newton uses SANE representation for real numbers that are in the
representable range. However, the representation of exceptions (such as NAN and
infinity) are different and undocumented. At this time you should avoid converting
these types of real numbers.

Q Can you give me a short and clear description of the different types of Newton memory?

A There are three important “pools” of so-called internal memory, each with different
tradeoffs.

The NewtonScript heap (about 90 to 96K on current devices) is where all the runtime
data from NewtonScript lives. Any result from the Clone family of calls will take up
NewtonScript heap space. The view frame made at run time from your application
templates will take up this heap space. NewtonScript heap space is very precious, and
you should try to use as little of it as possible, especially when your application’s base
view isn’t open.

The user store (192K in the MessagePad 100, larger on other devices) is where
application packages stored internally live, and where soups are located. The entries in
the soups are located in this space. While not quite as precious as the NewtonScript
heap, this space can certainly run out. This is the space that’s “extended” when a RAM
PCMCIA card is inserted.

There is also some system heap space, which is used for, well, everything else. The
viewCObjects and drawing objects live here. Recognition uses memory from here.
You can run out of this space (in which case you get the Cancel/ Restart dialog) but it’s
less of a programming issue.

Q I have an application that uses a protoRollBrowser. When I expand the items, they have
lines separating them. I didn’t put them there and I can’t seem to get rid of them. Is this
a bug?

A What you’re seeing is part of the default definition of a protoRollItem. It includes a
1-pixel border. You can remove that border by modifying the viewFormat of your
rollItems. In addition, you may want to set the fill to white.

Q I’m using a protoRoll (not protoRollBrowser) in my application. But it never shows up.
What’s the problem?

A You need to give it a viewFlags slot and make sure the Visible bit is checked. The
default is Application and Clipping, but this won’t make the protoRoll visible if it’s
included inside another view.

Q I have a text view that the user can use to enter text. I wanted to extend a selection. I
knew the insertion caret was at the end of the selection, so I called SetHilite(newPoint,
newPoint, nil), where newPoint is the new position for the selection extension, but I got
no highlight. What’s going wrong?

A The behavior is actually perfectly correct. There’s a not quite obvious interaction
between the caret and SetHilite. As shown in the table below, how SetHilite behaves
depends on four things: the start and end character positions (the first two
arguments) being equal, the value of unique (the third argument), the presence of a
previously highlighted selection, and the presence of the caret. Note that the following
explanation refers to the case of a single paragraph view. If there are multiple
paragraph views then with unique nil, it’s possible to have multiple discontigous
selections. Note that there can only be one selection in a single paragraph view.

Highlight and unique When start = end When start <> end

No previous highlight, If there’s a caret, move caret; Create new highlight from start
unique true or nil otherwise, no effect to e n d

Previous highlight, Clear highlight and, if there’s Create new highlight from start
unique true a caret, move caret to e n d, remove old highlight

Previous highlight, Extend highlight to include Extend highlight to include
unique nil start/e n d start and e n d

Q I have an application that uses ADSP to connect to a server on the desktop. I want the
server to handle multiple Newtons connected simultaneously. Unfortunately, if a
connection fails after it’s opened, when the Newton reconnects the server doesn’t seem
to be able to identify it as a new connection. This causes problems in the server’s ability
to handle multiple connections. Can you help?

A We’ll assume that the Newton tries to reconnect shortly after losing the connection. In
that case, the Newton doesn’t generate a new connection ID, so your server probably
acts as if the connection didn’t close, while the Newton is acting as if it’s establishing
a new connection. Currently the only solution is to force the Newton to wait three
minutes after an improper disconnect before trying to reconnect.

Q I have a communications program that always sends a string of the same size to the
desktop. The string is quite large, and I would like to preallocate it and fill it with a
particular value. What’s the best way to do this?

A As with all things in programming, the answer is a tradeoff between space and time.
Let’s assume that you want a string of 2K characters filled with the character 'A', and
that you control the contents of the string (that is, if you get user input, you make sure
the input is a string).

The first option is to allocate the string at compile time. Note that you shouldn’t
allocate your string constant with a double-quoted string ("a string"), since typing 2K
(less the terminator) characters is monotonous and error prone. The way to allocate the
string is with the following SetLength trick:

constant kNumberOfUnicodeCharsForString := 2048; // 2K chars

DefConst('kMyBigString, call func()

begin

// SetLength uses Bytes, Unicode chars are 2 bytes each

local aStr := SetLength("",

2 * kNumberOfUnicodeCharsForString + 2);

// initialize the string

for i := 0 to k1KUnicodeChars - 1 do

aStr[i] := $A;

return aStr;

end with ());

At run time you can clone kMyBigString and do what you need to fill it with
characters. Note that the object is not a string; you would need to use StuffByte to put
in individual characters.

The disadvantage of this method is that it puts a 4K object in your package (Unicode
strings are two bytes per character). The advantage is that it’s very fast: it averages less
than one tick (60th of a second) for the clone.

If you can’t afford the 4K in your package, you need to generate the string at run time.
Using the above code at run time averages 52 ticks.

Another possible runtime method is to use smart strings, which allow you to
preallocate strings and concatenate them in a more efficient way. The first attempt at
doing this seems to be inefficient, at an average of 175 ticks:

// defined constant somewhere in your project

constant kNumberOfUnicodeCharsForString := 2048;

local s := SmartStart(2 * kNumberOfUnicodeCharsForString + 2);

local l := 0;

for i := 1 to kNumberOfUnicodeCharsForString do

l := SmartConcat(s, l, "A");

SmartStop(s, l);

However, simply concatenating two characters at a time reduces the average to 88
ticks; four characters reduces it to 44; and so on. A lesson here is that testing and
measurement are your friends.

Q I’d like to train my dog to code in NewtonScript. How can I do that?

A I’m afraid the prospect isn’t promising. Dr. J. L. Fredericks at SITAP (Stanford
Institute for Training Animal Programmers) has been trying for ten years to train

different animal species to program computers. Although he’s had some success
training dogs to do simple programs, he says “Anything more than a simple statement
is beyond them. No loops, no conditionals.” Besides which, paws don’t work well
for moving mice. For Newton programming the best he has been able to achieve is
training a rat to reset the Newton on command. "Never underestimate the usefulness of
a ratset."

The llama is
the unofficial mascot of the Developer Technical
Support group in Apple’s Newton Systems Group.
Send your Newton-related questions to NewtonMail
DRLLAMA or AppleLink DR.LLAMA. The first time
we use a question from you, we’ll send you a T-
shirt.

Thanks
to our Newton Partners for the questions used in
this column, and to jXopher Bell, Bob Ebert, David
Fedor, Neil Rhodes, Jim Schram, Maurice Sharp,
and Bruce Thompson for the answers. Thanks
especially to Bob Ebert for the Newton memory
description.

Have more questions?
Need more answers? Take a look at Newton
Developer Info on AppleLink.

