Desktop Connection Library
Programmer’s Guide

by Paul Guyot
May 3, 2005

As long as there are ill-defined goals, bizarre bugs, and unrealistic schedules,
there will be Real Programmers willing to jump in and solve the problem,
saving the documentation for later.

b

@ Desktop

»

Connection
Library

Contents

1 What is the Desktop Connection Library?

2 The Kallisys Reflexive License

3 The K Libs

4 The structure of the DCL

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
49

Exceptions
Streams
Interfaces
Communication Layers
SErvers e e e e
Links
NewtonScript Objects
Packages
Data

5 Writing an application based on the DCL

6 Porting the DCL to another platform

7 Writing a communication layer

8 Adding more exchange capabilities

9 References

10 Contact

»

NN OO Q1 U1 U1 W

DCL Programmer’s Guide 3

1 What is the Desktop Connection Library?

The Desktop Connection Library or DCL for short is a framework of C++
and Obj-C classes to connect to Newton devices via the Dock/Connection
built-in application and to manipulate Newton data.

The DCL can be used to either write general purpose connection and
Newton-data handling software such as Newton package installers,
Backup utilities, Synchronization tools, Data exchange programs, package
creators and to add connection and/or Newton data handling capabilities
to existing programs.

2 The Kallisys Reflexive License

The Desktop Connection Library is released under the Kallisys Reflexive
License . This means that the DCL is open source and copy-left (any work
based on the DCL should be open source). Additionally, the KRL intro-
duces high quality standards regarding the code. The source code of any
product based on the DCL should include, in readable form, a definition
of the domains of functions, variables, classes and any element that can be
referenced. Variables could be named with a single letter but in that case
their full role should be explicited in comments.

Additionally, the KRL requires that the source code could be compiled with
a freely available development environment and produce with it a working
binary. This means that it rules out Excel Macros and REALBasic programs.

Please refer to the KRL for details.

The Desktop Connection Library is (mostly) commented in French, but this
is not mandatory for works based on it of course.

3 The K Libs

The Desktop Connection Library uses general purpose libraries called the
K Libs. These libraries are designed to be portable and some code there
actually runs on NewtonOS. The DCL is provided with the K Libs. You are

DCL Programmer’s Guide 4

free to use (under the KRL) the K Libs independantly from the DCL.

K Crypto includes a simple DES encryption and decryption class.
This is very primitive, seems to work and is actually used by the DCL
with a particular define to switch from regular DES to NewtonOS-
compatible DES. Indeed, Apple implemented a DES-like challenge in
the dock protocol.

K Defines includes headers for portable definitions. You might need
to modify this file (cf section Porting the DCL to another platform)

K GP is a Genetic Programming framework. This is included in the
K Libs for historical reasons and it is not used within the DCL.

K Math includes 64 bits math classes based on 32 bits math classes.
This is used here and there in the Desktop Connection Library.

K Misc includes some miscellaneous utilities such as a Base64 class.

K Tests is a set of debugging macros that can be used on various
platforms including NewtonOS. These macros are used within the
DCL.

e K Unicode includes classes to handle conversions between UTF-16 (a
very similar encoding to NewtonOS’s native unicode encoding') and
various encodings such as MacRoman, Latin-1 or UTF-8.

4 The structure of the DCL

The Desktop Connection Library is organized in 9 main parts.

4.1 Exceptions

Error within the DCL are propagated using exceptions. Exceptions include
a code which is unique to each Exception class and, optionally, an error
code describing the error (usually a platform-dependent code).

"NewtonOS handles an early version of Unicode defined when all characters fitted on
16 bits

DCL Programmer’s Guide 5

4.2 Streams

The streams are an abstraction for input/output operations with files and
pipes. TDCLStream abstract class, through a couple of methods that sub-
classes need to override, provide various input/output operations. Some
streams like files can be rewinded, they are subclasses of TDCLRandomAc-
cessStream. TDCLStdStream and TDCLMemStream are two utility streams
used in sample codes and in tests.

4.3 Interfaces

Interfaces between the DCL, the application and the OS is provided
through Interfaces classes. Several classes provide an abstraction for
files, threads and system utilities and implementation for various
OSes. TDCLApplication is the base class for the interface between the
DCL and the application and it includes a wide set of callbacks for
connection-related operations.

44 Communication Layers

The communication layers are responsible for handling the communication
with the Newton. This can be more than just the physical layer, for there
are communication layers doing TCP/IP.

A communication method is represented with a TDCLCommLayer class.
For example, there is a class for AppleTalk connections on MacOS X or for
BSD Sockets.

Connections themselves are represented with objects of the TDCLPipe class
which derive from TDCLStream.

Two main kind of communication layers are supported. Asynchronous (or
interrupt-based) communication layers should derive from TDCLComm-
Layer. Synchronous (or thread-based) communication layers should derive
from TDCLSyncCommLayer. The DCL comes with layers for various con-
nection methods and for various OSes such as AppleTalk on MacOS X, BSD
Sockets and serial on POSIX platforms.

DCL Programmer’s Guide 6

4.5 Servers

Server objects are built just on top of the Communication Layers. They
are responsible for handling one or several communication layers and dis-
patching connections to Links.

One can define a class deriving from TDCLServer for custom server behav-
ior. However, TDCLSimpleServer and TDCLOneLinkServer should be suf-
ticient for most uses. TDCLSimpleServer is a server with a single Commu-
nication Layer and a single Link (typically like Newton Package Installer).
TDCLOneLinkServer is a server with one link but several communication
layers (for applications, like Newton Connection Utilities, listening on sev-
eral interfaces).

4.6 Links

The links represent the application interface with the Newton. The mini-
mum connection utility should define its own link.

Several base class links are available for various amounts of features. TD-
CLDockLink provides the minimum set of features and can be used with
applications not willing to provide any standard service. TDCLLoadPack-
ageLink is a simple link to handle challenge-less Newton Package Installer-
like connections with the Newton. The only possible operation is loading a
package. TDCLFullDockLink class provides the full set of standard connec-
tion features through link engines. The set of engines can be customized.

4.7 NewtonScript Objects

Classes in the NS Objects package are either classes for NewtonScript ob-
jects such as frames, arrays, binaries, strings, symbols or immediates or
classes for encoding and decoding of these objects in various formats (XML,
NSOF, Packages, Text).

DCL Programmer’s Guide 7
4.8 Packages

TDCLPackage is a class for a Newton package. It allows analysis and com-
pilation of packages through various classes for the package parts (sub-
classes of TDCLPkgPart).

4.9 Data

Classes in the data directory are specialized in the analysis and the conver-
sion of Newton data from/to desktop data such as conversion of RTF rich
text to NewtWorks or clParagraph formats.

5 Writing an application based on the DCL

6 Porting the DCL to another platform

7 Writing a communication layer

8 Adding more exchange capabilities

9 References

10 Contact

	 What is the Desktop Connection Library?
	 The Kallisys Reflexive License
	 The K Libs
	 The structure of the DCL
	 Exceptions
	 Streams
	 Interfaces
	 Communication Layers
	 Servers
	 Links
	 NewtonScript Objects
	 Packages
	 Data

	 Writing an application based on the DCL
	 Porting the DCL to another platform
	 Writing a communication layer
	 Adding more exchange capabilities
	 References
	 Contact

